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We consider diagonal cylindrically symmetric metrics, with an interior representing a general non-

rotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this

using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the

boundary values of metric components and their derivatives, either for the interior or exterior. Specializing

to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the

nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree

isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were

included in Cocke’s discussion. For these metrics, Nolan and Nolan have shown that the matching breaks

down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically

flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited,

and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the

boundary.
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I. INTRODUCTION AND SUMMARY

Many papers have considered cylindrical solutions, with
or without matching: see e.g. [1–4] and Stephani et al. [5],
Chap. 22. Here we take diagonal metrics in both the
interior and exterior, and initially allow an anisotropic fluid
interior. The exterior is a vacuum Einstein-Rosen (ER)
solution [6]. Our aim was to develop a solution where
one could explicitly see the relation between source motion
and gravitational radiation, albeit in a physically unreal-
istic case. We were therefore interested in collapse, though
for nonstatic cases one can easily reverse the sense of time
so that collapse becomes expansion and vice versa.

We set out the metrics and the Darmois matching con-
ditions (which preclude surface shells in the boundary) for
a timelike boundary in Secs. II and III, and show that the
junction conditions can be explictly solved for the bound-
ary values for the exterior in terms of interior quantities and
vice versa. This extends the work of [7].

Specializing to the shearfree case in Sec. IV, we are able
to give a first-order ordinary differential equation for the
time evolution of the interior whose solution is in general
an elliptic function. It is shown that a static exterior implies
a static interior.

Further specializing to a isotropic fluid in Sec. V, we
prove that only a Robertson-Walker (RW) dust interior is
possible and that all such interiors are included in the
discussion of Cocke [8]. The matching then leads in
Sec. VI to specific behavior of the ER functions at the
boundary. However, previous work of Nolan and Nolan [9]
shows that the matching breaks down before collapse is
complete, and Tod and Mena [10] showed that the solu-
tions cannot be asymptotically flat in the sense of Berger,
Chrusciel, and Moncrief [11], which makes them unsatis-
factory for our purposes.
Finally in Sec. VII we consider whether there are waves

in the exterior by asking if there is energy transport.
Because a cylindrically symmetric spacetime cannot be
asymptotically flat, we cannot employ the usual global
definition of radiation for isolated bodies due to [12], and
various alternatives are discussed. We conclude that the
exterior of a cylindrical region of a collapsing RW dust
solution cannot be in an intrinsic gravitational or super-
energy radiative state at the boundary, and infer that no
radiation is transferred to or from the interior.
The specializations made here did not lead to solutions

of the type we hoped for. This is a consequence of the
additional restrictions imposed in the hope of avoiding the
full complexity of the problem in the general anisotropic
case. Nevertheless we believe that it is necessary to have
the results obtained in these more restricted cases as a first
step: we hope in the future to undertake further study of the
shearing dust and shearfree anisotropic fluid interiors,
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which may establish whether such results as the breakdown
of the matching in the Friedmann-Robertson-Walker
(FRW) case hold more generally.

II. COLLAPSING ANISOTROPIC FLUID
CYLINDERS

We consider a collapsing cylinder filled with anisotropic
nondissipative fluid bounded by a timelike cylindrical
surface � and with energy-momentum tensor given by

T�
�� ¼ ð�þ PrÞV�V� þ Prg�� þ ðPz � PrÞS�S�

þ ðP� � PrÞK�K�; (1)

where � is the energy density, Pr, Pz, and P� are the

principal stresses and V�, S�, and K� are vectors satisfying

V�V� ¼ �1; S�S� ¼ K�K� ¼ 1;

V�S� ¼ V�K� ¼ S�K� ¼ 0:
(2)

We assume the general time dependent diagonal nonrotat-
ing cylindrically symmetric metric

ds2� ¼ �A2ðdt2 � dr2Þ þ B2dz2 þ C2d�2; (3)

where A, B, and C are functions of t and r. To represent
cylindrical symmetry, we impose the following ranges on
the coordinates:

�1 � t � 1; 0 � r;

�1< z <1; 0 � � � 2�;
(4)

where we assume C ¼ 0 at r ¼ 0 which is a nonsingular
axis. We number the coordinates x0 ¼ t, x1 ¼ r, x2 ¼ z,
and x3 ¼ �, and we choose the fluid to be comoving in this
coordinate system; hence from (2) and (3)

V� ¼ �A�0
�; S� ¼ B�2

�; K� ¼ C�3
�: (5)

Calculating the motion of the fluid according to its expan-
sion � and shear ���,

� ¼ V�
;�; (6)

��� ¼ Vð�;�Þ þ Vð�;�V�V�Þ � 1

3
�ðg�� þ V�V�Þ; (7)

by using (3) and (4) we obtain for the expansion,

� ¼ 1

A

� _A

A
þ _B

B
þ

_C

C

�
; (8)

and for the nonzero components of the shear,

�11 ¼ A

3

�
2

_A

A
� _B

B
�

_C

C

�
; (9)

�22 ¼ B2

3A

�
2

_B

B
�

_A

A
�

_C

C

�
; (10)

�33 ¼ C2

3A

�
2

_C

C
�

_A

A
� _B

B

�
; (11)

where the overdot stands for differentiation with respect to
t. The Einstein field equations, G�� ¼ 	T��, for (1), (3),

and (5), have the nonzero components,

G�
00 ¼

_A

A

� _B

B
þ

_C

C

�
þ _B

B

_C

C
� B00

B
� C00

C

þ A0

A

�
B0

B
þ C0

C

�
� B0

B

C0

C

¼ 	�A2; (12)

G�
01 ¼ � _B0

B
�

_C0

C
þ

_A

A

�
B0

B
þ C0

C

�
(13)

þ
� _B

B
þ

_C

C

�
A0

A
¼ 0; (14)

G�
11 ¼ � €B

B
�

€C

C
þ

_A

A

� _B

B
þ

_C

C

�
� _B

B

_C

C

þ A0

A

�
B0

B
þ C0

C

�
þ B0

B

C0

C

¼ 	PrA
2; (15)

G�
22 ¼

�
B

A

�
2
�
�

€A

A
�

€C

C
þ

� _A

A

�
2 þ A00

A
þ C00

C
�

�
A0

A

�
2
�

¼ 	PzB
2; (16)

G�
33 ¼

�
C

A

�
2
�
�

€A

A
� €B

B
þ

� _A

A

�
2 þ A00

A
þ B00

B
�

�
A0

A

�
2
�

¼ 	P�C
2; (17)

where the prime stands for differentiation with respect to r.
From (1), (2), and (5), we have the nontrivial compo-

nents of the Bianchi identities T�
�;� ¼ 0,

_�þ ð�þ PrÞ
_A

A
þ ð�þ PzÞ

_B

B
þ ð�þ P�Þ

_C

C
¼ 0;

(18)

P0
r þ ð�þ PrÞA

0

A
þ ðPr � PzÞB

0

B
þ ðPr � P�ÞC

0

C
¼ 0:

(19)

For the exterior we take an ER spacetime [6]

ds2þ ¼ �e2ð��c ÞðdT2 � dR2Þ þ e2c dz2 þ e�2cR2d�2;

(20)

where � and c are functions of T and R, and for the
vacuum field equations we have
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c ;TT � c ;RR � c ;R

R
¼ 0; (21)

and

�;T ¼ 2Rc ;Tc ;R; �;R ¼ Rðc 2
;T þ c 2

;RÞ: (22)

Equation (21) is the cylindrically symmetric wave equation
in an Euclidean spacetime, suggesting the presence of a
gravitational wave field.

III. JUNCTION CONDITIONS

As the boundary must be comoving with the fluid inte-
rior, it will be timelike, and given by r ¼ constant in the
interior metric (3) and a curve RðTÞ in the ER metric (20).
Matching the collapsing cylinder at� to the ER spacetime,
Darmois’s junction conditions [7,13] give us, after a little
algebra,

e��c

�
1�

�
dR

dT

�
2
�
1=2

dT¼� Adt¼� d
; (23)

ec ¼� B; (24)

R¼� BC; (25)

Pr ¼� 0; (26)

ec ðR;
c ;T þ T;
c ;RÞ¼� B0

A
; (27)

T;
 ¼� ðBCÞ0
A

: (28)

In this form it is easy to see that if the exterior is known, the
boundary values of B and C, and 1=A times their first
derivatives with respect to t and r (equivalently, the de-
rivatives with respect to proper time in the surface and
proper distance orthogonal to it), can be solved for. The
value of A is not fixed, as one can redefine the t and r
coordinates, but its evolution can be found from the interior
field equations.

We note also that in order for the surface to be timelike
we require ðdR=dTÞ2 < 1.

One can reorganize these equations, together with (22),
to conversely give the exterior functions’ values on the
boundary in terms of the interior. Rewriting (23), and
differentiating (24) and (25) with respect to 
 in the sur-
face, we obtain

e2��2c ðT2
;
 � R2

;
Þ¼� 1; (29)

ec ðT;
c ;T þ R;
c ;RÞ¼�
_B

A
; (30)

R;
 ¼� ðBCÞ�
A

: (31)

Solving (30) and (27) for c ;T and c ;R, and substituting in

(29), the results are (24) and

c ;T ¼� B;tðBCÞ;r � B;rðBCÞ;t
B½ðBCÞ2;r � ðBCÞ2;t�

; (32)

c ;R¼� B;rðBCÞ;r � B;tðBCÞ;t
B½ðBCÞ2;r � ðBCÞ2;t�

; (33)

e� ¼� AB

½ðBCÞ2;r � ðBCÞ2;t�1=2
; (34)

�;T ¼� 2C½B;tðBCÞ;r � B;rðBCÞ;t�½ðBCÞ;rB;r � ðBCÞ;tB;t�
B½ðBCÞ2;r � ðBCÞ2;t�2

;

(35)

�;R¼� Cf½B;tðBCÞ;r�B;rðBCÞ;t�2þ½ðBCÞ;rB;r�ðBCÞ;tB;t�2g
B½ðBCÞ2;r�ðBCÞ2;t�2

:

(36)

The radius R of the collapsing cylinder as measured by
the circumference in the exterior ER spacetime is given by

R ¼� e�cR¼� C: (37)

IV. SHEARFREE COLLAPSING SOLUTION

Now let the motion of the collapsing cylindrical fluid be
shearfree, ��� ¼ 0. Then we can integrate (9)–(11) and

obtain

B ¼ bðrÞA; C ¼ cðrÞA; (38)

where bðrÞ and cðrÞ are arbitrary functions of r and the
metric (3) becomes

ds2� ¼ A2ð�dt2 þ dr2 þ b2dz2 þ c2d�2Þ: (39)

We observe that by contrast the shearfree condition in a
collapsing spherical distribution of matter in a comoving
frame leaves two unknown functions of time and radial
coordinate in the metric [14].
Substituting (39) into (14) we obtain

_A0

A
� 2

_A

A

A0

A
¼ 0; (40)

which can be integrated producing

A ¼ 1

wðtÞ þ aðrÞ ; (41)

where w is an arbitrary function of t and a is an arbitrary
function of r. The expansion (8) for (39) and (41) becomes

� ¼ �3 _w; (42)
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which, as for the shearfree isotropic fluid spherical col-
lapse, depends also only on t [14].

The field equations (12)–(17) with (39) and (41) become

	� ¼ 3 _w2 þ 2ðwþ aÞa00 � 3a02 þ 2ðwþ aÞa0
�
b0

b
þ c0

c

�

� ðwþ aÞ2
�
b00

b
þ c00

c
þ b0

b

c0

c

�
; (43)

	Pr ¼ 2ðwþ aÞ €w� 3 _w2 þ 3a02 � 2ðwþ aÞa0
�
b0

b
þ c0

c

�

þ ðwþ aÞ2 b
0

b

c0

c
; (44)

	Pz ¼ 2ðwþ aÞ €w� 3 _w2 � 2ðwþ aÞa00 þ 3a02

� 2ðwþ aÞa0 c
0

c
þ ðwþ aÞ2 c

00

c
; (45)

	P� ¼ 2ðwþ aÞ €w� 3 _w2 � 2ðwþ aÞa00 þ 3a02

� 2ðwþ aÞa0 b
0

b
þ ðwþ aÞ2 b

00

b
: (46)

From the junction condition (26) we have that on the
boundary (44) is given by

2� €�� 3 _�2 þ c2�
2 þ c1�þ c0 ¼� 0; (47)

where

�¼� wþ a; c0 ¼� 3a02;

c1 ¼� �2a0
�
b0

b
þ c0

c

�
; c2 ¼� b0c0

bc
:

(48)

We can integrate (47) producing

_� 2 ¼ w0�
3 þ c2�

2 þ c1
2
�þ c0

3
; (49)

where w0 is an integration constant. Thus in general the
time dependence is given by an elliptic function whose
parameters are fixed by values at the boundary.

If the exterior spacetime is static, c ;T ¼ 0, then the field
equations (21) and (22) reduce to the static Levi-Civita
spacetime,

ec ¼ a1
Ra2

; (50)

and

e� ¼ Ra2
2 ; (51)

where a1 and a2 are integration constants: for a positive
mass source we need a2 > 0 [15,16]. For the solution (39)
and (41) we have the following relations on �. From (24)
and (50) we have

a1
Ra2

¼� b

wþ a
; (52)

and from (24) and (25)

R¼� bc

ðwþ aÞ2 : (53)

With (52) and (53) we obtain

a1ðwþ aÞ2a2þ1 ¼� ba2þ1ca2 ; (54)

since w is a function of t this relation can hold only if w is
constant. Hence, for shearfree cylindrically symmetric an-
isotropic fluids if the exterior spacetime is static, i.e. the
Levi-Civita spacetime, the cylindrical source must be static
too.
Not all the junction conditions have been used, since no

specific model of the interior has been given (and static
shearfree fluid solutions may not all contain a suitable
matching surface—for instance they may not contain a
surface where Pr ¼ 0). However, the remaining junction
conditions can be satisfied for anisotropic and isotropic
fluids, shells, and other suitable choices of interior (see, for
example, [3,16–18]).

V. CYLINDRICALLY COLLAPSING ISOTROPIC
FLUID

If the collapsing cylinder is filled with isotropic fluid,
then Pr ¼ Pz ¼ P� and from (44)–(46) we have

ðwþ aÞ
�
2

�
a00 � a0

b0

b

�
� ðwþ aÞ

�
c00

c
� b0

b

c0

c

��
¼ 0;

(55)

ðwþ aÞ
�
2

�
a00 � a0

c0

c

�
� ðwþ aÞ

�
b00

b
� b0

b

c0

c

��
¼ 0:

(56)

Then from (55) and (56), assuming w has nontrivial time
dependence,

a00 ¼ a0
b0

b
¼ a0

c0

c
;

b00

b
¼ c00

c
¼ b0

b

c0

c
; (57)

which can be shown by direct calculation to reduce the
Weyl tensor to C���� ¼ 0; i.e. the spacetime inside the

cylinder is conformally flat. All conformally flat perfect
fluid solutions are known, and all are shearfree [5]. If a
conformally flat perfect fluid has a barotropic equation of
state, then (Trümper, cited in [19]) it is RW. We now show
directly that this is the case, i.e. that the interior must be
RWand thus conformally flat, without assuming barotropy,
using regularity at the axis instead.
If a0 � 0, then we must have

a00

a0
¼ b0

b
¼ c0

c
;

from which it easily follows, using (57), that a, b, and c are
all proportional to e�r for some nonzero constant�. This is
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not consistent with having a nonsingular axis where C ¼ 0
at r ¼ 0.

If a0 ¼ 0 then we can set a ¼ 0 by redefining w, and
from (57) we find that b0=c and c0=b are each constant,
whence

b0

b

c0

c
¼ ��; (58)

where � is a constant. Writing A ¼ 1=w in the field equa-
tions (43)–(46), they become

3ðA2
;
 þ �Þ ¼ 	�A2; (59)

� 2AA;

 � A2
;
 � � ¼ 	PA2; (60)

which are easily recognizable as the usual equations for
RW spacetimes, � being the spatial curvature parameter
usually denoted k. It is known that the most general solu-
tions with zero shear, rotation, and acceleration are the
Robertson-Walker solutions (see e.g. Ellis [19], p. 135).

Moreover from the junction condition (26), i.e. P ¼� 0, we
have P ¼ 0 and consequently the fluid is a homogeneous
collapsing dust, which has no acceleration, i.e. a Friedman
solution.

Hence we can state that a collapsing cylinder with a
nonsingular axis filled with shearfree irrotational isotropic
fluid must be an RW solution and if it is matched to an ER
solution the fluid must be dust. We again compare our
result to the corresponding isotropic spherical shearfree
collapse [14]. There the general solution cannot be ob-
tained since for the complete integration of the system
further equations of state are required [e.g. an equation
of state of the form P ¼ Pð�Þ [20]].

Now we show that the form for this discussed by Cocke
[8] is the most general one by direct coordinate trans-
formations. One could reach the final metric form more
immediately by integrating (57) and imposing regularity at
the axis: the extra information below is that of the coor-
dinate transformations.
The RW metric can be expressed in spherical coordi-

nates as

ds2 ¼ �dt2 þ A2

�
d�r2

1� k �r2
þ �r2ðd�2 þ sin2�d�2Þ

�
;

(61)

where A is a function only of t, k ¼ �1, 0, or 1, and the
ranges of the coordinates are

�1 � t � 1; 0 � �r <1;

0 � � � �; 0 � � � 2�;
(62)

except when k ¼ 1 where instead 0 � �r < 1 and �r ¼ 1 is
the antipode of the origin. To write (61) in cylindrical
coordinates we make the transformation

r̂ ¼ �r sin�; z ¼ fð �r; �Þ; (63)

which yields

dr̂ ¼ sin�d�rþ �r cos�d�; dz ¼ f;�rd�rþ f;�d�: (64)

The inverse transformation is

d�r ¼ f;�dr̂� �r cos�dz

sin�f;� � �r cos�f;�r
; d� ¼ sin�dz� f;�rdr̂

sin�f;� � �r cos�f;�r
:

(65)

In order to write (61) transformed by (63) we first observe
that

d�r2

1� k�r2
þ �r2d�2 ¼ ½ð f2

;�

1�k�r2
þ �r2f2;�rÞdr̂2 � 2�rðcos�f;�

1�k�r2
þ �r sin�f;�rÞdr̂dzþ �r2ð1�k�r2sin2�Þ

1�k�r2
dz2�

ðsin�f;� � �r cos�f;�rÞ2
:(66)

Imposing the requirement that the transformation does not
produce cross terms we must choose

f;� ¼ ��rð1� k �r2Þ sin�
cos�

f;�r: (67)

Substituting (67) back into (66) we obtain

d�r2

1� k�r2
þ �r2d�2 ¼

½dr̂2 þ cos2�
ð1�k�r2Þf2;�r dz

2�
1� k�r2sin2�

: (68)

With (63) and (68) we can write (61) as

ds2 ¼ �dt2 þ A2

�
dr̂2

1� kr̂2
þ h2dz2 þ r̂2d�2

�
; (69)

where

h ¼ cos�

ð1� k�r2sin2�Þ1=2ð1� k�r2Þ1=2f;�r
: (70)

Then from (67) and (70) we have

f;�r ¼ cos�

hð1� k�r2sin2�Þ1=2ð1� k �r2Þ1=2 ; (71)

f;� ¼ � �r sin�ð1� k �r2Þ1=2
hð1� k�r2sin2�Þ1=2 : (72)

Requiring that h is a function only of r̂ we have

h;�r ¼ sin�
dh

dr̂
; h;� ¼ �r cos�

dh

dr̂
: (73)

Differentiating (71) and (72) with respect to � and �r,
respectively, and using (73) we obtain
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f;�r� ¼ � 1

hð1� k �r2sin2�Þ1=2ð1� k �r2Þ1=2

�
�ð1� k �r2Þ sin�
1� k�r2sin2�

þ �rcos2�

h

dh

dr̂

�
; (74)

f;��r ¼ � sin�

hð1� k �r2sin2�Þ1=2
�

1� 2k �r2

ð1� k�r2sin2�Þ1=2

þ k�r2sin2�ð1� k�r2Þ1=2
1� k�r2sin2�

� �r sin�ð1� k�r2Þ1=2
h

dh

dr̂

�
:

(75)

Equating the two expressions (74) and (75), i.e. imposing
the integrability condition f;�r� ¼ f;��r, and using (63) we
obtain

1

h

dh

dr̂
¼ � kr̂

1� kr̂2
; (76)

and integrating this we obtain

h ¼ �ð1� kr̂2Þ1=2; (77)

where � is an integration constant. Now substituting (77)
into (69) and rescaling z we finally have

ds2 ¼ �dt2 þ A2

�
dr̂2

1� kr̂2
þ ð1� kr̂2Þdz2 þ r̂2d�2

�
:

(78)

The metric form (78) was obtained by Cocke [8], but here
we have proved that it is the general RW metric in cylin-
drical coordinates.

In order to write (78) in the coordinate system employed
in (3) we rescale t and transform r̂ so that

r ¼
Z dr̂

ð1� kr̂2Þ1=2 ; (79)

and we obtain

ds2 ¼ A2ðtÞð�dt2 þ dr2 þ g02dz2 þ g2d�2Þ; (80)

or

ds2 ¼ �d
2 þ A2ð
Þðdr2 þ g02dz2 þ g2d�2Þ; (81)

with g ¼ sinhr, r, or sinr accordingly as k ¼ �1, 0, or 1.
The metric (39), with (41) and (58), is the general RW

metric (80) where k ¼ � and w ¼ 1=A, and it satisfies (59)
and (60).

VI. MATCHING FRW SPACETIME TO ER
SPACETIME

Matchings between a cylindrical homogeneous perfect
fluid interior and a vacuum exterior (or vice versa) have
been studied by Mena, Tavakol, and Vera [21], who
showed that matching to a static vacuum is impossible
which is a special case of our result above, by Nolan and

Nolan [9], and by Tod and Mena [10]. In the last of these
papers, the matching of ER and k ¼ 0 FRW metrics is
given, using coordinates in which the exterior metric takes
the form

ds2þ ¼ �e2ð��c ÞðdT̂2 � d2Þ þ e2cdz2 þ e�2cR2d�2;

(82)

where R ¼ RðT̂; Þ: the main difference from our treat-

ment is that the coordinates ðT̂; Þ are chosen so that the

boundary is at  ¼ constant. Here T̂ has replaced the T of
the original paper to avoid confusion. Tod and Mena [10]
study the global structure and conclude that the spacetime
is not asymptotically flat in the sense of Berger, Chrusciel,
and Moncrief [11], but instead has a singular Cauchy
horizon.
In [9], the matching of a general cylindrically symmetric

vacuum to FRW is studied: the exterior is then shown, as
one might expect, to be of ER form. Here we shall find the
trajectory of the boundary as an equation relating T and R,
and then display the conditions satisfied there by � and c .
Then we comment further on the results of Tod and Mena
[10] and Nolan and Nolan [9].
The well-known solutions to (59) and (60) are

k ¼ 1; A ¼ msin2�=2; 2
 ¼ mð�� sin�Þ;
(83)

k ¼ 0; A ¼ ð3 ffiffiffiffi
m

p

=2Þ2=3; (84)

k ¼ �1; A ¼ msinh2�=2;

2
 ¼ mðsinh���Þ; (85)

where m is a constant giving the mass density [see e.g. [5],
Eq. (14.6)]. These are given in a form expanding as 

increases from 0. Reversing the sense of 
 in (83)–(85),
so that we have collapse, and introducing a constant T0

where the singularity occurs, we use these in R ¼ A2gg0
and T;
 ¼ Aðgg0Þ0 [which follow from (25), (28), and (81)].

We can then integrate for T, and where necessary eliminate
�, to get

2��ðT0 � TÞ¼� R1=4

�
R1=2 � 3

2
R0

�
ðR1=2 þ R0Þ1=2

þ 3

2
R2
0arcsinh

�
R1=4

R1=2
0

�
; (86)

T0 � T¼� R0R
5=4; (87)

2�þðT0 � TÞ¼� �R1=4

�
R1=2 þ 3

2
R0

�
ðR0 � R1=2Þ1=2

þ 3

2
R2
0 arcsin

�
R1=4

R1=2
0

�
; (88)
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where T0 and R0 are integration constants, and

�¼� gg0

ðgg0Þ0 ; (89)

evaluated on �, and thus from (80) for � ¼ �1 and 1,
respectively,

�� ¼� tanhr0
1þ tanh2r0

; (90)

�þ ¼� tanr0
1� tan2r0

; (91)

where r ¼� r0, while for k ¼ 0, � ¼� r0.
On this moving boundary we know from (24) and (32)–

(34) that we must have (noting that for all three possible g,
g02 � gg00 ¼ 1)

ec ¼� Ag0; (92)

c ;T ¼� A;


A2ððgg0Þ0Þ2½1� ð2�A;
Þ2�
; (93)

c ;R¼� �gðkðgg0Þ0 þ 2A2
;
g

02Þ
A2ððgg0Þ0Þ2½1� ð2�A;
Þ2�

; (94)

e� ¼� g0

ðgg0Þ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2�A;
Þ2

q ; (95)

where the functions of r have to be evaluated at r0.
One can give a general solution of (21) as a sum of

separable solutions, but we have not been able to determine
the specific solution which matches to RW even in the
simplest (k ¼ 0) case.

Our condition that R be a spatial coordinate in the
exterior metric is violated when T is sufficiently close to
T0: in fact as T increases,��������

dR

dT

��������! 1 , 5R4=5
0 ðT0 � TÞ1=5 ! 4:

(Note that this can also be expressed as 1 ¼ j2�A;
j.) For
larger T our coordinates, and hence our matching, do not
apply at�. This agrees with the results of Nolan and Nolan
[9], who showed that such a breakdown is inevitable,
essentially because the collapsing source always leads to
trapped cylinders, whereas the ER vacuum region cannot
contain trapped cylinders [22]. They describe the matching
as impossible, meaning that it cannot be carried right up to
the FRW singularity, but note that it can be used up to some
finite time.

One can continue the discussion of trapped cylinders by
using the coordinates of Tod and Mena [10]. The bound on
applicability of our matching corresponds to their conclu-
sion that in the k ¼ 0 FRW case the boundary becomes a
marginally trapped surface when 1 ¼ j2�A;
j [in their

notation, with hats added for clarity, at T̂ ¼ �̂�
ð4r̂0=3Þ3] so at larger T the surface is trapped. Such a
trapped surface is not consistent with ‘‘asymptotic flat-
ness’’ in the sense of Berger, Chrusciel, and Moncrief
[11] (see their Proposition 2.3).

Tod and Mena further show that u ¼ ffiffiffiffi
R

p
c (in their

coordinates) has a divergent derivative at the Cauchy hori-
zon (essentially the past null cone of the FRW singularity)
and hence conclude that this horizon is singular. The argu-
ment for these conclusions applies also to the k ¼ �1
cases, with changes in formulas. Tod and Mena infer that
there is incoming gravitational radiation: however, this
does not seem to be supported by the calculations in the
following section.

VII. ENERGY, SUPERENERGY, RADIATION, AND
BOUNDARY CONDITIONS

Part of our motivation was a search for an exact cylin-
drical solution for interior and exterior enabling one to
study exactly how gravitational radiation arises. Our ansä-
tze for the interior turned out to allow only FRW, which we
would expect to be nonradiative in any definition. Thus we
expect the exterior to also be nonradiative (or possibly to
show waves coming in from infinity and totally reflected at
the boundary with the interior).
A cylindrically symmetric spacetime cannot be asymp-

totically flat, due to the behavior in directions parallel to
the axis, so one cannot employ the usual global definition
of radiation for isolated bodies due to Bondi, van der Burg,
and Metzner [12]. Moreover, it appears from Proposition
2.3 of Berger, Chrusciel, and Moncrief [11] that simple
cylindrical solutions with collapsing cores could not even
be ‘‘asymptotically flat’’ in their modified sense, because
one would expect trapped cylindrical surfaces to arise in
any collapse which does not halt or reverse, and such
surfaces are not compatible with ‘‘asymptotic flatness.’’
So for more detailed study we need some definition of

radiation, or energy, or energy density, other than the one
from asymptotic flatness. This must be (quasi)local, at least
in z, to avoid the problem that integration for z from�1 to
1 would obviously give an infinite answer for any nonzero
energy density.
There is also the possibility of energy being transferred

to or from any given region by transport along the axis.
Bondi [1] showed that there is no conserved mass per unit
length as a result of ‘‘intangible’’ gravitational induction
arising from axial motion (and distinct from the work done
by axial pressure).
It is well-known that in relativity there cannot be any

covariant local definition of energy, as this would violate
the equivalence principle. There are a number of quasilocal
definitions, using either integrals over surfaces, or pseudo-
tensors integrated over volumes (which in general also
reduce to surface integrals, provided the interior volumes
do not have discontinuities or singularities of the pseudo-
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tensor). Clavering [23] has shown that none of the latter
agree with the various quasilocal surface integrals dis-
cussed by Szabados [24], and none of them are satisfactory,
for a variety of reasons, the best being Möller’s definition.
We therefore do not calculate the pseudotensorial energies.

In his study of definitions of standing waves, Stephani
[25] considered cylindrical systems. His results suggest
that for the ER solutions Thorne’s ‘‘C energy’’ [22] is the
least unsatisfactory. (A recent indication of the unsatisfac-
toriness of C energy, even in vacuum, has been given in
[26], where it is shown that it can be nonvanishing in
Minkowski space.) We consider, following Chiba [27]
and Hayward [28], the modified C energy defined in the
‘‘Note added in proof’’ on pp. B256–257 of Thorne’s
paper. Taking the generic cylindrically symmetric metric
in the form

ds2 ¼ �e2ð��c ÞðdT2 � dr2Þ þ e2c dz2 þ e�2cR2d�2;

(96)

where R ¼ Rðr; tÞ, this energy is

E ¼ 1

8
ð1� ðR02 � _R2Þe�2�Þ; (97)

where the prime and dot refer to differentiation with re-
spect to r and t, respectively.

Hayward has shown, in an elegant formulation, that one
can define an invariant tensor (in his notation, �ab) such
that the sum of this and the usual energy-momentum tensor
Tab is conserved:� may then be interpreted as the energy-
momentum of gravitational waves. One can derive the
conservation in a simple way from the fact that for the
metric (96), when matter is present, the equations (22)
generalize to

1
2 ½ðR02 � _R2Þe�2��0 ¼ �RR0ð	T00 þ c 02 þ _c 2Þ

þ R _Rð	T01 þ 2c 0 _c Þ; (98)

1
2½ðR02 � _R2Þe�2��� ¼ �RR0ð	T01 þ 2c 0 _c Þ

þ R _Rð	T11 þ c 02 þ _c 2Þ (99)

[cf. Eqs. (A41) and (A42), of [28] ]: the result is then just
the integrability condition for the left sides, the relevant
terms of � being the terms in c on the right sides. That
these terms are invariantly defined (provided there are no
more translational Killing vectors) arises because the two
Killing vectors, @� and @z, and their lengths, are uniquely

defined up to rescaling of z, so c is fixed up to a constant
and R up to a constant factor.

Hayward’s discussion also brings out the fact that for the
form (96), if � and  are the divergences of the incoming
and outgoing null normals to timelike cylinders of sym-
metry, then

� ¼ 1

8R2
e2ðc��ÞðR02 � _R2Þ (100)

with an obvious relation to (97).
This is also related to one of the best known quasilocal

energy definitions by an integral on a surface, the Hawking
mass. For a closed surface S with surface area element dS
this mass is

m ¼ 1

ð4�Þ3=2
�I

S
dS

�
1=2

�
2��

I
S
�dS

�
:

To make a closed cylindrical surface we would have to add
(e.g.) surfaces z ¼ constant at some finite z values, but �
has the same values for all z on such surfaces and so we
could ignore them for very large cylindrical surfaces and
think of E as giving a Hawking mass per unit length in z.
Unfortunately this does not lead to a satisfactory account

of energy lost or gained by the collapsing dust. The
Darmois conditions imply that E is continuous at � (one
can check this by direct calculation, but it is easy to under-
stand because there is no surface layer and hence no
immediate change in geodesic deviations at �, so � is
continuous, and the continuity of g�� and gzz then shows

the same is true for E). Calculating on the dust side of �,
using (80), we have

E ¼ 1

8

�
1� ððgg0Þ0Þ2

g02
þ 4g2

_A2

A2

�
:

[As one expects [28], this is Oðr2Þ as r ! 0.] At a fixed r,
only the _A2=A2 ¼ A2

;
 term changes, and it increases as the

dust collapses. This is consistent with Cocke’s calculation
[8] of (unmodified) C-energy flux, normal to cylinders of
constant R, in our notation, in the Einstein-Rosen region,
where he found an inward flux.
It would, however, be physically very odd if this had to

be interpreted as the exterior giving energy to the dust,
since the behavior of the dust is exactly the same as in a
uniform universe, where a cylinder cannot easily be
thought of as taking energy from the rest of the universe.
Probably the result is better considered as another indica-
tion of the unsatisfactoriness of C energy.
Other local characterizations of the presence of radiation

are given by the decomposition of the Bel-Robinson tensor.
The behavior of this tensor in an ER spacetime was con-
sidered in [29], where the obvious unit vector in the form
(20), i.e. the one parallel to @=@T, was used to define the
decomposition. In that reference it was shown that for a
pulse of radiation, well behind the front of the pulse, there
is an incoming flux of superenergy, which seems to agree
with Cocke’s result. However, to define states of intrinsic
radiation one has to consider all possible timelike vectors,
and we now show, using the timelike vector parallel to the
boundary, that our solutions do not have intrinsic radiation
there according to this definition.
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Bel [30,31] defined the tensor

Tabcd ¼ RaecfRe
b
f
d þ �Raecf�Re

b
f
d þ R�aecfR�

e
b
f
d

þ �R�aecf�R�
e
b
f
d; (101)

which in the vacuum case is referred to as the Bel-
Robinson tensor. Here the star operation is the usual
Hodge dual (see e.g. [5], Chap. 3). Bonilla and Senovilla
[32] pointed out that with the usual decomposition in terms
of the Weyl and Ricci tensors, Cabcd and Rab, i.e.

Rabcd ¼ Cabcd þ Eabcd þGabcd; (102)

where

Eabcd � 1

2
ðgacSbd þ gbdSac � gadSbc � gbcSadÞ; (103)

Gabcd � 1

12
Rðgacgbd � gadgbcÞ � 1

12
Rgabcd; (104)

Sab � Rab � 1

4
Rgab; R � Ra

a; (105)

the Bel tensor can be written as

Tabcd ¼ CaecfCe
b
f
d þ �Caecf�Ce

b
f
d þ R

6
ðCacbd þ CadbcÞ

þMabcd; (106)

where the matter contribution is

Mabcd ¼ SabScd þ 1

2
SaeSbeg

cd þ 1

2
SceSdeg

ab

� 2SeðagbÞðcSdÞe þ 1

4
SefSefðgacgbd þ gadgbc

� gabgcdÞ þ R2

144
ð2gacgbd þ 2gadgbc � gabgcdÞ:

(107)

One can decompose the Bel tensor in a 3þ 1 formalism
[33] relative to a unit timelike vector na, giving, among the
parts, the superenergy W, the super-Poynting vector Pa,
and the tensor Qabc defined by

W � Tabcdnanbncnd; Pd � Tabcenanbnch
d
e;

Qbcd � �Taefgnah
b
eh

c
fh

d
g;

(108)

where hab ¼ gab þ nanb. Bel [31] defined a state of in-
trinsic gravitational radiation (at a point p) to be one in
which Pa � 0 for any choice of na (at p). Garcia-Parrado
Gomez-Lobo [33] similarly defines an intrinsic supere-
nergy radiative state to be one where Qabc � 0 for any
choice of na. In vacuum,

Pa ¼ 2Bp
lEql�

apq;

Qcdb ¼ hcdPb � 2ðBdaEcf � BcaEdfÞ�b
af;

(109)

where, as usual, Eab ¼ Cacbdn
bnd, Bab ¼ �Cacbdn

bnd, and

�abc ¼ �abcdn
d, �abcd being the usual volume 4-form

density.
We now consider how these quantities behave at the

(timelike) boundary between regions of spacetime. It is
simplest to describe this using an orthonormal tetrad
fea; a ¼ 0 . . . 3g chosen such that the timelike unit vector
e0 lies on the boundary surface [and will be used as na in
(108)] and e1 is the normal to the surface. From the
equations (80) of Mars and Senovilla [34] we can straight-
forwardly show that if the Darmois junction conditions are
satisfied then the following combinations of Riemann ten-
sor components are continuous:

E12; R12; E13; R13; R01; (110)

B11; B22 ðand henceB33Þ; B23; (111)

B13 þ 1

2
R02; B12 � 1

2
R03; E23 � 1

2
R23 (112)

� E11 � 1

6
Rþ 1

2
ðR22 þ R33Þ;

E22 þ 1

6
Rþ 1

2
ðR00 � R22Þ;

E33 þ 1

6
Rþ 1

2
ðR00 � R33Þ:

(113)

Note that one consequence is (26), the continuity of T11.
From (111) and (112) we see that (assuming we align e2

and e3 with Sa and Kb) with the energy-momentum form
assumed in (1), Bab is continuous at the boundary.
Moreover, the reflection symmetries in � and z imply
that P2 ¼ P3 ¼ 0 (and B12 ¼ B13 ¼ 0) in both interior
and exterior (note that since reversing one axis also re-
verses the orientation and hence the sign of the dual, it does
not follow that B23 ¼ 0).
From this, it is easy to see that for an FRW interior,

which is conformally flat, Bab ¼ 0 on both sides of the
boundary, so from (109) Pa ¼ 0 and Qabc ¼ 0 there in the
frame defined above (i.e. with na ¼ ea0 and under Darmois

boundary conditions). Hence at the boundary the exterior
does not have intrinsic gravitational radiation or intrinsic
superenergy radiation. Thus it is reasonable to conclude
that any possible radiation in the exterior spacetime is not
produced by the source. This agrees with our expectation
that such an interior should not radiate or absorb radiation.
Note that we have not excluded the possibility of total
reflection at the boundary if at a reflecting surface these
indicators (Pa andQcdb) would show no intrinsic radiation,
and it is therefore possible that there could be nonzero
incoming and/or outgoing radiation in the exterior. The
conclusion that no radiation crosses the boundary seems in
conflict with the discussion given by Tod and Mena [10].
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