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We consider a class of black holes for which the area of the two-dimensional spatial cross section has a

minimum on the horizon with respect to a quasiglobal (Krusckal-like) coordinate. If the horizon is regular,

one can generate a tubelike counterpart of such a metric and smoothly glue it to a black hole region. The

resulting composite space-time is globally regular, so all potential singularities under the horizon of the

original metrics are removed. Such a space-time represents a black hole without an apparent horizon. It is

essential that the matter should be nonvacuum in the outer region but vacuumlike in the inner one. As an

example we consider the noninteracting mixture of vacuum fluid and matter with a linear equation of state

and scalar phantom fields. This approach is extended to distorted metrics, with the requirement of

spherical symmetry relaxed.
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I. INTRODUCTION

The long-standing problem of finding regular black
holes has different approaches. Usually, a central region
which surrounds such a singularity is replaced by another
one with a regular center due to the choice of a special kind
of matter or fine-tuning parameters of the solution [1–6];
for a review, see [7]. Regular black holes in the theories
with noncommutative geometry were discussed in [8].
Quite a different method was suggested in [9,10] where
instead of replacing a singular center a regular tubelike
inner geometry was used, which does not have a center at
all. In doing so, the outer and inner regions were glued
along the timelike surface which could approach a would-
be horizon as closely as one likes. Actually, such a con-
struction represents not a black hole but a particular case of
so-called quasiblack hole. Such objects, which are also
interesting by themselves, do not contain singularities of
curvature but, by more careful inspection, reveal other
singular features (redshift from the inner core region be-
comes infinite, the inner region becomes degenerate with
respect to the time of an external observer, etc.; see [11]
and references therein). In the present paper, we consider a
full-fledged black hole and show how a completely regular
black hole with an inner tubelike geometry can be
constructed.

To this end, gluing is performed along the horizon from
the very beginning, so in general a lightlike (null) shell can
arise. To get rid off such a shell and achieve completely
smooth gluing, we select black holes with special behavior
of the near-horizon metric. Namely, we demand that the
area of a spatial cross section of a constant radius corre-
spond to a local minimum with respect to a quasiglobal
(Kruskal-like) coordinate (see below for details). It is
worth noting that spherically-symmetrical regular configu-

rations having no center were discussed in [12,13] for the
case of phantom scalar fields. In our work, we consider
only a quite definite type of regular black holes but, on the
other hand, suggest a quite general recipe of how to gen-
erate them knowing only an original ‘‘seed’ black hole that
can contain singularities under the horizon.
In the flux tube region, the radial pressure and energy

density obey the equation pr ¼ ��. This equation pro-
posed for the description of superhigh density [14], final
stage of gravitational collapse [1], and de Sitter-like core of
regular black holes [4], appears in our approach automati-
cally. However, in our approach, the inner core can have
more of the general geometry of the type R2xS2 where S2 is
a sphere of a fixed radius and R2 is the two-dimensional
de Sitter (dS), anti-de Sitter (AdS) or flat space-time.

II. FLUX TUBES AND SPHERICALLY-
SYMMETRICAL BLACK HOLES

Consider an arbitrary spherically-symmetrical black
hole. Its metric can be written in the form

ds2 ¼ �fdt2 þ f�1du2 þ r2ðuÞd!2;

d!2 ¼ d�2 þ sin2�d�2
(1)

that uses the so-called quasiglobal coordinate u. It has
some advantages in considering the vicinity of the horizon.
In particular, the difference u� uh (subscript ‘‘h’’ corre-
sponds to the horizon) is proportional to the Kruscal-like
coordinate [15].
The corresponding source is described by the stress-

energy tensor

T�
� ¼ diagð��; pr; p?; p?Þ: (2)

For the metric (1) the Einstein equations read

G0
0 ¼ f

�
r02

r2
þ 2r00

r

�
þ f0r0

r
� 1

r2
¼ �8��; (3)
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G1
1 ¼ f

r02

r2
þ r0f0

r
� 1

r2
¼ 8�pr (4)

G2
2 ¼

fr00

r
þ ðr2f0Þ0

2r2
¼ 8�p?; (5)

where prime denotes differentiation with respect to u.
It is seen from (3)–(5) that there exists a solution with

r ¼ const � rh provided

� ¼ 1

8�r2h
; (6)

pr ¼ ��; (7)

f00 ¼ 8�p?: (8)

This solution is regular everywhere, provided p? is
bounded. Therefore, it can be a candidate inner region of
a black hole.

Now we implement the following procedure. We con-
sider a composite space-time such that for u � uh it has the
original form (1) while for u � uh the inner region is
replaced by the solution (6)–(8) with r ¼ rðuhÞ ¼ rh ¼
const and constant � and pr (6) and (7). One can see that
this is possible if we glue both regions along the horizon
r ¼ rh where fðrhÞ ¼ 0, and either (1) r0h ¼ 0 or

(2) r0h � 0, f0h ¼ 0 (extremal horizon). Indeed, it follows

from (3)–(5) that if any of these two conditions is fulfilled,
one obtains on the outer side of the horizon the same
relations as on the inner one. In the first case gluing can
be smooth, in the second one a lightlike shell arises on the
horizon. Below we analyze both possibilities separately.

III. CASE 1: COMPLETELY REGULAR SOLUTION

A. Inner geometry

Let the condition

r0ðuh þ 0Þ ¼ 0 (9)

be satisfied. For any regular black hole @r
dl ! 0 in the

horizon limit where l is the proper distance. However, (9)
means a more tight condition which is not satisfied for a
generic black hole. It can be rewritten as

1ffiffiffi
f

p dr

dl
! 0 (10)

where on the horizon f itself vanishes.
We want to achieve smooth gluing, so that deltalike

singularities should be excluded. Therefore, the first de-
rivatives of the metric should be continuous. It follows
from (9) and from constancy of rh inside that r

0ðuh þ 0Þ ¼
r0ðuh � 0Þ. Apart from this, we must also demand that dfdu �
ðuh þ 0Þ ¼ df

du ðuh � 0Þ, so �þ ¼ �� where � is the surface

gravity. The transversal pressures p? do not necessarily
coincide. Moreover, p? can be an arbitrary bounded func-

tion of u inside. Nonetheless, the simplest choice is to take
inside p? ¼ p?ðuh þ 0Þ ¼ const. This is physically pref-
erable since it means that we construct a globally regular
solution using only information on the outer side of the
horizon and not inventing an equation of state inside
ad hoc. Then, it follows from (8) that (if � and p? do
not vanish simultaneously) f ¼ 2�ðu� uhÞ þ 4�p?ðu�
uhÞ2 in the inner region. Consider the following possible
variants:
(a) p? > 0. As in the outer region f > 0, p? > 0. Thus,

inside there is an inner horizon at u� ¼ uh � �
2�p?

.

We have a nonstatic region for u� < u< uh and a
static one for u < u�. If � ¼ 0 (degenerate horizon)
f > 0 everywhere. The four-dimensional inner ge-
ometry is AdSxS2 where AdS is the two-
dimensional space-time, S2 is a sphere of a fixed
radius. If the curvature of both two-dimensional
manifolds coincide (p? ¼ 1

8�r2
h

¼ �pr) we obtain

the Bertotti-Robinson space-time [16].
(b) p? < 0. Then, there is no additional horizon. The

geometry is dS2xS2 where dS is the two-
dimensional de Sitter space-time. If p? ¼ � 1

8�r2
h

¼
pr we obtain the Nariai solution [17].

(c) p? ¼ 0. For � � 0 we have inside f < 0, so this is
the so-called black universe [13]. The geometry is
R2xS2 where now R2 is the two-dimensional flat
space-time.

The special case arises if p?ðuh þ 0Þ ¼ 0 ¼ �. Then,
the extension of space-time from outside to inside with the
constant p? ¼ 0 is not possible since Eq. (8) is incompat-
ible with the existence of a horizon in this case. Instead,
one should take inside any bounded function p?ðuÞ with
p0
?ðuÞ � 0.

B. Admissible types of outer horizon

However, this is not the end of the story since now we
must formulate more precisely which regular horizons are
compatible with the condition (9). We suppose that near the
horizon

f ¼ unFðuÞ; (11)

where FðuÞ is a sufficiently smooth function, Fð0Þ<1,
n > 0 is an integer.
It is also instructive to write the corresponding condi-

tions for the metric written in the curvature coordinates:

ds2 ¼ �fdt2 þ V�1dr2 þ r2d!2: (12)

Let near the horizon

f� ðr� rhÞq; V � ðr� rhÞp; (13)

where q > 0 and p > 0. Then, it follows from the com-
parison of (12) and (1) that
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r� rh � uk; k ¼ 2

q� pþ 2
; (14)

n ¼ 2q

q� pþ 2
: (15)

For (9) to be valid, we must require k > 1 (p > q). We
want to have regular behavior of the metric coefficients and
require k to be an integer, so k ¼ 2; 3; . . . . Now we can use
some previous results concerning general properties of
horizons in spherically-symmetrical space-times [18].
Namely, in Table 1 of Ref. [18], we select those regular
cases which obey the condition (9). Then, we obtain the
following set of possibilities.

Thus, the regular horizons which obey the condition (9)
do exist including the nonextremal (n ¼ 1), extremal (n ¼
2), and ultraextremal (n > 2) ones. The terms in the last
column are explained in the next section.

C. Nature of horizon and possible equations of state

1. Outer region

In the last column of the table we used classification
[19,20], based on the behavior of curvature tensor in the
free-falling frame which generalizes that suggested in [21].
Namely, if we denote a relevant combination of curvature
component characterizing the magnitude of tidal forces in
the static frame as Z and in the free-falling one as ~Z, we
have the following classification of cases not containing
curvature singularities (see for details [18,19]): ZðuhÞ ¼
0 ¼ ~ZðuhÞ (usual), ZðuhÞ ¼ 0, ~ZðuhÞ � 0 (naked),
~ZðuhÞ ¼ 1 but the Kretschmann scalar remains finite
(truly naked). The latter case is a matter of fact singular
(although this is not the curvature singularity), the metric
cannot be extended across the horizon, so it is now ex-
cluded from consideration.

2. Inner region

By itself, the metric (1) with r ¼ const possesses the so-
called acceleration horizon. It arises due to the kinematic
effects and can be removed by the transition to the appro-
priate frame (see, e.g., the discussion in [22,23]). However,
if we consider the combined metric that contains both the
outer region (say, asymptotically flat region where f �
1� 2m

u , u ! 1) and the inner one, the frame is fixed.

Then, the signal emitted in the region u < uh cannot reach
the asymptotic infinity, so there is a true event horizon.
Meanwhile, inside there is no region with ðrrÞ2 < 0 since
ðrrÞ2 ¼ 0 everywhere inside. Therefore, there is no appar-
ent horizon, so that we have a black hole without an
apparent horizon. It is worth noting that the similar phe-
nomenon was observed for special types of quasi-black
holes [10] (the term ‘‘quasi-black hole’’ was not used
there). Now, it appears for a full-fledged black hole.

3. Equation of state: Outside versus inside

As far as the properties of matter supporting space-times
under consideration are concerned, it is essential that cor-
responding black holes should not be vacuum ones. Indeed,
if everywhere on the outer side Eq. (7) holds, it follows
from (3) and (4) that rðuÞ ¼ u and, thus, Eq. (9) cannot be
satisfied (it corresponds to p ¼ q ¼ 1 but there is no such
case in Table I). On the other hand, in the inner region the
validity of Eq. (7) is essential. Thus, it is required that the
equation of state be nonvacuum outside and vacuumlike
inside. This is contrasted with [4,24] where it was assumed
that the source for regular black holes is vacuumlike
everywhere.

IV. EXAMPLES

Here we discuss some examples of systems which admit
the constructions under discussion. Although they were
also discussed in [18], now our goal is quite different. In
[18], the conditions for the existence of truly naked black
holes were looked for. Now, we want to analyze, under
what conditions the regular horizons with the additional
constraint (9) are possible.

A. Matter with generic linear equation of state

Consider the case when there is a noninteracting mixture
of matter described by the stress-energy tensor (2) and
vacuum fluid. By definition, such a fluid has the stress-
energy tensor

T�
�ðvacÞ ¼ diagð��ðvacÞ; prðvacÞ; p?ðvacÞ; p?ðvacÞÞ: (16)

Examples of such vacuum matter can be found in linear
and nonlinear electrodynamics, Yang-Mills theories, for
radially-directed cosmic strings [25], etc. Algebraic struc-
ture (16) was used for search of globally regular solutions
[24] and models of dark energy [26].
We assume that on the horizon � ! 0, pr ! 0. Then,

only the contribution from the vacuum (6) and (7) remains
there. We also assume that the radial pressure and density
are related (at least, in some vicinity of the horizon) by the
linear equation

pr ¼ w�; (17)

where the parameter w is a constant. Then, it is shown in
[27] that the horizon is regular provided

TABLE I.

Case p q n k
Type of

horizon

1 3
2

1
2 1 2 Naked

2 3
2 < p< 2 2� p 1 >2 Usual

3 n
2 þ 1 n

2 � 2 2 Naked

4 � 2 p� 2< q< p� 1 � 2 � 2 Usual
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w ¼ � n

nþ 2k
: (18)

Now it follows from (9) that we should have k � 2.
Thus, the parameter w belongs to the range �1<w �
� 1

5 . For the matter with such an equation of state, regular

black holes with flux tube core are possible. All four cases
from Table I can be realized.

B. Scalar field with potential

Let us consider the scalar field ’ with the potential
Vð’Þ. Then, we can take advantage of the analysis carried
out in Sec. Vd of [18]. It turns out that the regular horizon
is simple (n ¼ 1), the power expansion near the horizon
has the form

’ � ’h þ ’1

k
ðu� uhÞk=2; r � rh þ rkðu� uhÞk;

(19)

’1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2"kðk� 1Þrk=rh

q
; (20)

Vð’Þ � V0 þ constð’� ’0Þ�; � ¼ 2ðk� 1Þ
k

: (21)

Here " ¼ 1 for the normal scalar field (with the usual
sign of the kinetic energy) and " ¼ �1 for the phantom
case (negative kinetic energy). As we want to have a black
hole horizon in the region u > uh we must take rk > 0, so
" ¼ �1 (the phantom case). To obey the criterion (9), it is
sufficient to take directly k � 2. Thus, cases 1 and 2 can be
realized (but not cases 3 and 4). It is worth noting that for
odd k the expansion for ’ contains fractional powers of
u� uh.

It follows from the field equations for the scalar field
(see, e.g. [12] and references therein) that ðfr2’0Þ0 ¼
r2 dV

d’ . Therefore, in the flux tube region ’ ¼ const ¼ ’0,

we obtain dV
’ ð’0Þ ¼ 0. The density � ¼ Vð’0Þ

8� ¼ const,

Vð’0Þ ¼ 1
r2
h

in accordance with (6).

V. GENERALIZATION TO DISTORTED BLACK
HOLES

In this section, we generalize the above results to the
distorted case relaxing the requirement of spherical sym-
metry. In the Gauss normal coordinates, any static metric
can be written (at least, in some region) as

ds2 ¼ �dt2N2 þ dl2 þ 	abdx
adxb; (22)

where x1 ¼ l, a ¼ 2, 3. Then, using 2þ 1þ 1 decompo-
sition, one can write the Einstein tensor in the form [28]

G0
0 ¼ � 1

2
Rk � @K

@l
þ 1

2
KabK

ab þ 1

2
K2 (23)

Gl
l ¼ � 1

2
Rk � 1

2
KabK

ab þ �2N

N
� K

@N

@l
(24)

Gl;a ¼ K;a � K;b
ab � Kb

a

N;b

N
� 1

N

@N;a

@l
(25)

Gab ¼ �N;a;b

N
þ Kab

N

@N

@l
þ @Kab

@l
þ 2KacK

c
b þ 	abX

(26)

X ¼ �2N

N
þ 1

N

@2N

@l2
� K

@N

@l
� @K

@l
þ 1

2
KabK

ab: (27)

Here Kab ¼ � 1
2
@	ab

@l is the extrinsic curvature tensor of the

surface l ¼ const embedded into the three-dimensional
space.
The flux tube solution which generalizes that with r ¼

const for the metric (1) is defined according to

Kab ¼ 0; (28)

so that 	ab ¼ 	abðx2; x3Þ [29]. Then, it follows from (22)–
(27) that there exist a solution with N ¼ NðlÞ provided the
stress-energy tensor of the source in coordinates (22) has
the same form (2) and

�þ pk ¼ 0; (29)

Rk ¼ 16��; (30)

N�1 d
2N

dl2
¼ 1

2

d2N2

du2
¼ 8�p?; (31)

where Rk is the Riemann curvature of the two-dimensional

cross section t ¼ const, l ¼ const, du ¼ dlN. If p? is
finite, the solution is regular.
Let us suppose that we have a black hole solution

(which, in general, contains singularities under the hori-
zon) and want to construct a composite solution by replac-
ing the region under the horizon by the flux tube. To
achieve smooth gluing, we must generalize the condition
(9). As now we have (28) from inside, it would seem that it
is sufficient to require the same equality from outside. This
is not so. For any horizon the condition of the finiteness of
the Kretschmann scalar entails (28) but for smooth gluing
with a flux tube we need something more. It is easy to
understand that the corresponding condition can be written
as

Kab

N
! 0 (32)

on the horizon that is a generalization of Eq. (10). Indeed,
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for the spherically-symmetrical case it reduces to (9) and
(10) directly. For a general case, it is convenient to rewrite
the metric (22) with the help of the quasiglobal coordinate
u now defined according to

ds2 ¼ �N2dt2 þ du2

N2
þ ~	abdx

adxb: (33)

Then, the condition (32) can be rewritten as @	ab

@u ! 0 and

the analogy with (9) and (10) becomes transparent.
One reservation is in order. In general, when the lapse

function depends on all three coordinates u, x2, x3 the
metrics ~	ab � 	ab. However, near the horizon the depen-
dence of N on xa can be neglected. Indeed, let us again

assume that, in accordance with (11) N � ðu� uhÞn=2 near
the horizon. Then, the regularity of the metric entails that
for the nonextremal horizons (n ¼ 1) the finiteness of the
Kretschmann scalar leads to the validity of expansion [28]

N ¼ �lþ �3ðx2; x3Þl3 þ oðl3Þ; (34)

where the surface gravity � ¼ const. For extremal hori-
zons (n ¼ 2)

N ¼ B1 expð�blÞ þ B2 expð�2blÞ þ . . . ; l ! 1;

(35)

and for ultraextremal horizons (n � 3)

N ¼ Cnl
�ðn=ðn�2ÞÞ þ Cnþ2l

�ððnþ2Þ=ðn�2ÞÞ þ . . . (36)

It was shown that for regular horizons the coefficients
B1, B2, Cn, Cnþ2 are constants [19,20]. Thus, in the main
approximation the dependence ofN on xa does indeed drop
out. Then, the transition from (22) to (33) near the horizon
can be made by a simple substitution du ¼ Ndl and ~	ab �
	ab.

Now let us take into account the condition (32) in
Einstein equations. Then, for all three types of the horizons
(34)–(36) we obtain the same equations (29)–(31) as for
the flux tubes. For the metric 	ab the corresponding ex-
pansion near the horizon should have the form

	ab � 	abðx2; x3Þ þ 	ðkÞ
abðu� uhÞk: (37)

Here k > 1. As we are interested in the regular case, the
quantity k should be an integer, so that k � 2.

It was observed in [30] that for nonspherical topology of
a horizon new possible types of equilibrium between mat-
ter and a horizon can arise which are absent for the spheri-
cal one. This is also true for composite space-times, if the
analogues of the Bertotti-Robinson or Nariai space-times
have the corresponding topology. The analysis can also be
extended to a higher-dimensional case [31]. However,
more detailed treatment of these issues is beyond the scope
of the present paper.

VI. CASE 2: GLUING ACROSS NULL SHELL—
MASS WITHOUT MASS

In the above consideration, we considered globally regu-
lar solutions. This implied that (i) there are no singularities
under the horizon, (ii) gluing between the outer black hole
region and the inner flux tube is smooth, so there is no shell
between them on the horizon. Meanwhile, the deltalike
shells is quite a legitimate object in general relativity, both
in its timelike or spacelike version [32] and lightlike one
[33–35]. Therefore, we may relax condition (ii) leaving (i)
intact. Although such a solution is not completely regular,
it has some limited interest to be discussed briefly below.
One of motivations comes from the problem of finding
self-consistent analogue of the Abraham-Lorentz electron
in general relativity (see, e.g., [36]). Usually, it is required
that in the pure field model electromagnetic repulsion be
balanced by gravitation, other sources (bare stresses) being
absent, the mass having pure electromagnetic origin.
However, the distinguished role of a horizon opens here
an additional possibility. It was observed for quasi-black
holes that in the extremal case the contribution of the
surface stresses (which by themselves do not vanish in
general) tends to zero when the shell between the outer
and inner regions approaches the quasihorizon [9,10,37].
As a result, the requirement can be weakened. Namely,
even with nonzero bare stresses the Arnowitt-Deser-
Misner mass measured at infinity [38] can be of pure
electromagnetic origination.
Instead of a quasi-black hole one can take a full-fledged

black hole (say, the Reisnerr-Nordström one) and glue it to
the inner Bertotti-Robinson solution for which r ¼ const.
As for the Bertotti-Robinson space-time rh ¼ e (e is an
electric charge), only the extremal Reissner-Nordström
space-time is suitable for gluing. Using the methods de-
scribed in detail in [33] and the monographs [35] [espe-
cially, see, Sec. V and Eq. (5.37)], [34] with slight
modification (now r ¼ const inside, so it cannot be taken
as an independent variable) one can obtain the effective
density� and pressure P of the shell. Taking for simplicity
the extremal horizon also inside, one immediately obtains
[35] that P ¼ 0. However, because of the fact that first
derivatives of the angular part of the metric on both sides of
the horizon do not coincide, gluing is not smooth and the
energy density � ¼ � 1

4�rh
does not vanish (cf. with [39]

where another result was obtained).
The fact that �< 0 somewhat restricts physical signifi-

cance of the composite space-time but, nonetheless, it can
be served as an example of pure electromagnetic mass in
the presence of bare stresses in addition to previous ob-
servation about quasi-black holes [9,37]. Since there are no
singular sources inside, electromagnetic field extends to
infinity inside. Although the null shell arises on the horizon
inevitably, such a shell leaves the gravitational mass across
the shell continuous [33,35], even irrespective of whether
the horizon is extremal or nonextremal. Thus, the presence
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of the shell in this case can also be compatible with the idea
of a pure electromagnetic ‘‘mass without mass’’ [40] mea-
sured by a remote observer in the outer region.

VII. SUMMARYAND CONCLUSION

We developed a simple and rather general approach that
enables, knowing only the properties of the black hole
metric in the outer region, to construct a completely regular
composite space-time with a tubelike geometry under the
horizon. Actually, in this way one can generate the inner
regular part of the metric from the outer vicinity of the
horizon only. The area of applicability of the approach is
restricted by requirement (9) or (32) that includes, how-
ever, a sufficiently wide class of physically relevant sys-
tems. In doing so, we do not require special types of the
equation of state inside, it turns out to be the vacuumlike
one automatically. We obtained also the metrics which
look as black holes for a distant observer but have the
character of black universes inside [13]. One can also
glue a black hole on both sides of a flux tube and obtain
a wormhole with a tunnel of arbitrary length between them.

This wormhole is, however, not traversable since horizons
are present.
Tubelike geometries discussed in the present work are

encountered not only in general relativity but in more
complicated theories of gravity as well (in particular, in
quadratic gravity [41]), where they can be also used for
constructing regular black holes. They can be relevant also
for the higher-dimensional case [31] including the Kaluza-
Klein theories where such geometries can arise as uncom-
pactified phases inside noncompactified ones [42,43]. The
flux tubes appearing in the space-times considered in our
work, can be also thought of as a special kind of nonempty
‘‘voids’’ inside matter filled with vacuumlike fluid
(cf. [44]). For external observers, they appear as spheres
of finite radius and mass binding an infinite proper mass
similarly to what happens to T models [45]. But, in contrast
to T models, now the space-times under discussion can be
everywhere static if the order of the horizon n � 2.
In the present work, we restricted ourselves by static

space-times. Of especial interest is to extend the present
results to the rotating and higher-dimensional space-times
that needs separate treatment.
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