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We numerically study the event horizons of two kinds of five-dimensional coalescing black hole

solutions with different asymptotic structures: the five-dimensional Kastor-Traschen solution (5DKT) and

the coalescing black hole solution on Eguchi-Hanson space (CBEH). Topologies of the spatial infinity are

S3 and Lð2; 1Þ ¼ S3=Z2, respectively. We show that the crease sets of event horizons are topologically R1

in 5DKT and R1 � S1 in CBEH, respectively. If we choose the time slices that respect space-time

symmetry, the first contact points of the coalescing process is a point in the 5DKT case but a S1 in the

CBEH case. We also find that in CBEH, time slices can be chosen so that a black ring with S1 � S2

topology can be also formed during a certain intermediate period unlike the 5DKT.
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I. INTRODUCTION

One of the most interesting predictions of string theory,
which is a strong candidate of the unified theory, is that our
world is a higher-dimensional space-time. Since we feel
we live in the four-dimensional space-time in low energy
physical phenomena, extra dimensions should be effec-
tively compactified. It is natural to consider that the
space-time is locally a direct product of our four-
dimensional space-time and extra dimensions. However,
there are many possibilities how four-dimensional space-
time and extra dimensions are connected globally. The
structure of the whole higher-dimensional space-time is
not known.

Can we get any information of the global structure of the
whole higher-dimensional space-time from any experi-
ment localized in a finite region? To approach this ques-
tion, at the first step, we consider a system of black holes
with a nontrivial asymptotic structure as a toy model, and
we compare the coalescing process with a trivial asymp-
totic structure case.

In the series of works [1–3], it is presented that differ-
ences of black hole coalescence processes caused by
asymptotic structure. In the case of the five-dimensional
space-time in which the boundary of the spatial infinity is
not S3 but lens space, it is possible that two black holes
with the topology of S3 coalesce and change into a single
black hole with the topology of the lens space, i.e., S3 þ
S3 ! Lð2; 1Þ ¼ S3=Z2. Analyzing the horizons at early
time and late time, we found that the areas of the horizon
after coalescence in such cases is larger than the ordinary
cases in five dimensions, i.e., S3 þ S3 ! S3. However, the

shape of the event horizon is not clear in an intermediate
period. In this paper, we discuss details of event horizon
structures in coalescing black holes with nontrivial asymp-
totic structures.1

The paper is organized as follows: in Sec. II, we briefly
review the coalescing black holes with trivial and non-
trivial asymptotic structures in five dimensions. In
Sec. III, we investigate the structures of the event horizon
of coalescing black holes numerically and discuss coales-
cing process in typical time slices. Section IV is devoted to
the discussion of the structure of the crease set of the event
horizon. Finally, in Sec. V we discuss the obtained results.

II. COALESCING BLACK HOLES IN FIVE
DIMENSIONS

Black hole coalescence is one of the most interesting
issues in a study of gravity. To treat the coalescencing
process, we need heavy numerical work in general.
However, if the mass and the electric charge of each black
hole are equal, we can construct exact solutions that de-
scribe the coalescencing processes driven by a positive
cosmological constant [1,3,5–10].2

One of such solutions in five-dimensional Einstein-
Maxwell theory with a positive cosmological constant is
the Kastor-Traschen solution (5DKT) [5,6]. The metric and
gauge 1-form for 5DKT are given by

ds2 ¼ �H�2dt2 þHe��t½dx2 þ dy2 þ dz2 þ dw2�; (1)
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1Recently, the structure of the event horizons of lens space was
also discussed in [4].

2If we set the cosmological constant to zero, the solution [5,6]
reduces to the Majumdar-Papapetrou solution [11–13], which
describes static multiblack holes. The higher-dimensional gen-
eralizations of the multiblack holes are discussed in [14–17], and
recently the smoothness of horizons of higher-dimensional mul-
tiblack holes are also investigated in [18–21].
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respectively, where � ¼ 2
ffiffiffiffiffiffiffiffiffi

�=3
p

and � is a positive cos-
mological constant. This solution describes the physical
process such that two black holes with the topology of S3

coalesce into a single black hole with the topology of S3.
Recently, coalescing black hole solution on Eguchi-

Hanson space (CBEH) [1] has been found as another exact
solution in the same theory. The metric and gauge 1-form
for this solution are given by

ds2 ¼ �H�2dt2 þHe��t½V�1ðdx2 þ dy2 þ dz2Þ
þ Vðða=8Þdc þ!Þ2�; (4)

A ¼ �
ffiffiffi

3
p
2

H�1dt; (5)

with

H ¼ 1þ 1

e��t

�

Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðz� aÞ2p

þ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðzþ aÞ2p

�

; (6)

V�1 ¼ a=8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðz� aÞ2p
þ a=8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðzþ aÞ2p
;

(7)

! ¼ a

8

�

z� a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðz� aÞ2p
þ zþ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðzþ aÞ2p

�

� xdy� ydx

x2 þ y2
; (8)

where we note that the metric inside the square bracket in
(4) is the metric of the Eguchi-Hanson space [22,23],
which has a nontrivial asymptotic structure called the
lens space Lð2; 1Þ ¼ S3=Z2.

This solution describes the physical process such that
two black holes with the topology of S3 coalesce into a
single black hole with the topology of the lens space
Lð2; 1Þ due to the nontrivial asymptotic structure [1]. To
confirm this, let us see the behavior of the metric at early
time t ! �1 and at late time t ! 1, following the dis-
cussion in [1]. At early time t ! �1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðz� aÞ2p ! 0, the metric behaves as
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�
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e��t
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�

;

(9)

where we have introduced a new radial coordinate, r2� :¼
ða=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðz� aÞ2p

and a new mass parameter,
m� :¼ M�a=2. This metric is the same form as that of
five-dimensional Reissner-Nordström-de Sitter solution
with mass parameter mi written in the cosmological coor-
dinate. Therefore, we can see that there are two black holes
with the topology of S3 at early time. On the other hand, at

late time t ! 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p ! 1, the metric be-

haves as
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where we introduce the new radial coordinate r2 :¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

. This resembles the metric of the five-
dimensional Reissner-Nordström-de Sitter solution with
mass equal to 2ðmþ þm�Þ but the topology of horizon is
the lens space Lð2; 1Þ. Therefore, we can see the solution
(4) describes the process such that two black holes with S3

at early time coalesce into a single black hole with the lens
space Lð2; 1Þ at late time.
However, since here, we only investigate the asymptotic

behaviors of the metric at early time and at late time, it is
not clarified how two black holes with S3 coalesce into a
single black hole with the lens space Lð2; 1Þ. So, in the
following sections, we numerically investigate the location
and the shape of the event horizon for the solution (4)–(8)
and make clear the process of the coalescence.

III. EVENT HORIZONS

An event horizon is defined as the boundary of the causal
past of the future null infinity. Because of the absence of
Killing horizons in a dynamical space-time, it is difficult to
determine the location of an event horizon analytically. We
can investigate the location of the event horizon by inte-
grating numerically null geodesic equations backward
from sufficiently future to the past [9].
Since both metrics Eqs. (1) and (4) asymptote to the

metric of Reissner-Nordström-de Sitter solution in the
limit of t ! 1, fortunately we can know where the event
horizons locate at late time. So if we solve null geodesic
equations numerically from each point of the spatial cross
section of the event horizons at late time backward the past
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where we set the initial null direction to be tangent to the
event horizon at late time, we can get null geodesic gen-
erators of the event horizons, namely, we can find the
locations of the event horizons.

A. 5DKT case

In the 5DKT case, we obtain null geodesic generators of
the event horizon for the metric (1). We can set y ¼ 0, z ¼
0 without loss of generality because of the SOð3Þ symme-
try in ðx; y; zÞ space. Then, we solve null geodesics in the
effective three-dimensional metric given by

ds2 ¼ �H�2dt2 þHe��t½dx2 þ dw2�; (11)

H ¼ 1þ 1

e��t

�

mþ
x2 þ ðw� aÞ2 þ

m�
x2 þ ðwþ aÞ2

�

: (12)

For simplicity, we focus on the case mþ ¼ m� in the
following discussion. After some numerical calculations,
we get the data of coordinate values of location of event
horizon, and we plot the coordinate values � :¼ e��t, x, w
in Fig. 1. In this graph, each contour line means cross
section of horizon with a � ¼ const. surface. In Fig. 2,
we plot the coordinate values x, w of event horizon at some
typical time slices. From Fig. 2 we can see that two black
holes collide at � ¼ �6:330 and the first contact point is
given by x ¼ 0, w ¼ 0. Since the w axis is fixed points
SOð3Þ symmetry in ðx; y; zÞ space, the topology of this first

FIG. 1. Event horizon of five-dimensional Kastor-Traschen
solution (mþ ¼ m� ¼ 1, a ¼ 1, � ¼ 1=ð2 ffiffiffi

2
p Þ).

FIG. 2. Coordinate value of event horizon of each time slices in the five-dimensional Kastor-Traschen solution.
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contact point in Fig. 2 is a point in the whole five-
dimensional space-time.

B. CBEH case

In the CBEH case, we obtain null geodesic generators of
the event horizon for the metric (4). We can set y ¼ 0

without loss of generality because of the SOð2Þ symmetry
in ðx; yÞ space. Furthermore, since @c is a Killing vector,

we can set c ¼ 0. Then, we solve null geodesics in the
effective three-dimensional metric given by

ds2 ¼ �H�2dt2 þHe��tV�1ðdx2 þ dz2Þ; (13)

H ¼ 1þ 1

e��t

�

Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðz� aÞ2p
þ M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðzþ aÞ2p

�

; (14)

V�1 ¼ a=8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðz� aÞ2p
þ a=8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðzþ aÞ2p
: (15)

Similar to the above discussion, we plot the coordinate
values of event horizon � :¼ e��t, x, z in Fig. 3 for the case
Mþ ¼ M�. In Fig. 4, we plot the coordinate values x, z of
event horizon at some typical time slices. From Fig. 4, we
can see that two black holes collide at � ¼ �21:100 and
the first contact point is given by x ¼ 0, z ¼ 0. In this case,
the z axis is fixed points of SOð2Þ symmetry in ðx; yÞ space,
but � ¼ �21:100, x ¼ 0, z ¼ 0 is not a fixed point of the
Uð1Þ isometry generated by @c . So the topology of this first

contact point in Fig. 4 is not a point but S1 in the whole

FIG. 4. Coordinate value of event horizon of each time slices in coalescing black holes on Eguchi-Hanson space.

FIG. 3. Event horizon of coalescing black holes on Eguchi-
Hanson space (Mþ ¼ M� ¼ 2, a ¼ 1, � ¼ 1=ð2 ffiffiffi

2
p Þ).
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five-dimensional space-time since the integral curve of @c

is S1. This is the specific difference from 5DKT.

IV. CREASE SETAND TIME SLICE DEPENDENCE

The intermediate time evolutions of the spatial cross
section of black hole coalescence depends on the choice
of time slices in general. As discussed in [4,24,25], coales-
cing black holes always have past endpoints of null geo-
desic generators of the event horizon, which is called the
crease set, and the event horizon cannot be smooth there.
How a time slice intersects the crease set of the event
horizon determines the topology of the event horizon on
the slice. Change of intersections by time evolution de-
scribes the topology change of event horizons on the time
slices. We will show some examples in the cases of 5DKT
and CBEH, later.

In 5DKT, by the numerical calculation in the previous
section, we found the crease set of the event horizon. In
fact, from Fig. 2 we can see that each spatial cross section
of the event horizon before the black holes coalesce has
points where the event horizon is not smooth, that is,
intersection of crease set and the time slices. The location
of the crease set is given by the form of � ¼ �ðwÞ, x ¼
y ¼ z ¼ 0, �a < w< a, where the function �ðwÞ is de-
termined by numerical calculation. Hence, we immediately

find that the topology of the crease set is R1. On the other
hand, in CBEH, similar to the discussion of 5DKT, the
crease set is given by the form of � ¼ �ðzÞ, x ¼ y ¼ 0,
�a < z < a, which indicates R1 � S1 in the space-time
because each point on x� y plane denotes S1, which is
generated by @c . Clearly, the dimensions of crease sets in

5DTK and CBEH are different. For this reason, choosing
the � ¼ constant slice before the coalescence occur and
focusing on one black hole, the spatial sections of the event
horizons can be schematically drawn as in Figs. 5 and 6,
respectively.
To see the explicit difference between intermediate evo-

lutions, we consider another time slice (i) shown in Fig. 7
for the both 5DKT and CBEH cases. For simplicity, we
assume the spatial symmetry is the same as the � ¼ const
surface. The central part of the intersection of the slice (i)
and the event horizon makes a three-dimensional closed
surface in the both cases.
In the case of 5DKT, because the points A and B in Fig. 7

are fixed points of the SOð3Þ rotation in ðx; y; zÞ space, the
middle closed surface in Fig. 7 is topologically S3, i.e., the
middle region is a black hole with S3 horizon. For more
general time slices, a number of black holes with S3

horizons can appear in the 5DKT case as the time slice
(ii) shown in Fig. 7.

FIG. 5. Schematic figure of the event horizon of 5DKT focused
on one black hole in some time slice before the coalescence
occur. The topology of the spatial cross section of the crease set
is a point.

FIG. 6. Schematic figure of the event horizon of CBEH fo-
cused on one black hole in some time slice before the coales-
cence occur. The topology of the spatial cross section of the
crease set is S1, which corresponds to a great circle of S3.

FIG. 7. Schematic figure of the side view of the event horizon of 5DKT and CBEH. Typical time slices (i) and (ii) that are different
from the time slice � are depicted. We assume time slices (i) and (ii) respect SOð3Þ symmetry for 5DKT and SOð2Þ �Uð1Þ symmetry
for CBEH.
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In contrast, in the case of CBEH, because the points A
and B in Fig. 7 are fixed points of the SOð2Þ rotation but not
fixed points of the Uð1Þ generated by @c , the intersection

of the slice (i) and the event horizon is topologically S1 �
S2. Then a black ring S1 � S2 is formed in the time slice (i)
during coalescence of two black holes in the CBEH case.
This is due to the differences of the structure of the crease
set.

V. SUMMARYAND DISCUSSION

In this paper, we have studied how the structures of the
event horizons of five-dimensional coalescing black holes
differ in association with the asymptotic structure. We
especially focus on the two solutions, i.e. Kastor-
Traschen solution (5DKT) [5,6] in which two black holes
with S3 topology coalesce into a single black hole with S3

topology and coalescing black hole solution on Eguchi-
Hanson space (CBEH) [1] in which two black holes with
S3 topology coalesce into a single black hole with the lens
space Lð2; 1Þ topology. It came out that, if we choose the
time slices in which the symmetry of the base space is
respected, the first contact points of the coalescing process
compose S1 in the CBEH case unlike the 5DKT case in
which the first contact point is a point in the five-
dimensional space-time. This is the specific difference in
topology changing process S3 into the lens space Lð2; 1Þ in
the CBEH case.

The fact that the first contact point is S1 in CBEH can be
understood as follows: Let us consider the coalescence of
two spheres centered at each nut of the Eguchi-Hanson
space, which is the base space of CBEH instead of con-
sidering the coalescence of black holes. If the two spheres
are chosen to be symmetric the coalescence would occur at
the midpoint between the two nuts. The topology of the
midpoint between the two nuts is S1, which corresponds to
equator of the S2 bolt of the Eguchi-Hanson space in which
two nuts are on the north and the south pole, respectively.
We have also investigated the structure of crease sets of

the event horizons. We have shown that the topologies of
crease sets are R1 for 5DKT and R1 � S1 for CBEH. Since
the dimensions of the crease sets are different from each
other, it is expected that we can see the difference of
intermediate evolutions explicitly if we adopt a different
timeslice. In fact, we can find the time slice in which black
ring S1 � S2 is formed in a certain period in the case of
CBEH unlike the 5DKT.
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