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We find the propagator and calculate the tree level scattering amplitude between two covariantly

conserved sources in an anti–de Sitter background for the most general D-dimensional quadratic, four-

derivative, gravity with a Pauli-Fierz mass. We also calculate the Newtonian potential for various limits of

the theory in flat space. We show how the recently introduced three-dimensional New Massive Gravity is

uniquely singled out among higher derivative models as a (tree level) unitary model and that its Newtonian

limit is equivalent to that of the usual massive gravity in flat space.
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I. INTRODUCTION

In gravity, there seems to be an insurmountable diffi-
culty in reconciling renormalizability with unitarity in
generic dimensions. By adding higher derivative terms,
�R2 þ �R2

��, to the four-dimensional Einstein-Hilbert ac-

tion, one gains renormalizability yet loses unitarity due to a
nondecoupling ghost introduced by the � term, without
which one does not have a perturbatively renormalizable
theory [1]. The effect of nonunitarity in the Newtonian
limit shows itself as a repulsive component to gravitational
force between static sources. Because of this repulsive
component, the theory has a better UV behavior. This is
what usually happens in field theory: ghosts are introduced
to make the theory better behaved, at least during the
process of renormalization; yet, in a unitary theory they
decouple at the end. Of course, bartering unitarity with
renormalizability, as in the case of four dimensions, cannot
be accepted.

In three dimensions the situation seems to be better as
was recently shown in [2,3]: with the choice 8�þ 3� ¼ 0
and a reversed sign Einstein-Hilbert term, one obtains a
perturbatively renormalizable, ‘‘unitary’’ theory in flat
space [4–7]. But, it is not clear at all if this particular ratio
between � and � will survive renormalization at a given
loop level, even at one-loop. The unitarity beyond tree
level has to be checked. What is also interesting is that
the linearized version of the theory has in its spectrum a
massive graviton with helicities �2. This fact sheds light,
albeit only in three dimensions, to an old problem of
finding a nonlinear extension to the Pauli-Fierz mass
term. In fact, a formal equivalence of the Einstein-
Hilbert-Pauli-Fierz gravity and the linearized version of
the ’’New massive gravity (NMG)’’ was shown in [2].
[Note that, in three dimensions besides this parity-
preserving spin-2 theory, we have the old parity violating

topologically massive gravity (TMG) [8,9].] Even though
there does not seem to be a problem with this formal
equivalence, one still needs to be careful about its physical
meaning. It is clear that even the linearized version of the
NMG theory is background diffeomorphism invariant, but
the Pauli-Fierz theory is only invariant under the Killing
symmetries of the spacetime (in particular, the 2þ 1 di-
mensional Minkowski space). Therefore, a better under-
standing of the symmetries is needed. A quite interesting
approach was put forward in [7], where, in the linearized
version of the NMG theory without the Einstein-Hilbert
term, Weyl invariance of the action was shown. Therefore,
at least in the linearized level, introduction of the Einstein-
Hilbert term breaks this invariance and introduces a mass
to the graviton. From this point of view, higher derivative
terms provide the kinetic energy and the Einstein-Hilbert
term provides the mass in this model, which also explains
the bizarre sign change of the Einstein-Hilbert action. In
retrospect, this is to be expected, pure Einstein’s theory is
nondynamical and gives no propagation in three dimen-
sions: at the linearized level, it is basically like the mass
term in a scalar field theory which can only play a role in
the dynamics once a kinetic energy is introduced. Here the
kinetic energy comes from the higher derivative terms. So
both in TMG and NMG, the Einstein-Hilbert term gives
rise to the mass in the linearized theories, by breakingWeyl
invariance (not the expected diffeomorphism invariance).
This point of view could be important for constructing
massive gravity theories in other dimensions.
After [2], several works appeared that were devoted to

different aspects of this theory. Especially, in anti–de Sitter
(AdS) background that we shall be interested in, some
classical solutions and conserved charges were presented
in [3,10–14]. In this paper, we consider the most general
quadratic model, augmented with a Pauli-Fierz mass term,
in a D-dimensional (anti–)de Sitter background. We study
the propagator structure and the tree level scattering be-
tween two covariantly conserved sources in the theory
obtained by linearizing the action
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I ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p �
1

�
R� 2�0

�
þ �R2 þ �R2

��

þ �ðR2
���� � 4R2

�� þ R2Þ
�

þ
Z

dDx
ffiffiffiffiffiffiffi�g

p �
�M2

4�
ðh2�� � h2Þ þLmatter

�
; (1)

where�0 is the bare cosmological constant and � is related
to the D-dimensional Newton’s constant and the D� 2
dimensional solid angle by � � 2�D�2GD. Including the
number of dimensions, this 7-parameter theory is the most
general, four derivative, quadratic model with various po-
tentially interesting limits and discontinuities. [In the ab-
sence of the source terms and at the linearized level, one
can reduce the number of parameters in the action [15,16],
but here for the sake of generality we shall work with (1).]
At this point, we assume nothing about the signs of the
parameters in the action; moreover, we will also allow
them to vanish. Constraints will come from the require-
ment of the tree level unitarity and the nonexistence of
ghosts and tachyons. For some specific dimensions, certain
terms will not contribute to the equations, for example, the
� term (Gauss-Bonnet combination) is a total divergence in
D ¼ 4 and vanishes identically for D ¼ 3, therefore, in
three dimensions, the Riemann tensor carries no more
information than the Ricci tensor. Also in D ¼ 3, one
can add the Chern-Simons term �ð�@�þ 2

3 �
3Þ [8,9] to

extend our model, but here we will stick to (1), since TMG
is special to three dimensions. (See [17,18] for this case,
without the higher curvature terms.) For D ¼ 2, the theory
reduces to an R2 model with a Pauli-Fierz term. Here, we
will considerD � 3. Apart from the Pauli-Fierz mass term,
the theory has general covariance.

The spin-2 model defined by the linearization of (1) is
highly nontrivial. Needless to say, various limits have been
studied in the literature. Yet, there still appears interesting
new models in certain limits of the above action. NMG, for
D ¼ 3, in the case of a flat background, and for (M2 ¼ 0,
� ¼ 0) and 8�þ 3� ¼ 0, being one such example. One of
our tasks in this paper is to explore in detail the full 7-
parameter theory with particular care on the various dis-
continuities that appear in changing the order of limits
when some of the parameters approach zero. One very
well-known discontinuity is the so-called van Dam-
Veltman-Zakharov (vDVZ) discontinuity: the fact that
Einstein-Hilbert gravity in flat space is isolated from mas-
sive gravity in a discontinuous manner, that is M2 ! 0, at
the tree level does not yield the correct general relativity
results. But once a cosmological constant is introduced and
M2=� ! 0 limit is taken, a general relativity result is
recovered [19–23]. (Another resolution of the discontinu-
ity may follow even in flat space if the Schwarzschild
radius of the scattering objects is taking as a second mass
scale in the theory [23].) But, these are all at tree level;
once quantum corrections are taken into account, disconti-
nuity reappears [24]. Another related problem is the
Boulware-Deser instability: at the nonlinear level, a ghost
arises in massive gravity [25].
The layout of the paper is as follows. In Sec. II, we write

down the linearized equations about an AdS background
and discuss certain special limits, such as the partially
massless case. In Sec. III, we find the tree level scattering
amplitude and compute the Newtonian potential.

II. LINEARIZED EQUATIONS

The field equations that follow from (1) are

1

�

�
R�� � 1

2
g��Rþ�0g��

�
þ 2�R

�
R�� � 1

4
g��R

�
þ ð2�þ �Þðg��h�r�r�ÞR

þ 2�

�
RR�� � 2R����R

�� þ R���	R�
��	 � 2R��R�

� � 1

4
g��ðR2

	
�� � 4R2
�� þ R2Þ

�
þ �h

�
R�� � 1

2
g��R

�

þ 2�

�
R���� � 1

4
g��R��

�
R�� þM2

2�
ðh�� � �g��hÞ ¼ 	��: (2)

In the absence of the source, the ‘‘vacuum’’ (background
�g��) is a nonsingular solution to the field equations every-
where. This is the maximally symmetric (anti–)de Sitter
space with the Riemann, Ricci tensors, and scalar curvature
given, respectively, as

�R���� ¼ 2�

ðD� 1ÞðD� 2Þ ð �g�� �g�� � �g�� �g��Þ;

�R�� ¼ 2�

D� 2
�g��; �R ¼ 2D�

D� 2
:

(3)

Our discussion and notations follow [26,27]. All the con-
tractions will be made with �g�� that has the signature

ð�;þ; . . . ;þÞ. Our conventions are ½r�;r��V
 ¼
R��


�V�, R�� ¼ R

�
�. With these, one can find � in

terms of�,�, �, �, and�0 (neglectingM
2), where� is the

effective cosmological constant. From (2) and (3) we have,

���0

2�
þD� 4

D� 2

�ðD�þ �Þ
D� 2

þ �
D� 3

D� 1

�
�2 ¼ 0: (4)

Generically, there are two solutions, one of which vanishes
in the absence of �0, the other one nonvanishing even in
this limit. But, let us first note the exceptions. For D ¼ 4,
� ¼ �0. Also, forD ¼ 3 if 3�þ � ¼ 0we have� ¼ �0.

Otherwise, in three dimensions �1;2 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�8�ð3�þ�Þ�0

p
4�ð3�þ�Þ
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with a constraint 1 � 8�ð3�þ �Þ�0. There is one more
exceptional point: � ¼ 0, D�þ � ¼ 0 theory also has
� ¼ �0. (This is an interesting model whose action is
given by the square of the traceless Ricci tensor. All the
asymptotically AdS solutions [not just the globally AdS
vacuum] have zero energy [27].) Finally, for the generic
case we have

� ¼ � 1

4�f
½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8�f�0

p �; (5)

where f � ð�Dþ �Þ ðD�4Þ
ðD�2Þ2 þ � ðD�3ÞðD�4Þ

ðD�1ÞðD�2Þ , for which the
bound becomes as 8��0f � �1.

Linearization of (2) around the background metric,
g�� ¼ �g�� þ h��, after using (5), gives [27]

T��ðhÞ ¼ aGL
�� þ ð2�þ �Þ

�
�
�g��

�h� �r�
�r� þ 2�

D� 2
�g��

�
RL

þ �

�
�hGL

�� � 2�

D� 1
�g��R

L

�

þM2

2�
ðh�� � �g��hÞ; (6)

where we have defined

a � 1

�
þ 4�D

D� 2
�þ 4�

D� 1
�þ 4�ðD� 3ÞðD� 4Þ

ðD� 1ÞðD� 2Þ �:

(7)

Here T��ðhÞ contains all the higher order terms as well as

the source 	��. G��
L is the linearization of the Einstein

tensor (with the cosmological constant)

G L
�� ¼ RL

�� � 1

2
�g��R

L � 2�

D� 2
h��; (8)

where the linearized Ricci tensor and the scalar curvature,
RL ¼ ðg��R��ÞL, read

RL
�� ¼ 1

2
ð �r� �r�h�� þ �r� �r�h�� � �hh�� � �r�

�r�hÞ;

RL ¼ � �hhþ �r� �r�h�� � 2�

D� 2
h: (9)

We also need the trace of (6) which reads�
ð4�ðD� 1Þ þD�Þ �h� ðD� 2Þ

�
1

�
þ 4f�

��
RL

�M2

�
ðD� 1Þh ¼ 2T: (10)

It is clear that something special happens for 4�ðD� 1Þ þ
D� (that is the NMG point in D ¼ 3) but, before we
discuss this in detail by computing the tree level scattering
between two sources, let us consider various limits of the
theory at the linearized level, without the sources. Unitarity
regions cannot be captured this way, but we can see the
parameter ranges that rule out the tachyons. At this point,

the discussion depends on whetherM2 vanishes or not. Let
us consider these cases separately.
M2 � 0 case
Divergence and the double divergence of (6) give

�r �h�� � �r�h ¼ 0; �r� �r�h�� � �hh ¼ 0; (11)

which lead to RL ¼ � 2�
D�2h. The discussion again bifur-

cates according � ¼ 0 or not. First consider the flat space
case for which we have RL ¼ 0 and (10), and the first
equation of (11) force the field to be traceless and trans-
verse. The field equation for the remaining ðDþ 1ÞðD�
2Þ=2 independent components reduces to�

�@4 þ 1

�
@2 �M2

�

�
h�� ¼ 0; (12)

that describes two massive excitations with masses

m2� ¼ � 1

2��
� 1

2j��j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�M2�

q
; (13)

which are nontachyonic if the parameters are properly
picked. But, as we will see, this model is nonunitary.
Now assume that � � 0, then the trace equation gives�
ð4�ðD� 1Þ þD�Þh� ðD� 2Þ

�
1

�
þ 4�f

�

þ M2

2��
ðD� 1ÞðD� 2Þ

�
h ¼ 0: (14)

which says that generically h is a dynamical scalar field,
unless the coefficient of the D’Lambertian vanishes.
Suppose, we pick up that special case, then, there are still
two options: either h ¼ 0 or we have the partially massless
point, that arises only in curved backgrounds for which a
higher derivative gauge invariance appears [28] and the
field has one less degree of freedom compared to the
massive one. The mass should be tuned as

M2 ¼ 2��

D� 1

�
1

�
���ðD� 4Þ

D� 1
þ 4��

ðD� 3ÞðD� 4Þ
ðD� 1ÞðD� 2Þ

�
;

(15)

which is allowed to be negative in AdS as long as it satisfies
the Breitenlohner-Freedman type bound. Apart from four
dimensions, higher derivative terms play a role on the
partially massless theory.
M2 ¼ 0 case
The theory is now invariant under background diffeo-

morphisms ��h�� ¼ �r��� þ �r���, since ��GL
�� ¼ 0

and ��R
L ¼ 0. Therefore, divergence and the double di-

vergence do not give any constraint on h��. In this case, for

T ¼ 0, (10) gives dynamics to RL unless, the coefficient of
the box term vanishes. In that special case, generically
RL ¼ 0, but it is clear that cosmological constant introdu-
ces another possibility: If 1

� þ 4�f ¼ 0, then RL need not

vanish. But this point does not seem acceptable since a
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gauge invariant object is left undetermined by the field
equations.

III. TREE LEVEL AMPLITUDE

From now on, we consider the full theory (6) and find the
tree level scattering amplitude between two covariantly
conserved sources. First we need to express h�� in terms

of T��. But, since not all components of the field are

independent, we decompose it in such a way that the
physical parts will be determined by the source. The usual
choice is to define

h�� � hTT�� þ �rð�V�Þ þ �r�
�r�þ �g��c ; (16)

where hTT�� is the transverse and traceless part.

Symmetrization (with a 1=2 factor) is implied in the vector
part V� which is divergence free.  and c are scalar

functions. Taking the trace, divergence, and double diver-
gence of Eq. (16) one obtains

h ¼ �hþDc ; �hh ¼ �h2þ 2�

ðD� 2Þ
�hþ �hc ;

(17)

where we used �r� �r�h�� ¼ �hh, which is not a gauge

condition but imposed on us as a result of the nonzero
mass term. Then, hitting the first equation of (17) with a �h,
one can eliminate �hwith the help of the second equation
as

�h ¼ ðD� 1ÞðD� 2Þ
2�

�hc ; (18)

which then yields

h ¼
�ðD� 1ÞðD� 2Þ

2�
�hþD

�
c : (19)

From (10), it follows that c is determined by the trace of
the energy momentum tensor

c ¼
�
�

�
þ 4�f� c� �h�M2

2�
ðD� 1Þ

��1

�
�ðD� 1ÞðD� 2Þ

2�
�hþD

��1
T; (20)

where c � 4ðD�1Þ�
D�2 þ D�

D�2 . To find the transverse traceless

part of the field in terms of the source, Lichnerowicz

operator, 4ð2Þ
L acting on spin-2 symmetric tensors is quite

useful

4ð2Þ
L h�� ¼ � �hh�� � 2 �R����h

�� þ 2 �R�
ð�h�Þ�: (21)

Some properties of this operator that we need were col-
lected in [20]

4ð2Þ
L rð�V�Þ ¼ rð� 4ð1Þ

L V�Þ;

4ð1Þ
L V� ¼ ð�hþ�ÞV�;

r� 4ð2Þ
L h�� ¼ 4ð1Þ

L r�h��;

4ð2Þ
L g�� ¼ g�� 4ð0Þ

L ;

4ð0Þ
L  ¼ �h;

r� 4ð1Þ
L V� ¼ 4ð0Þ

L r�V�:

(22)

Using these we have

G LTT
�� ¼ 1

2
4ð2Þ

L hTT�� � 2�

ðD� 2Þ h
TT
��; (23)

which then leads to the desired equation

hTT�� ¼ 2

�
ð� �hþ aÞ

�
4ð2Þ

L � 4�

D� 2

�
þM2

�

��1
TTT
��: (24)

The transverse traceless part of the energy momentum
tensor can be found as (after using the fact that it is
covariantly conserved)

TTT
�� ¼ T�� �

�g��

D� 1
T þ 1

D� 1

�
�
�r�

�r� þ
2� �g��

ðD� 1ÞðD� 2Þ
�

�
�
�hþ 2�D

ðD� 1ÞðD� 2Þ
��1

T: (25)

Finally using (20), (24), and (25), we can write the tree
level scattering amplitude between two conserved sources

A ¼ 1

4

Z
dDx

ffiffiffiffiffiffiffi� �g
p

T0
��ðxÞh��ðxÞ

¼ 1

4

Z
dDx

ffiffiffiffiffiffiffi� �g
p ðT0

��h
TT�� þ T0c Þ: (26)

For the sake of notational simplicity, let us suppress the
integral for now

4A ¼ 2T0
��

�
ð� �hþ aÞ

�
4ð2Þ

L � 4�

D� 2

�
þM2

�

��1
T�� þ 2

D� 1
T0
�
ð� �hþ aÞ

�
�hþ 4�

D� 2

�
�M2

�

��1
T

� 4�

ðD� 2ÞðD� 1Þ2 T
0
�
ð� �hþ aÞ

�
�hþ 4�

D� 2

�
�M2

�

��1
�
�hþ 2�D

ðD� 2ÞðD� 1Þ
��1

T

þ 2

ðD� 2ÞðD� 1ÞT
0
�
1

�
þ 4�f� c �h� M2

2��
ðD� 1Þ

��1
�
�hþ 2�D

ðD� 2ÞðD� 1Þ
��1

T: (27)
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This is our main result from which wewill consider various
limits. For nonzero cosmological constant, this is quite a
nontrivial integral. But we can figure out the particle
spectrum of the theory by looking at the pole structure of
the amplitude. Generically there are 4 poles which read as

�h 1 ¼ � 2�D

ðD� 1ÞðD� 2Þ ; (28)

�h 2;3 ¼ 1

�

�
�
�
a

2
þ 2��

ðD� 2Þ
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a

2
þ 2��

ðD� 2Þ
�
2 � �

�
4�a

ðD� 2Þ �
M2

�

�s �
;

(29)

�h 4 ¼ 1

c

�
��1 þ 4�f� M2

2��
ðD� 1Þ

�
: (30)

Given these poles, finding the residues is easy but, in the
most general form, the expressions are rather cumbersome.
The existence of the cosmological constant and the Pauli-
Fierz mass term changes the picture drastically: depending
on the choice of the parameters, there could be tachyon and
ghost-free models. Here, let us restrict our theory and
discuss some interesting limits and compute the
Newtonian potential between static sources for some of
these limits.

Looking at (27), it is clear that M2 ! 0 and � ! 0
limits do not commute. In fact first taking the � ! 0 limit,
one encounters the vDVZ discontinuity.

4A ¼ �2T0
��

�
�@4 þ 1

�
@2 �M2

�

��1
T��

þ 2

D� 1
T0
�
�@4 þ 1

�
@2 �M2

�

��1
T; (31)

whose spectrum has two massive excitations with masses
given by (13). To see its structure more explicitly, one can
rewrite it as

4A ¼ � 2

�ðm2� �m2þÞ
�
T0
��

�
1

@2 �m2þ
� 1

@2 �m2�

�
T��

� 1

ðD� 1ÞT
0
�

1

@2 �m2þ
� 1

@2 �m2�

�
T

�
: (32)

Unless � ¼ 0, we have a massive ghost. The Newtonian
potential energy (U) between T0

00 � m1�ðx� x1Þ, T00 �
m2�ðx� x2Þ in three and four dimensions can be obtained
as

U¼ 1

2�ðm2þ�m2�Þ
m1m2

4�
½K0ðm�rÞ�K0ðmþrÞ� D¼ 3;

U¼ m1m2

3�ðm2þ�m2�Þ
1

4�r
½e�m�r� e�mþr� D¼ 4: (33)

where r � j ~x1 � ~x2j. As � ! 0, the potential energies

become

U ¼ � �

8�
m1m2K0ðMrÞ D ¼ 3; (34)

U ¼ � 4

3

Gm1m2

r
e�Mr D ¼ 4: (35)

The latter equation shows the famous discontinuity of
massive gravity in flat space. (Note that we have used � ¼
16�G, in four dimensions.) Let us stress that (34) is the
Newtonian limit of massive gravity in three dimensions. It
gives an attractive force as long as � is positive. Unlike the
four-dimensional case,M ! 0 limit does not exist since, as
x ! 0, K0ðxÞ ! � lnðx=2Þ þ �E, which incidentally gives
the expected 1=r force for small separation between the
sources. So massive gravity gives the correct Newtonian
limit in three dimensions where pure Einstein theory does
not give any interaction.
Let us now consider the case which will lead us to the

NMG model found in [2]. Take first M2 ¼ 0 then � ! 0.

4A ¼ �2T0
��

�
�@4 þ 1

�
@2
��1

T��

þ 2

ðD� 1ÞT
0
�
�@4 þ 1

�
@2
��1

T

� 2

ðD� 1ÞðD� 2ÞT
0
�
c@4 � 1

�
@2
��1

T: (36)

Generically there are three poles:

@21 ¼ 0; @22 ¼ � 1

��
; @23 ¼

1

�c
: (37)

For nonzero �, the requirement of unitarity singles out the
D ¼ 3 and 8�þ 3� ¼ 0 theory in a highly nontrivial way.
Let us explain how: not to have a tachyon, we should
choose ��< 0. Looking at the residue of this pole, we
see that we should have � < 0 for unitarity. Computing the
residue of the massless pole, we see that with negative �,
D ¼ 3must be chosen so that one does not have a massless
ghost. Finally, the third pole is nontachyonic if c < 0, but
then, the residue of this pole requires c > 0 for unitarity.
This is only possible if c ¼ 8�þ 3� ¼ 0, which is the
NMG theory. The Newtonian limit of this model also
reveals its rather unique structure. Let us for the moment
compute the potential for generic � and �.

U ¼ �

8�
m1m2ðK0ðmgrÞ � K0ðm0rÞÞ D ¼ 3; (38)

where m2
g � � 1

�� and m2
0 � 1

�ð8�þ3�Þ . Clearly, m0 is a

massive ghost that gives a repulsive component. But, for
NMG it decouples and one is left with an attractive force,
since � < 0. This result also confirms that, at this level,
NMG has the same Newtonian limit as the usual massive
gravity (34), if the Pauli-Fierz mass term is chosen asM ¼
mg. Beyond three dimensions, in flat space, a massive

ghost does not decouple unless � ¼ 0. As an example,
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let us look at D ¼ 4:

U ¼ �Gm1m2

r

�
1� 4

3
e�mgr þ 1

3
e�mar

�
; (39)

where m2
a � 1

2�ð3�þ�Þ . The middle, repulsive term signals

the ghost problem [1].

IV. CONCLUSION

We have studied the most general quadratic gravity with
a Pauli-Fierz mass inD-dimensional (anti–)de Sitter space.
From the tree level scattering amplitude that we found,
one can study various limits. In flat space, we computed
the Newtonian limits for various models including the new
massive gravity that was recently introduced. Nonunitarity
of the NMG theory comes in a highly nontrivial way and
does not extend beyond three dimensions, in flat space. The

cosmological constant changes the picture drastically; one
needs to further study in detail the unitary regions.
Especially in the NMG theory, as we mentioned in the
introduction, unitarity beyond the tree level has to be
checked, as it is not clear at all if the condition 8�þ 3� ¼
0 will survive renormalization, nor it is clear that
Boulware-Deser instability in the full nonlinear theory is
avoided. We intend to address these problems in a future
work.
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