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In this paper we have recalled the semiclassical metric obtained from a classical analysis of the loop

quantum black hole (LQBH). We show that the regular Reissner–Nordström-like metric is self-dual in the

sense of T-duality: the form of the metric obtained in loop quantum gravity is invariant under the

exchange r ! a0=r where a0 is proportional to the minimum area in loop quantum gravity and r is the

standard Schwarzschild radial coordinate at asymptotic infinity. Of particular interest, the symmetry

imposes that if an observer in r ! þ1 sees a black hole of mass m an observer in the other asymptotic

infinity beyond the horizon (at r � 0) sees a dual mass mP=m. We then show that small LQBH are stable

and could be a component of dark matter. Ultralight LQBHs created shortly after the big bang would now

have a mass of approximately 10�5mP and emit radiation with a typical energy of about 1013–1014 eV but

they would also emit cosmic rays of much higher energies, albeit few of them. If these small LQBHs form

a majority of the dark matter of the Milky Way’s Halo, the production rate of ultra-high-energy-cosmic-

rays (UHECR) by these ultralight black holes would be compatible with the observed rate of the Auger

detector.
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I. INTRODUCTION

Quantum gravity is the theory attempting to reconcile
general relativity and quantum mechanics. In general rela-
tivity the space-time is dynamical, it is then not possible to
study other interactions on a fixed background because the
background itself is a dynamical field. ‘‘Loop quantum
gravity’’ (LQG) [1–3] is a major contestant amongst the
theories aiming at unifying gravity and quantum mechan-
ics. It is one of the nonperturbative and background inde-
pendent approaches to quantum gravity. Since LQG is a
quantum geometric fundamental theory that reconciles
general relativity and quantum mechanics at the Planck
scale, we expect that this theory could resolve the classical
singularity problems of general relativity. Much progress
has been done in this direction in the last years. In particu-
lar, the application of LQG technology to the early uni-
verse in the context of minisuperspace models have
resolved the initial singularity problem [4,5].

Black holes are another interesting place for testing the
validity of LQG. In the past years applications of LQG
ideas to the Kantowski-Sachs space-time [6,7] lead to
some interesting results. In particular, it has been shown
[8,9] that it is possible to solve the black hole singularity
problem by using tools and ideas developed in the full
LQG. Other remarkable results have been obtained in the
nonhomogeneous case [10]. We think the resolution of the
black hole singularity problem is a crucial first step to solve
the information loss problem [11].

There is also work of a semiclassical nature which tries
to solve the black hole singularity problem [12,13]. In
these papers the authors use an effective Hamiltonian con-
straint obtained by replacing the Ashtekar connection A
with the holonomy hðAÞ and they solve the classical

Hamilton equations of motion exactly or numerically. In
this paper we try to improve on the semiclassical analysis
by introducing a very simple modification to the holonomic
version of the Hamiltonian constraint. The main result is
that the minimum area [14] of full LQG is the fundamental
ingredient to solve the black hole space-time singularity
problem at r ¼ 0. The S2 sphere bounces on the minimum
area 8�a0 of LQG and the singularity disappears. We show
that the Kretschmann invariant is regular in all of space-
time and the position of the maximum is independent of the
mass and of the polymeric parameter introduced to define
the holonomic version of the scalar constraint. The radial
position of the curvature maximum depends only on GN

and @.
This paper is organized as follows. In the first section we

recall the singularity-free semiclassical black hole solution
obtained in [15]. We also recall the causal space-time
structure and the Carter-Penrose diagram for the maximal
space-time extension. In the second section we show the
self-duality property of the metric. We take special notice
of ultralight black holes which differ qualitatively from
Schwarzschild black holes even outside the horizon. We
show that their horizons are hidden behind a wormhole of
Planck diameter. In the third section we study the phe-
nomenology of loop quantum black holes (LQBHs). We
analyze the LQBH thermodynamic and the relation with
the cosmic microwave background. We study the produc-
tion rate of black holes in the early universe and using
Stefan’s law we calculate the black hole mass today. We
assume that the majority of dark matter is formed by
ultralight LQBHs and consequently we estimate the pro-
duction of ultra-high-energy-cosmic-rays (UHECR). We
show the production of UHECR is compatible with obser-
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vation. The ultralight black holes could be the missing
source for the UHECRs.

II. A REGULAR BLACK HOLE FROM LQG

In this section we recall the classical Schwarzschild
solution inside the event horizon r � 2m [8,9,15].
Because we are inside the event horizon the radial coor-
dinate is timelike and the temporal coordinate is spacelike.
For this reason the space-time for r � 2m is the homoge-
neous Kantowski-Sachs space-time of spatial topology
R� S2. The Ashtekar’s variables [16] are

A ¼ ~c�3dxþ ~b�2d�� ~b�1 sin�d�þ �3 cos�d�;

E ¼ ~pc�3 sin�
@

@x
þ ~pb�2 sin�

@

@�
� ~pb�1

@

@�
:

(1)

The component variables in the phase space have length

dimension: ½~c� ¼ L�1, ½~pc� ¼ L2, ½~b� ¼ L0, ½~pb� ¼ L.
Using the general relation Ea

i E
b
j�

ij ¼ detðqÞqab (qab is

the metric on the spatial section) we obtain qab ¼
ð~p2

b=j~pcj; j~pcj; j~pcjsin2�Þ. In the Hamiltonian constraint

and in the symplectic structure we restrict integration
over x to a finite interval L0 and we rescale the variables

as follows: b ¼ ~b, c ¼ L0~c, pb ¼ L0 ~pb, pc ¼ ~pc. The
length dimensions of the new phase space variables are:
½c� ¼ L0, ½pc� ¼ L2, ½b� ¼ L0, ½pb� ¼ L2. From the sym-
metry reduced connection and density triad we can read the
component variables in the phase space: ðb; pbÞ, ðc; pcÞ,
with Poisson algebra fc; pcg ¼ 2�GN, fb; pbg ¼ �GN. The
Hamiltonian constraint in terms of the rescaled phase space
variables and the holonomies is

C H ¼ �N

�

�
2
sin�cc

�c

sin�bb

�b

ffiffiffiffiffiffiffiffiffi
jpcj

q

þ sin2�bbþ �2�2
bffiffiffiffiffiffiffiffiffijpcj

p
�2
b

pb

�
;

where � ¼ 2GN�
2; �b, �c are the polymeric parameters

introduced to define the lengths of the paths along which
we integrate the connection to define the holonomies and

by definition �b ¼ �b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�2

b

q
[15]. The Gauss con-

straint and the Diff constraints are identically zero because

of the homogeneity. Using the gauge N ¼
ð� ffiffiffiffiffiffiffiffiffijpcj
p

sgnðpcÞ�bÞ=ðsin�bbÞ, we can solve the Hamilton
equation of motion and the Hamiltonian constraint (see
[15] for details): CHðqiÞ ¼ 0, _qi ¼ fqi; CHg; where qi ¼
ðc; pc; b; pbÞ obtaining a solution on the four-dimensional
phase space: ðcðtÞ; pcðtÞ; bðtÞ; pbðtÞÞ. The relations between
the Ashtekar and metric variables is explicit in the follow-
ing line element:

ds2 ¼ �N2 dt
2

t2
þ p2

b

jpcjL2
0

dx2 þ jpcjðsin2�d�2 þ d�2Þ:
(2)

In [15] we have calculated the solution inside the event
horizon (r < 2m) and because of the regularity of the
solution 8 r we have analytically extended the solution
to 0< r <þ1. In particular the Kretschmann invariant
(K ¼ R�	
�R

�	
�) is regular 8 r and it is possible to

extend analytically the solution beyond the horizons (be-
cause as will be recalled below, the new metric has an
inside event horizon). In [15] we found regular coordinates
in any patch where the metric has a coordinate singularity
showing explicitly that the metric is regular everywhere
and can be extended to all of space-time.
Because of the regularity of the metric, we can use the

usual Schwarzschild coordinates where r is spacelike and t
is timelike outside the event horizon. The semiclassical
metric is

ds2 ¼ �ðr� rþÞðr� r�Þðrþ r?Þ2
r4 þ a20

dt2 þ dr2

ðr�rþÞðr�r�Þr4
ðrþr?Þ2ðr4þa20Þ

þ
�
a20
r2

þ r2
�
d�ð2Þ; (3)

where rþ ¼ 2m, r� ¼ 2mP ð�bÞ2, r? ¼ 2mP ð�bÞ, a0 ¼
Amin=8�, and Amin is the minimum area of LQG.P ð�bÞ is a
function of the polymeric parameter �b,

P ð�bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�2

b

q
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2�2
b

q
þ 1

: (4)

The area operator in LQG has a discrete spectrum, irre-
ducible units of area—associated to an edge on a spin-

network—in LQG have area AðjÞ :¼ 8��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

l2P
where � is the Immirzi parameter believed to be � ¼
0:2375 [17], j is a half-integer labeling an irreducible
representation of SU(2), and lP is the Planck length.
Looking at this, it is natural to assume that the minimum

area in LQG is Amin ¼ Að1=2Þ ¼ 4��
ffiffiffi
3

p
l2P � 5l2P. One

should however not take this exact value too seriously for
various reasons. To mention but a few reasons, we have
that: for one the value of � is not necessarily definite and
the consensus on its value has changed a few times already;

second there are other Casimirs possible than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

;
and third, it is unclear how many edges of a spin-network
must cross a closed surface of minimum area. The reason
for this last statement is that at least two edges cross the
surface if it is closed, in which case the minimum area is at
least twice the previously given value; in addition, if we
consider a surface enclosing a nonzero volume, LQG
stipulates that at least one 4-valent vertex must be present,
in which case we might have four edges intersecting the
surface making Amin be 4 times the aforementioned value.
We will parametrize our ignorance with a parameter � and

define Amin ¼ �Að1=2Þ ¼ 4���
ffiffiffi
3

p
l2P � 5�l2P, and so

a0 ¼ Amin=ð8�Þ ¼ ��
ffiffiffi
3

p
l2P=2 � 0:2�l2P where the expec-

tation is that � is not many orders of magnitude bigger or
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smaller than 1 In this article we mostly consider � � 1 or
� ¼ 4 when more precision is needed, but in the end the
precise choice of � does not change much.

There is also another argument we can make to justify
the analytical extension of the metric to all of space-time.
We can interpret our black hole solution (3) has having
been generated by an effective matter fluid that simulates
the loop quantum gravity corrections (in analogy with
[18]). The effective gravity-matter system satisfies by defi-
nition the Einstein equations G ¼ 8�T, where T is the
effective energy tensor. In this case T � 0 contrarily to the
classical Schwarzschild solution. The stress energy tensor
for a perfect fluid compatible with the space-time symme-
tries is T

�
	 ¼ ð�
; Pr; P�; P�Þ and in terms of the Einstein

tensor the components are 
 ¼ �Gt
t=8�GN, Pr ¼

Gr
r=8�GN , and P� ¼ G�

�=8�GN . The semiclassical metric

to zeroth order in �b and a0 is the classical Schwarzschild

solution (gC�	) that satisfies G
�
	 ðgCÞ � 0. When we calcu-

late explicitly the energy density and pressure we obtain
that those quantities are spatially homogeneous inside the
event horizon and static outside. Using this property of the
energy tensor we can repeat the argument used to extend
the classical Schwarzschild solution to all of space-time.
The crucial difference is that in our case T

�
	 � 0 but the

logic is identical. In particular T
�
	 is static or spatially

homogeneous depending on the nature of the surfacesffiffiffiffiffiffiffiffiffijpcj
p ¼ const and we can repeat the analysis given at
the end of [19]. The analytical form of the energy density
is (see Figs. 1 and 2),


 ¼ 4r4½a40mð1þ P Þ2 þ 2m2P ð1þ P Þ2r7
þ�a20r

2ð2mP þ rÞð12m2P 2 �mð7þ P ð2
þ 7P ÞÞrþ 3r2Þ�=½8�GNð2mP þ rÞ3ða20 þ r4Þ3�:

(5)

The regular properties of the metric are summarized in the
following table, where rMaxðKðgÞÞ is the radial position of
where the Kretschmann invariant achieves its maximum
value. Figure 3 is a graph of K, it is regular in all of space-
time and the large r behavior is asymptotically identical to
the classical singular scalar R�	
�R

�	
� ¼ 48m2=r6. The

resolution of the regularity of K is a nonperturbative result,
in fact for small values of the radial coordinate r, K �
3 145 728�4r6=A4

min�
8�8

bm
2 diverges for Amin ! 0 or

�b ! 0. A crucial difference with the classical
Schwarzschild solution is that the 2-sphere S2 has a mini-
mum for rmin ¼ ffiffiffiffiffi

a0
p

and the minimum square radius is

pcðrminÞ ¼ 2a0. The solution has a space-time structure
very similar to the Reissner-Nordström metric because of
the inner horizon in r� ¼ 2mP ð�bÞ2. For �b ! 0, r� �
m�4�4

b=8. We observe that the position of the inside hori-

zon is r� � 2m 8� 2 R (we recall that � is the Barbero-
Immirzi parameter). The metric (3) for �b, a0 ¼ 0 is ex-
actly the Schwarzschild metric.

FIG. 2. Effective energy density as function of r and m. In the upper plot on the left m 2 ½0; 2� and r 2 ½0; 0:045�, in the upper plot
on the right m 2 ½1; 3� and r 2 ½0; 0:045�, and in the lower plot m 2 ½0; 2108� and r 2 ½0; 0:045�. The plots show that the energy
density is localized around the Planck scale for any value of the mass and decrees rapidly for r * lP.
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FIG. 1. Effective energy density for m ¼ 10 and a0 ¼ 0:01.
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The metric (3) has an asymptotic Schwarzschild core
near r � 0. To show this property we develop the metric
very close to the point r � 0 and we consider the coordi-
nate changing R ¼ a0=r. In the new coordinate the point
r ¼ 0 is mapped in the point R ¼ þ1. The metric in the
new coordinates is

ds2 ¼ �
�
1� 2m1

R

�
dt2 þ dR2

1� 2m2

R

þ R2d�ð2Þ; (6)

where m1 and m2 are functions of m, Amin, �b, �,

m1 ¼ Amin

8�m�2�2
bP ð�bÞ

; m2 ¼ Aminð1þ �2�2
bÞ

8�m�2�2
bP ð�bÞ

:

(7)

For small �b we obtain m1 � m2 and (6) converges to a
Schwarzschild metric of mass M � Amin=2m��4�4

b. We

can conclude the space-time near the point r � 0 is de-
scribed by an effective Schwarzschild metric of mass M /
Amin=m in the large distance limit R � M. An observer in
the asymptotic region r ¼ 0 experiences a Schwarzschild
metric of mass M / a0=m.
Nowwe are going to show that a massive particle can not

reach r ¼ 0 in a finite proper time. We consider the radial
geodesic equation for a massive point particle

ð�gttgrrÞ _r2 ¼ E2
n þ gtt; (8)

where ‘‘_’’ is the proper time derivative and En is the point
particle energy. If the particle falls from infinity with zero
initial radial velocity the energy is En ¼ 1. We can write
(8) in a more familiar form

ð�gttgrrÞ|fflfflfflfflffl{zfflfflfflfflffl}
>08 r

_r2 þ Veff|{z}
�gtt

ðrÞ ¼ E|{z}
E2
n

; (9)

where Veff is plotted in Fig. 4. For r ¼ 0, Veffðr ¼ 0Þ ¼
1024m4�2P ð�bÞ4=A2

min then a particle with E< Veffð0Þ
can never reach r ¼ 0. If the particle energy is E>
Veffð0Þ, the geodesic equation for r � 0 is _r2 / r4 which
gives � / 1=r� 1=r0 or�� � �ð0Þ � �ðr0Þ ! þ1 for the
proper time to reach r ¼ 0. The space-time structure of the
semiclassical solution is given in Fig. 5.

III. SELF-DUALITY

In this section we explicitly show that the black hole
solution obtained in LQG is self-dual in the sense the
metric is invariant under the transformation r ! a0=r.
The self-dual transformation will transform the relevant
quantities as shown in the following table:

Self-duality

r ! R ¼ a0
r

rþ ! R� ¼ a0
rþ

¼ a0
2m

r� ! Rþ ¼ a0
r�

¼ a0
2mP ð�bÞ2

r? ! R? ¼ a0
r?
¼ a0

2mP ð�bÞ
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FIG. 4. Plot of VeffðrÞ. On the left there is a zoom of Veff for r � 0.
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FIG. 3. Plot of the Kretschmann scalar invariant R�	
�R
�	
�

for m ¼ 10, p0
b ¼ 1=10, and ��b ¼ logð4Þ=�, 8 t � 0; the

large t behavior is 1=t6.
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(note that Rþ >R� 8�b because P ð�bÞ< 1). If we apply
this transformation to the metric (3), we obtain

ds2 ¼ �ðR� RþÞðR� R�ÞðRþ R?Þ2
R4 þ a20

dt2

þ dR2

ðR�RþÞðR�R�ÞR4

ðRþR?Þ2ðR4þa2
0
Þ
þ

�
a20
R2

þ R2

�
d�ð2Þ; (10)

where we have complemented the transformation r !
a0=r with a rescaling of the time coordinate t ! P ð�bÞ�
ðr3=2þ r1=2� =a0Þt. It is evident from the explicit form (10) that
the metric is self-dual. We can define the self-dual radius
identifying R ¼ a0=r, r

sd ¼ ffiffiffiffiffi
a0

p
. The existence of a self-

dual radius implies a self-dual mass because we have

R� ¼ r�; Rþ ¼ rþ;

R? ¼ r? ! msd ¼
ffiffiffiffiffi
a0

p
2P ð�bÞ :

(11)

In the global extension of the space-time any black hole
with mass m<msd is equivalent to a black hole of mass
m>msd by the self-dual symmetry.

A. Ultralight LQBHs

Outside the exterior horizon, the LQBH metric (3) dif-
fers from the Schwarzschild metric only by Planck size
corrections. As such, the exterior of heavy LQBHs (where
by ‘‘heavy’’ we mean significantly heavier than the Plank
mass which is of the order of 20 �g) is not qualitatively
different than that of a Schwarzschild black hole of the
same mass. This is shown in Fig. 6 where the embedding
diagrams of the LQG and Schwarzschild black holes of 50
Planck masses are compared just outside the horizon.
In order to see a qualitative departure from the

Schwarzschild black hole outside the horizon we must
consider the ‘‘sub-Planckian’’ regime, when the mass of
the black hole is less than the Planck mass, as that is when
quantum effects will become significant. Because of
Planck scale corrections the radius of the 2-sphere is not
r, like is the case for the Schwarzschild metric, but looking
at (3) we see that the radius of the 2-sphere is


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a20

r2

s
: (12)

We see that 
 has a bounce at r ¼ ffiffiffiffiffi
a0

p
which comes from

LQG having a discrete area spectrum and thus a minimal
area (here 8�a0). If the bounce happens before the outer
horizon is reached, the outer horizon will be hidden behind
the Planck-sized wormhole created where the bounce takes
place. As a consequence of this, even if the horizon is quite
large (which it will be if m 	 mP) it will be invisible to
observers who are at r >

ffiffiffiffiffi
a0

p
and who cannot probe the

Planck scale because these observers would need to see the
other side of the wormhole which has a diameter of the
order of the Planck length. From this we conclude that to
have this new phenomenon of hidden horizon we must
have 2m ¼ rþ <

ffiffiffiffiffi
a0

p
, or m<

ffiffiffiffiffi
a0

p
=2. We illustrate this

phenomenon with the embedding diagrams of a LQBH of
mass m ¼ 4�

ffiffiffiffiffi
a0

p
=100 in Fig. 7(a) and 8 which can be

contrasted with the embedding diagram of the
Schwarzschild black hole of the same mass in Fig. 7(b).
The formation of such ultralight LQBHs is also of

interest. For the Schwarzschild black hole, black hole
formation occurs once a critical density is reached, i.e. a
mass m is localized inside a sphere of area 4�ð2mÞ2. The
heavy LQBH is analogous: to create it we must achieve a
critical density, putting a mass m � ffiffiffiffiffi

a0
p

=2 inside a sphere
of area 4�½ð2mÞ2 þ a20=ð2mÞ2�. The requirement for the

FIG. 5. The upper picture on the left represents the Carter-
Penrose diagram in the region outside r� and the upper picture
on the right represents the diagram for r� � r � 0. The lower
pictures represent the maximal space-time extension of the
LQBH on the right and the analog extension for the Reissner-
Nordström black hole.
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formation of an ultralight LQBH is something else alto-
gether because of the wormhole behind which it hides: we
must localize mass and energy (a particle or a few parti-
cles), irrespective of mass as long as the total mass satisfies
m<

ffiffiffiffiffi
a0

p
=2) inside a sphere of area 8�a0 as this ensures

that the mass will be inside the mouth of the wormhole.
Because Amin � 5l2P for any natural � at the currently
accepted value of the Immirzi parameter, there does not
seem to be any semiclassical impediment to doing that.
Hence it should be possible to create ultralight black holes.

B. ‘‘Particles-black holes’’ duality

In this section we want to emphasize the physical mean-
ing of the duality emerging from the self-dual metric
analyzed in the paper. The metric (3) describes a space-
time with two asymptotic regions, the r ! þ1 ( � Iþ)
region and the r ! 0 ( � I0) region. Two observers in the
two regions see some metric but they perceive two differ-
ent masses. The observer in Iþ perceives a massm, and the
observer in I0 a mass M / a0=m. Physically any observed
supermassive black hole in Iþ is perceived as a an ultra-
light (m 	 mP) ‘‘particle’’ in I0 and vice versa. The ultra-
light ‘‘particle’’ is confined beyond the throat as discussed
in the previous section because if m 	 mP then rþ 	

ffiffiffiffiffi
a0

p
, which is the throat radius or equivalently the self-

dual radius. This property of the metric leaves open the
highly speculative possibility of having a ‘‘Quantum
Particle-Black Hole’’ Duality, in fact a particle with 
c �
@=2m � lP could have sufficient space in r < rþ because

the physical quantity to compare with 
c is D ¼
2½ð2GNmÞ2 þ a20=ð2GNmÞ2�1=2 and D * 
c 8m. If � ¼
4, D> 
c (it is sufficient that �> 2:43). In this way it is
possible to have a universe dispersed of ultralight particles
(m 	 mP) but confined inside a sub Planck region and
then with a very small cross section. Such a possibility is
somewhat limited though in the sense that we cannot create
such a type of ultralight black hole because any particle we
are able to create in laboratory has 
c � lP where lP /ffiffiffiffiffi
a0

p
is the diameter of the throat. To obtain such ultralight

black hole we should create larger black hole that subse-
quently evaporates.

IV. PHENOMENOLOGY

In this section we study the thermodynamics of LQBH
and a possible interpretation of the dark matter in terms
ultralight LQBH. We recall the thermodynamics: tempera-
ture, entropy, and evaporation.

FIG. 7 (color online). Embedding diagram of a spatial slice just outside the horizon of a 0.005 Planck mass ( � 100 ng) black hole.
In (a) we have the LQBH with metric (3); in (b) is the Schwarzschild black hole. In both cases the foliation is done with respect to the
timelike Killing vector and the scales are in Planck units. The lowermost points in each diagram correspond to the horizon (the outer
horizon in the LQG case).

FIG. 6 (color online). Embedding diagram of a spatial slice just outside the horizon of a 50 Planck mass ( � 1 mg) black hole. In
(a) we have the LQBH with metric (3); in (b) is the Schwarzschild black hole. In both cases the foliation is done with respect to the
timelike Killing vector and the scales are in Planck units. The lowermost points in each diagram correspond to the horizon (the outer
horizon in the LQG case).
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A. Thermodynamics

In this section we study the thermodynamics of the
LQBH [18,20]. The form of the metric calculated in the
previous section has the general form, ds2 ¼ �gðrÞdt2 þ
dr2=fðrÞ þ h2ðrÞðd�2 þ sin2�d�2Þ, where the functions
fðrÞ, gðrÞ, and hðrÞ depend on the mass parameter m and
are the components of the metric (3). We can introduce the
null coordinate v to express the metric above in the
Bardeen form. The null coordinate v is defined by the

relation v ¼ tþ r
, where r
 ¼ R
r dr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞp

and

the differential is dv ¼ dtþ dr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞp

. In the new

coordinate the metric is, ds2 ¼ �gðrÞdv2 þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞ=fðrÞp

drdvþ h2ðrÞd�ð2Þ.

1. Temperature

In this paragraph we calculate the temperature for the
quantum black hole solution and analyze the evaporation
process. The Bekenstein-Hawking temperature is given in
terms of the surface gravity � by T ¼ �=2�, the surface
gravity is defined by �2 ¼ �g�	g
�r��


r	�
�=2 ¼

�g�	g
��


�0�

�
	0=2, where �� ¼ ð1; 0; 0; 0Þ is a timelike

Killing vector and ��
	
 is the connection compatible with

the metric g�	. Using the semiclassical metric we can

calculate the surface gravity in r ¼ 2m obtaining and
then the temperature,

TðmÞ ¼ 128��ð�bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�bÞ

p
m3

1024�2m4 þ A2
min

; (13)

where �ð�bÞ ¼ 16ð1þ �2�2
bÞ2=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�2

b

q
Þ4. The

temperature (13) coincides with the Hawking temperature
in the large mass limit. In Fig. 9 we have a plot of the
temperature as a function of the black hole mass m. The
dashed trajectory corresponds to the Hawking temperature
and the continuum trajectory corresponds to the semiclas-
sical one. There is a substantial difference for small values
of the mass, in fact the semiclassical temperature tends
to zero and does not diverge for m ! 0. The temperature

is maximum for m
 ¼ 31=4
ffiffiffiffiffiffiffiffiffi
Amin

p
=

ffiffiffiffiffiffiffiffiffi
32�

p
and T
 ¼

33=4�ð�bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�bÞ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32�Amin

p
. Also this result, as for the

curvature invariant, is a quantum gravity effect, in fact m

depends only on the Planck area Amin.

FIG. 8 (color online). Panel (a) shows the embedding diagram of a spatial slice just outside the throat of a 0.005 Planck mass LQBH.
Panel (b) shows the zoom on the upper part of the throat of the same black hole. In both cases the foliation is done with respect to the
timelike Killing vector and the scales are in Planck units.
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FIG. 9. Plot of the temperature TðmÞ on the left and of the heat capacity Cs ¼ dm
dT on the right. The continuous plots represent the

LQBH quantities; the dashed lines represent the classical quantities.
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2. Entropy

In this section we calculate the entropy for the LQBH
metric. By definition the entropy as function of the
Arnowitt-Deser-Misner energy is SBH ¼ R

dm=TðmÞ.
Calculating this integral for the LQBH we find

S ¼ 1024�2m4 � A2
Min

256�m2�ð�bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�bÞ

p þ const: (14)

We can express the entropy in terms of the event horizon
area. The event horizon area (in r ¼ 2m) is

A ¼
Z

d�d� sin�pcðrÞjr¼2m ¼ 16�m2 þ A2
min

64�m2
: (15)

Inverting (15) for m ¼ mðAÞ and introducing the roots in
(14) we obtain

S ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � A2

min

q
4�ð�bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�bÞ

p ; (16)

where S is positive for m>
ffiffiffiffiffi
a0

p
=2, and negative other-

wise. A plot of the entropy is given in Fig. 10. The first plot
represents entropy as a function of the event horizon area
A. The second plot in Fig. 10 represents the event horizon
area as function of m. The semiclassical area has a mini-

mum value in A ¼ Amin for m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amin=32�

p
.

We want to underline the parameter �b does not play any
regularization rule in the observable quantities TðmÞ, T
,
m
 and in the evaporation process that we will study in the
following section. We obtain finite quantities taking the

limit �b ! 0, because lim�b!0�ð�bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�bÞ

p ¼ 1.

3. Evaporation

In this section we focus our attention on the evaporation
process of the black hole mass and, in particular, in the
energy flux from the hole. First of all the luminosity can be
estimated using the Stefan law and it is given by LðmÞ ¼
�AðmÞT4

BHðmÞ, where (for a single massless field with two
degrees of freedom) � ¼ �2=60, AðmÞ is the event horizon
area and TðmÞ is the temperature calculated in the previous
section. At the first order in the luminosity the metric above

which incorporates the decreasing mass is obtained by
replacing the mass m with mðvÞ. Introducing the results
(13) and (15) of the previous paragraphs in the luminosity
LðmÞ we obtain

L ðmÞ ¼ 4194304m10�3��4�2

ðA2
min þ 1024m4�2Þ3 : (17)

Using (17) we can solve the fist order differential equation

� dmðvÞ
dv

¼ L½mðvÞ� (18)

to obtain the mass function mðvÞ. The result of integration
with initial condition mðv ¼ 0Þ ¼ m0 is

� n1A
6
min þ n2A

4
minm

4�2 þ n3A
2
minm

8�4 � n4m
12�6

n5m
9�3��ð�bÞ4�ð�bÞ2

þ n1A
6
min þ n2A

4
minm

4
0�

2 þ n3A
2
minm

8
0�

4 � n4m
12
0 �6

n5m
9
0�

3��ð�bÞ4�ð�bÞ2
¼ �v; (19)

where n1 ¼ 5, n2 ¼ 27 648, n3 ¼ 141 557 760, n4 ¼
16 106 127 360, n5 ¼ 188 743 680. From the solution (19)
we see the mass evaporate in an infinite time. Also in (19)
we can take the limit �b ! 0 obtaining a regular quantity
independent from �b. In the limitm ! 0 Eq. (19) becomes

n1A
6
min

n5�
3��ð�bÞ4�ð�bÞ2m9

¼ v: (20)

In the limit �b ! 0, we obtain n1A
6
min=n5�

3�m9 � v.

Inverting this equation for small m we obtain: m �
ðA6

min=�vÞ1=9.

B. Ultralight LQBHs as dark matter

It is interesting to consider how the ultralight LQBHs
might manifest themselves if they do exist in nature.
Because they are not charged, have no spin, and are ex-
tremely light and have a Planck-sized cross section (due to
their Planck-sized wormhole mouth), they will be very
weakly interacting and hard to detect. This is especially
true as they need not be hot like a light Schwarzschild
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FIG. 10. In the first plot we have the entropy for the LQBH as function of the event horizon area (dashed line represents the classical
area low Scl ¼ A=4). In the second plot we represent the event horizon area as function and the mass (dashed line represents the
classical area Acl ¼ 16�m2).
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black hole, but they can be cold as can be seen in Fig. 9. It is
thus possible, if they exist, that ultralight LQBHs are a
component of the dark matter. In fact, due to (13), one
would expect that all light enough black holes would
radiate until their temperature cools to that of the cosmic
microwave background radiation, at which point they
would be in thermal equilibrium with the CMB and would
be almost impossible to detect. Rewriting (13) for small
P ð�bÞ we get

TðmÞ ¼ ð2mÞ3½1� P ð�bÞ2�
4�½ð2mÞ4 þ a20�

� ð2mÞ3
4�½ð2mÞ4 þ a20�

: (21)

We thus see emerge a new phenomenon that was not
present with Schwarzschild black holes: a black hole in a
stable thermal equilibrium with the CMB radiation. In the
Schwarzschild scenario, it is of course possible for a black
hole to be in equilibrium with the CMB radiation; this
happens for a black hole mass of 4:50� 1022 kg (roughly
60% of the lunar mass). This equilibrium is however not a
stable one because for a Schwarzschild black hole the
temperature always increases as mass decreases and vice
versa (see the dashed line in Fig. 9), and so if the black hole
is a bit lighter than the equilibrium mass it will be a bit
hotter than TCMB, the temperature of the CMB radiation,
and will emit more energy than it gains thus becoming
lighter and lighter. Similarly, if the black hole has mass
slightly superior to the equilibrium mass, it will be colder
than TCMB and thus absorb more energy than it emits,
perpetually gaining mass. For the LQBH however, when
m is smaller than the critical mass

ffiffiffiffiffi
a0

p
=2 of the order of the

Planck mass, the relationship is reversed and the tempera-
ture increases monotonically with the mass, this allows for
a stable thermal equilibrium in this region as is shown in
Fig. 11. The values of the black hole mass in the two
equilibrium positions in the LQG case are thus

munstable ¼ 4:50� 1022 kg; mstable � 10�19 kg;

(22)

where we have used � ¼ 0:237 532 9 . . . [17] for the
Immirzi parameter and assumed � � 1. The unstable
mass is essentially the same as in the Schwarzschild case
while the stable mass, though it formally depends on the
value of �b, it is quite insensitive to the exact value of the
later as long as �b is at most of the order of unity in which
casemstable (which is order of magnitude of the mass of the
flue virus) is accurate to at least two decimal places.

The following picture thus emerges in LQG: black holes
with a mass smaller than mstable grow by absorbing CMB
radiation, black holes with a mass larger than mstable but
smaller than munstable evaporate towards mstable and finally
black holes with a mass greater than munstable grow by
absorbing the CMB radiation.

C. LQBHs production in the early universe

We can estimate the number of ultralight LQBHs cre-
ated as well as the extent of their subsequent evaporation.
As exposed in [21], the probability for fluctuations to
create a black hole is expð��F=TÞ, where �F is the
change in the Helmholtz free energy and T is the tempera-
ture of the universe. From (14) and (21) the free energy of a
LQBH of mass m is

FBH ¼ m� TBHSBH ¼ m� 1

2
m

�
16m4 � a20
16m4 þ a20

�
; (23)

where TBH and SBH are the temperature and entropy of the
black hole respectively. The free energy for radiation in-
side the space where the black hole would form is

FR ¼ ��2�

45
T4V; (24)

where V is the volume inside the 2-sphere which will
undergo significant change (i.e. significant departure
from the original flatness) in the event of a black hole
forming. In the case of a black hole of mass m � ffiffiffiffiffi

a0
p

=2,
this is naturally the horizon. Since the horizon has an area
of 4�½ð2mÞ2 þ a20=ð2mÞ2�, we have that the volume of

the flat radiation-filled space in which will undergo the

transition to a black hole is V ¼ ð4�=3Þ½ð2mÞ2 þ
a20=ð2mÞ2�3=2. However, as we saw earlier, for example,

in Fig. 3 and 7, if m � ffiffiffiffiffi
a0

p
=2, a throat of a wormhole

forms at r ¼ ffiffiffiffiffi
a0

p
and a large departure from flat space is

FIG. 11 (color online). Log-log graph of (21) in units of Kelvin
and Planck masses. The constant line denotes the temperature of
the CMB radiation; above this line the black hole is hotter than
the CMB and so it will lose more energy than it gains, below this
line the black hole is colder than the CMB and so it will absorb
more CMB radiation than it will emit radiation, thereby gaining
mass. The arrows on the temperature curve denote in which
direction the black hole will evolve through thermal contact with
the CMB. At the two points where the temperature curve
intersects the constant TCMB curve, the black hole is in thermal
equilibrium.
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observed. Since the mouth of the wormhole as area Amin ¼
8�a0 we have that the volume of flat space which will be

perturbed to create the black hole is V ¼ ð4�=3Þð2a0Þ3=2.
In (24) � depends on the number of particles that can be
radiated where � ¼ 1 if only electromagnetic radiation is
emitted and � ¼ 36:5 if all the particles of the standard
model (including the Higgs) can be radiated. Hence, if we
define

�F ¼ FBH � FR (25)

to be the difference between the black hole free energy and
the radiation free energy inside the volume which is to be
transformed, we have, in Planck units, that the density of
black holes of mass m coming from fluctuations is of the
order of


ðmÞ � 1

�3
expð��F=TÞ: (26)

Plotting 
 as a function of T, (see, for example, Fig. 12) we
see that 
 peaks at a given temperature which is of order TP

for a black hole mass of order mP. If we imagine that the
Universe started in a hot big bang and gradually cooled,
looking at Fig. 12, we see that at very high temperatures the
amount of black holes of a given mass created from fluc-
tuations is relatively small. Then as the Universe starts to
cool, the number of black holes increases until it reaches a
maximum value at TmaxðmÞ (see Fig. 13) at which point,
when the Universe cools further, no more black holes of
mass m are created and the existing black holes start to
evaporate. By varying (26) with respect to T, we find that
TmaxðmÞ the temperature for which the maximum amount
of black holes are formed is

TmaxðmÞ ¼

8>><
>>:

ffiffi
3

p
51=4ðmð3a2

0
þ16m4ÞÞ1=4

29=8ða3=2
0

ða2
0
þ16m4Þ�Þ1=4�3=4

if m � ffiffiffiffiffi
a0

p
=2;ffiffi

3
p

m51=4ð3a2
0
þ16m4Þ1=4

ða2
0
þ16m4Þ5=8�1=4�3=4 if m � ffiffiffiffiffi

a0
p

=2:

(27)

Combining (26) and (27), we can obtain the maximal
primordial density of black holes 
max. Figure 14 is a graph
of this quantity in Planck units and for � ¼ 4. One more
subtlety however must be considered the number of black
holes produced can be calculated. Equation (26) is only
valid if the universe can reach local equilibrium. If the time
scale for the expansion of the universe is much shorter than
the time scale for collisions between the particles, the
universe expands before equilibrium can take place and so
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FIG. 12. 
ðTÞ, the LQBHs density created due to fluctuations
for m ¼ 1, and a0 ¼ 0:5 in Planck units (the value 0.5 here is
chosen to amplify the difference with the classical
Schwarzschild black hole). The dashed line represents the clas-
sical density for a0 ¼ 0.
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FIG. 13. The temperature Tmax (Eq. (27)) at which the density
of black holes created through fluctuations is maximized as a
function of the mass of the black holes in Planck units. Observe
that the temperature is of the order of the Planck temperature TP

in the given mass range. Here we used � ¼ 4.
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FIG. 14. The maximal value of 
ðm; TÞ � expð��F=TÞ=�3

as a function of the mass m. The value of the temperature T at
which the maximal value of 
 is attained is plotted in Fig. 13.
Both the mass m and the temperature are in Planck units. Here
we used � ¼ 4.
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(26), which requires equilibrium, is not valid. It can be
shown [22], that local equilibrium is reached for tempera-
tures

T 	 1015 GeV–1017 GeV: (28)

This means that before the Universe cooled down to tem-
peratures below 1015 GeV, the Universe expanded too
quickly to have time to create black holes from fluctuations
in the matter density. The fact that the Universe must first
cool down to below 1015 GeV before a black hole can
be created means that black holes of mass m will not be
created at temperature TmaxðmÞ of (27) but rather at tem-
perature TcrðmÞ ¼ minfTmaxðmÞ; Teqg where Teq &

1015 GeV is the temperature below which local equilib-
rium can be achieved and thus black holes can be created.
As can be seen in Fig. 15, this means that for a significant
range of black hole masses, from about 10�17mP to 108mP

the maximal density will be created when the universe
reaches temperature Teq. As it turns out, this range will

encompass the quasitotality of black holes responsible for
dark matter or any other physical phenomenon considered
in this paper. The fact that black holes are created only
once the universe has cooled down to Teq entails that the

initial density of black holes is


iðmÞ � 1

�3
expð��FðmÞ=TcrðmÞÞ; (29)

(where the dependencies on the black hole mass m are
explicitly written) and not of the density plotted in Fig. 14.
Graphing (29), we see in Fig. 16 that only black holes with

an initial mass of less then 10�3mP are created in any
significant numbers.
We are thus presented with the following picture: as the

temperature cools from the big bang, and the expansion of
the universe starts to slow down fluctuations of the matter
start producing ultralight black holes of a thousandths of
the Planck mass and less, as can be seen from Fig. 16. Once
this initial density of black holes is formed and the universe
start cooling further, the primordial black holes will start to
evaporate since they will be hotter than the surrounding
matter.

D. Evaporation of ultralight LQBHs

Once the black holes are formed, the only way they can
disappear is through evaporation. When the mass, m, of a
black hole satisfiesm � ffiffiffiffiffi

a0
p

=2, the LQBHs evaporate like
a Schwarzschild black hole would

dm

dt
¼ �2

60
AðmÞT4 � �2

60
AðmÞðTBHðmÞÞ4; (30)

where �2=60 is Stefan-Boltzmann’s constant in Planck
units, AðmÞ is the area of the LQBH horizon, T is the
temperature of the radiation in the universe, and TBHðmÞ
is the temperature of the LQBH. So the first term in the last
equation represents the radiation absorbed by the black
hole while the second term is the radiation emitted by the
black hole. Things take on a new twist however when the
mass falls below

ffiffiffiffiffi
a0

p
=2, which will happen within

1000 years of the big bang for black holes created with
an initial mass of less than 100mP. As illustrated in
Fig. 7(a) the black hole horizon as well as the space
surrounding it, is separated from the rest of the universe
by a wormhole of Planckian diameter. The wormhole as
well the chunk of space surrounding the horizon form very
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FIG. 15. The temperature Tcr at which the density of black
holes created through fluctuations is maximized as a function of
the mass of the black holes in Planck units where we take into
consideration the fact that for temperature higher than Teq &

1015 GeV black holes do not have time to form because of the
rapid expansion. Here we used � ¼ 4 and Teq ¼ 13%�
1015 GeV. We note that for the physically relevant range
10�17mP � m � 108mP, TcrðmÞ ¼ Teq; this is the case for all

Teq between 1% and 100% of 1015 GeV.
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FIG. 16. The initial density of primordial black holes as given
by (29) as a function of the initial mass of the black hole. Both
the mass m and the temperature are in Planck units. Here we
used � ¼ 4 and Teq ¼ 13%� 1015 GeV. The choice of Teq is

significant here because the density is very sensitive to Teq.
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slowly and gradually as can be seen from (19) and (20). So
we can divide space in three parts: 1) the inside of the black
hole, 2) a relatively small (compared to the rest of the
universe) bag of space in between the black hole horizon
and the mouth of the wormhole, and 3) (infinite) flat space
outside of the mouth of the wormhole. Theoretically, these
three subsystems could be at three different temperatures.
However, because the size of the horizon of the black hole
is greater than the size of the mouth of the wormhole
(4�ð2mÞ2 þ a20=ð2mÞ2 > 4�ð2a0Þ) and becomes ever

more so as the black hole gets smaller, the bag of space
between the horizon and the mouth of the wormhole, will
thermalize faster with the black hole than with the flat
space. Since also the bag starts out with a very small
volume and this volume changes only slowly, the thermal-
ization with the black hole happens rather rapidly (on
cosmological scales). Hence, for cosmological purposes,
we can suppose that the black hole and the bag of radiation
between the horizon and the mouth of the wormhole are in
thermal equilibrium at the temperature of the black hole,
TBH, and that the combined system interaction by thermal
radiation with the outside flat space through the Planck-
sized mouth of the wormhole which has area Amin. We shall
label the temperature of the radiation in the flat space (the
CMB) T. This situation is illustrated in Fig. 17. The volume
of the bag of space between the horizon and the mouth of
the wormhole is

Vbag ¼
Z ffiffiffiffi

a0
p

r¼2m
4�g��

ffiffiffiffiffiffiffi
grr

p
dr

� 8a3=20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 � 4

ffiffiffiffiffi
a0

p
m

p ða0 þ 2
ffiffiffiffiffi
a0

p
mþ 6m2Þ�

15m3
;

(31)

if �b is of the order of unity or less (which is the natural

choice), where 1< �ðmÞ< 23=2. As it turns out though, the
wormhole radiation term is not at all significant for the
value and precision considered here, however, for com-
pleteness we will include it. The energy density of thermal

radiation at temperature T is �2T4=15. Thus the energy of
the combined black hole and bag of space in thermal
equilibrium with it between the horizon and the mouth of
the wormhole is mþ �2VbagT

4
BH=15. Writing the conser-

vation of energy considering that the two systems
(LQBHþ bag and flat space) interact via black body ra-
diation through the mouth of the wormhole, we get

d

dt

�
mþ

�
VbagðmÞ�

2

15
ðTBHðmÞÞ4

��

¼ �2

60
AminTðtÞ4 � �2�

60
AminðTBHðmÞÞ4; (32)

where possible curvature corrections have been neglected.
Where we have used that the power of the thermal radiation
(in Planck units) emitted by a black body is of surface area
A and temperature T obeys the Stefan-Bolzmann law

P ¼ �2�

60
AT4; (33)

where � depends on the number of particles that can be
radiated where � ¼ 1 if only electromagnetic radiation is
emitted and � ¼ 36:5 if all the particles of the standard
model (including the Higgs) can be radiated. As we will be
dealing with extremely hot temperatures at which all the
standard model particles are relativistic and thus all parti-
cles can be emitted, we will be using � ¼ 36:5 in what
follows though in fact it will make no difference whether
we use � ¼ 1 or � ¼ 36:5. Using (21) and (31) and ap-

proximating TðtÞ � TCMBðt0=tÞ2=3, where TCMB is the tem-
perature of the cosmic microwave background today and t0
is the age of the universe. We can make this simplification
because this is the equation for the temperature of radiation
in a matter dominated universe, and the length of time for
which the universe was not matter dominated is negligible
in standard cosmology for our purposes. This allows us to
calculate the masses of the ultralight black holes today
numerically. We find that, all black holes which initially
started with mass mi ¼ 0:001mP are de facto stable: the
difference between the initial mass mi and the mass of the
black hole today m0 satisfies in fact if

mi �m0

mi
� 10�14

where we have taken � ¼ 4 (but the result is not sensitive
to the exact value of �) and for smaller initial masses the
difference is even smaller. In Fig. 18 are represented differ-
ent value of the mass m0 of a LQBH today as a function of
its initial mass mi.
If, for example, we consider a LQBH of mass m0 ¼

0:000 635mP, by Wien’s Law they radiate with maximum
intensity at

E� ¼ 2�mP

�
!b

lPTP

1

TBHðmÞ
��1 � 1:46� 1019 eV: (34)

Where !b ¼ 2:897 768 551� 10�3 mK, mP is the Planck

FIG. 17 (color online). The black hole horizon and its accom-
panying patch of space are in thermal equilibrium at temperature
TBH. The rest of the universe has radiation in thermal equilibrium
at temperature T. The two can interact radiatively through a
Planckian surface of area Amin.
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mass in eV’s and TP is the Planck temperature in Kelvins.
This means that the ultralight black holes would not have
had time, in the lifetime of the universe, to thermalize with
the CMB. This does not stop them from being very stable
in any case as the calculated value ofm0 above shows. The
mass m0 in eV is m0 � 7:75� 1024 eV and the tempera-
ture in Kelvin degree is Tðm0Þ � 3:44� 1022 K.

E. Number of e-folds elapsed since LQBHs creation to
account for dark matter

For all black hole initial mass mi, we know, thanks to
Eq. (32) what the black hole’s current mass is. We also
know what the initial concentration of each type of black
hole was from Eq. (29). In addition, we know that the
current matter density for dark matter is approximately
0:22
crit. If we now suppose that currently, all dark matter
is actually composed of ultralight black holes, we have that

Z 1

0

ðaðtiÞÞ3m0ðmiÞ
maxðmiÞ
ðaðt0ÞÞ3

dmi ¼ 0:22
crit; (35)

where aðt0Þ is the scale factor of the Universe at present
(t0), aðtiÞ is the scale factor of the Universe when the
primordial black holes were created (ti), and so
ðaðtiÞÞ3
iðmiÞ

ðaðt0ÞÞ3 is the current number density of black holes of

massm0ðmiÞ. Since the scale factor does not depend onmi,
we can rearrange this equation to find out the number of e-
folds Ne that the universe is required to have expanded
since the creation of the primordial black holes for the light
black holes to form the totality of dark matter

Ne :¼ ln
aðtoÞ
aðtiÞ ¼

1

3
ln

�R1
0 m0ðmiÞ
iðmiÞdmi

0:22
crit

�
; (36)

and

ao
ai

:¼ aðtoÞ
aðtiÞ ¼

�R1
0 m0ðmiÞ
iðmiÞdmi

0:22
crit

�
1=3

: (37)

The integral in Eq. (36), is evaluated to give 1:58�
10�12mPl

�3
P . This implies a number of e-folds between

the creation of the black holes and the present day of

Ne � 85 and
a0
ai

� 1037; (38)

where we have used Teq ¼ 1:3� 1014 GeV and � ¼ 4

though these last two results are very robust under changes
of Teq and �.

Thus, if we want all dark matter to be explained by
ultralight black holes, then the universe must have ex-
panded by a scale factor of 1037 between the creation of
the black holes and the present day to achieve an ultralight
black hole mass density of approximately 0:22
crit, the
estimated dark matter density. Since the end of inflation,
the universe has expanded by a scale factor of about 1026.
This implies that the ultralight black holes have to be
created towards the end of the period of inflation which
means that inflation should be going on when the universe
is at temperature of the order of 1014 GeV–1015 GeV, this
is indeed close to the range of temperatures at which
inflation is predicted to happen in the simplest models of
inflation (1014 GeV–1016 GeV).
So if black holes make up the majority of dark matter we

have the following picture. Primordial black holes were
created during an inflationary period when the Universe
had a temperature in the 1014 GeV–1015 GeV range. Since
their creation the Universe has expanded by 85 e-folds.
From Fig. 19 we see that the majority of the black holes

0.000 0.002 0.004 0.006 0.008 0.010
0.000

0.002

0.004

0.006

0.008

0.010

mi

m
0

Mass Today vs. Initial Mass

FIG. 18. The mass today m0 of a black hole created with mass
mi during the big bang. Both masses are in Planck units. m0 is
obtained from mi through Eq. (32) (� ¼ 4).
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l P

3

Relative Contribution to Dark Matter Today

FIG. 19. This graph shows the current mass density of black
holes as a function of their initial mass mi. 
0ðm0Þ is the current
number density of black holes of mass m0, so 
0 ¼ 
iða3i =a30Þ.
Because, for all practical purposes, m0 ¼ mi, the area under the
curve is the present matter density due to LQBH. If that density
is equal to 0:22
crit, the LQBH will account for all dark matter.
From this graph, we see that at present times, LQBH mass
density is entirely dominated by black holes which had an initial
mass of about 10�5mP. In this graph we have used � ¼ 4 (the
graph is not very sensitive to this choice) and Teq ¼ 13%�
1015 GeV (the numerical values of the graph vertical axis are
sensitive to this value but location of the peak and the general
shape of the graph are not).
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making up the dark matter would have been created with
an initial mass of around 10�5mP; Eq. (32) then implies
that their mass has changed by less than 1 part in 10�14

since their creation making these black holes very stable.
That is the case (due to the Planck-sized area of the mouth
of the worm-hole) even though the radiation they emit is
still very hot. From Wien’s law we have that the maximum
intensity of their radiation is for particles of energy of
about 1013 eV.

F. LQBHs as sources for ultra-high energy cosmic rays

Hot ultralight black holes are very interesting phenom-
enologically because there is a chance we could detect their
presence if they are in sufficient quantities. The mass of
ultralight LQBHs today is m0 � 1024 eV, then we can
have emission of cosmic rays from those objects in our
galaxy.

In fact, Greisen Zatsepin and Kuzmin proved that cos-
mic rays which have traveled over 50 Mpc will have an
energy less than 6� 1019 eV (called the Greisen Zatsepin
and Kuzmin [GZK] cutoff) because they will have dissi-
pated their energy by interacting with the cosmic micro-
wave background [23]. However, collaborations like HiRes
or Auger [24] have observed cosmic rays with energies
higher than the GZK cutoff, ultra high energy cosmic rays
(UHECR). The logical conclusion is then that within a
50 Mpc radius from us, there is a source of UHECR. The
problem is that we do not see any possible sources for these
UHECR within a 50 Mpc radius. The ultralight LQBH
which we suggest could be dark matter do however emit
UHECR. Could it be that these black holes not only con-
stitute dark matter but are also the source for UHECR?
This is not such a new idea; it has already been proposed
that dark matter could be the source for the observed
UHECR [25].

Let us compare the predicted emissions of UHECR from
LQBHs with the observed quantity of UHECR. Detectors
of UHECR, like Auger or HiRes, cover a certain surface
area AD and register events of UHECRs hitting their de-
tector. Let us suppose that the source for UHECR is indeed
the dark matter. It is believed that dark matter forms a halo
(a ball) around the Milky Way of roughly the size of the
Milky Way, let RMW be the radius of the Milky Way. We
suppose the dark matter is centered in the halo of the
Milky Way. RMW is then roughly 50000 ly (light years).
For the purpose of the following calculations, we can
suppose that the Earth is on the outer edge of the
Milky Way (in fact it is 30 000 ly from the center). If we
then suppose that all the UHECRs we observe come from
the matter halo of the MilkyWay, and if the production rate
(in particles of UHECR per meter cubed per second) of
UHECR is � (½�� ¼ particles s�1 m�3), then we have that
the halo produces 4�

3 R3
MW� particles of UHECR per sec-

ond. Since the MilkyWay is in equilibrium, that means that
4�
3 R3

MW� particles of UHECR per second cross the 2-

sphere of area 4�R2
MW enveloping the Milky Way and its

halo. Thus, with a detector of area AD on this 2-sphere, the
detector should have a rate of detection of UHECR events
of

RE ¼ AD

4�R2
MW

4�

3
R3
MW� ¼ ADRMW�

3
: (39)

Therefore we should have that

� ¼ 3RE

ADRMW

: (40)

Let us use Auger’s data [24]; for Auger we have that AD ¼
3000 km2 and RE ¼ 3 events per year. This gives us an
observed � of

�obs � 10�37 UHECR particles

sm3
: (41)

We must compare this value with the predicted produc-
tion of UHECR by LQBHs. Using Planck’s Law, Eq. (21),
and the fact that the bag is in equilibrium with the black
hole and the pair radiates through the wormhole mouth of
area Amin ¼ 8�a0 we have that (in Planck units), the rate
of emission of particles of energy 	 by an ultralight black
hole is

RBHð	;m0Þ ¼ 2Amin

�

	2

e	=ðTBHðm0ÞÞ � 1
: (42)

This implies that the collective rate of emission of particles
of energy 	 by all primordial ultralight black holes, on
average in the universe, is

RBHð	Þ ¼
Z ffiffiffiffi

a0
p

=2

m0¼0

0ðm0Þ 2Amin

�

	2

e	=ðTBHðm0ÞÞ � 1
dm0;

(43)

where 
0ðm0Þ ¼ 
iðm0Þða3i =a30Þ is the present day number

density of black holes of massm0. (43) is plotted in Fig. 20.
However, the local dark matter density is much larger than
the average dark matter density in the Universe. Hence
there should be more radiation emitted in our local neigh-
borhood than on average in the Universe. That the dark
matter density of the Milky Way halo, determined by the
rotation curves, is calculated to be 
MWDM ¼
0:3 GeV cm�3 [26]. If we suppose that the distribution of
ultralight black holes in theMilkyWay is the same as in the
Universe as a whole, we then have that


MWBHðm0Þ ¼ 
MWDM
iðm0ÞR1
m¼0 
iðmÞmdm

; (44)

where 
MWDMðm0Þ is the number density of black holes of
mass m0 in the Milky Way at present. In this case, analo-
gously to (43), we have that locally, the collective rate of
emission of particles of energy 	 by all local primordial
ultralight black holes is
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RLocal BHð	Þ ¼
Z ffiffiffiffi

a0
p

=2

m0¼0

2
MWBHðm0ÞAmin	
2

�ðe	=ðTBHðm0ÞÞ � 1Þ dm0; (45)

which is plotted in Fig. 21. This implies a theoretical
production rate of UHECR photons in the Milky Way of

�th ¼
Z 1

m0¼0

Z m0

6�1019 eV

2Amin
MWBHðm0Þ	2

�ðe	=ðTBHðm0ÞÞ � 1Þ d	: (46)

As it turns out, the result of �th is very robust for
parameters except for Teq on which �th is very sensitive.

In order to agree with (41), we must have Teq � 13%�
1015 GeV. This is in great accordance with (28). If Teq �
13%� 1015 GeV, then ultralight black holes cannot form
the majority of dark matter, because if they did, they would
emit much more ultra high energy cosmic rays than we
observe. If Teq 	 13%� 1015 GeV, then it is still possible

that ultralight black holes form the majority of dark matter
however, they cannot be the source of the ultra high energy

cosmic rays which we observe because they will not radi-
ate enough. Only if Teq � 13%� 1015 GeV can we have

that dark matter consist mostly of ultralight black holes and
that those black holes are simultaneously the source for the
observed ultra high energy cosmic rays. Interestingly, it
turns out that Teq � 13%� 1015 GeV is consistent with

the theory [22].

V. CONCLUSIONS AND DISCUSSION

In this paper we have studied the new Reissner–
Nordström-like metric obtained in the paper [15]. We
recall the LQBH metric

ds2 ¼ �ðr� rþÞðr� r�Þðrþ r?Þ2
r4 þ a20

dt2 þ dr2

ðr�rþÞðr�r�Þr4
ðrþr?ÞÞ2ðr4þa2

0
Þ

þ
�
a20
r2

þ r2
�
d�ð2Þ: (47)

The metric has two event horizons that we have defined rþ
and r�; rþ is the Schwarzschild event horizon and r� is
an inside horizon tuned by the polymeric parameter �b.
The solution has many similarities with the Reissner-
Nordström metric but without curvature singularities any-
where. In particular the region r ¼ 0 corresponds to an-
other asymptotically flat region. No massive particle can
reach this region in a finite proper time. A careful analysis
shows that the metric has a Schwarzschild core in r � 0 of
mass M / a0=m. We have studied the black hole thermo-
dynamics: temperature, entropy, and the evaporation pro-
cess. The main results are the following. The temperature
TðmÞ goes to zero for m � 0 and reduces to the
Bekenstein-Hawking temperature for large values of
the mass Bekenstein-Hawking TðmÞ ¼ 128�m3=
½1024�2m4 þ A2

min�. The black hole entropy in terms of

the event horizon area is S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � A2

min

q
=4. The evapo-

ration process needs an infinite time in our semiclassical
analysis but the difference with the classical result is
evident only at the Planck scale. The fact that the black
holes can never fully evaporate resolves the information
loss paradox. Furthermore, we showed that because of the
temperature profile of the LQBH, the fact that the tem-
perature decreases for very light black holes, a black hole
in thermal environment will never totally evaporate but
will thermalize with the background. The CMB is such a
background that can stabilize the ultralight black holes.
Since the horizon of ultralight LQBH is hidden behind a
wormhole with Planck size cross section, cold and light
black holes could act as very weakly interacting dark
matter. However the Universe is not old enough for black
holes created during the big bang to have cooled down to
2.7 K; they would still be excessively hot.
We know that in the very early universe ultralight black

holes cannot be created because the universe expands at
rate which is much faster than the rate of collisions be-
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FIG. 20. The average emission rate of particles by primordial
ultralight black holes in the universe given by (43) assuming
� ¼ 4 and Teq ¼ 1:3� 1014 GeV.
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FIG. 21. The local emission rate of particles by primordial
ultralight black holes in the Milky Way given by (45) assuming
� ¼ 4 and Teq ¼ 1:3� 1014 GeV.
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tween particle. Particles of the standard model start
colliding together at a rate faster than expansion of the
universe when the temperature has cooled lower than
1015 GeV–1017 GeV. If we suppose that the temperature
Teq at which local equilibrium of the matter is achieved and

thus black holes can be formed from fluctuations of the
matter is 13% of 1015 GeV then ultralight black holes can
explain both dark matter and cosmic rays with energies
above the GZK cut off.

We would have that once the universe has cooled to
1:3� 1014 GeV, ultralight black holes, the overwhelming
majority of which have a mass inferior to 5� 10�5mP

would be created from fluctuations of the matter. These
black holes are still very hot and radiate, but because they
are hidden behind a Planck-sized wormhole, they do so
very slowly and on average would lose less than 1 part in
1014 of their mass since their creation and are for all
practical purposes stable. If since their creation the uni-
verse has expanded by a scale factor of 1037 the mass of all
these ultralight black holes would exactly equal the mass of
dark matter and they could explain the entirety of dark
matter.

Since the Universe has expanded by a scale factor of
about 1028 since the end of inflation, and that it expanded
by a scale factor of at least 1028 during inflation, the fact
that the Universe has expanded by a scale factor of 1037

since the birth of the black holes would mean that the black
holes would have been created during inflation. This in turn
would mean that inflation would still be underway when
the Universe had temperature of 1:3� 1014 GeV. This is
very close to the simplest models of inflation which situate
inflation at energy scales of 1015 GeV–1016 GeV.

In turn, if the black hole were created when the universe
was at a temperature of 1:3� 1014 GeV, then the amount
of cosmic rays with energies higher than the GZK cut off

they would emit would correspond exactly to the amount
of such radiation observed. Because they interact with the
CMB, cosmic rays cannot travel more than 50 Mpc before
seeing their energy fall below the GZK cut off: 6�
1019 eV. However we do see particles with energies above
the GZK cut off but we do not see any sources for such
energetic particles within 50 Mpc from us. These energetic
particles, dubbed ultra high energy cosmic rays are thus a
mystery for the moment.
Hence in conclusion, ultralight LQG black holes have

the potential to resolve two outstanding problems in phys-
ics: what is dark matter, and where do ultra high energy
cosmic rays come from. It is also noteworthy that much of
these results do not actually depend on exact details of the
black holes. The essential feature is that the temperature of
the black holes goes to zero when their mass goes to zero,
the results being very generic. It is thus likely that the same
effect could be observed with noncommutative black holes
and asymptotic safety gravity black holes [18,27] both of
which exhibit zero temperature at zero mass or for a
remnant mass. The same analysis we think could be ap-
plied to the new Hořava-Lifshitz quantum gravity [28].
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