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In this work we calculate the angular eigenvalues of the (nþ 4)-dimensional simply rotating Kerr-(A)

dS spheroidal harmonics using the asymptotic iteration method. We make some comparisons between this

method and that of the continued fraction method and use the latter to check our results. We also present

analytic expressions for the small rotation limit up to Oðc3Þ with the coefficient of each power up to

Oð�2Þ, where c ¼ a! and � ¼ a2� (a is the angular velocity, ! the frequency, and � the cosmological

constant).
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I. INTRODUCTION

Recently a newmethod for obtaining solutions of second
order ordinary differential equations (with bound poten-
tials) has been developed called the asymptotic iteration
method (AIM) [1]. The AIM provides a simple approach to
obtaining the eigenvalues of bound state problems, even
for spheroidal harmonics with c a general complex num-
ber, large or small [2,3]. It has also been shown that the
AIM is closely related to the continued fractions method
(CFM) [4] derived from an exact solution to the
Schrödinger equation via a WKB ansatz [5]. A related
CFM is often employed in numerical calculations of sphe-
roidal eigenvalues and quasinormal modes of black hole
equations [6], which is based on the series solution method
of the Hydrogen molecule ion by Jaffé (and generalized by
Baber and Hassé) [7].

In this paper we will demonstrate that the AIM can also
be applied to the generalized scalar hyper-spheroidal equa-
tion, Skjmð�Þ, derived from an (nþ 4)-dimensional simply

rotating Kerr-(A)dS angular separation equation [8,9]:
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where we have defined � ¼ a2� with a the angular rota-
tion parameter. Note that �< 0 corresponds to an asymp-
totic anti–de Sitter space, whereas�> 0 corresponds to an
asymptotic de Sitter space [9], and the frequency ! is
contained in the dimensionless parameter c ¼ a!.

Higher-dimensional spheroids have already been dis-
cussed by Berti et al. [10], who use a 3-term continued
fraction method to solve the angular eigenvalues; however,
the generalized scalar hyper-spheroidal equation under
investigation contains four regular singular points,1, which
leads to a 4-term recurrence relation [11]. The simplest
brute force approach to deal with an n-term recurrence
relation is to use n Gaussian eliminations to reduce the
problem to a tridiagonal matrix form [12], but this can
often be very tedious in practice.
Even in four dimensions the Kerr-(A)dS case does not

allow for a simple 3-term continued fraction relation,
nevertheless an elegant method has been developed to
deal with situations of this type. In this case the CFM
can be implemented by first transforming the angular
equation into the Heun form [9,13]. However, such elegant
techniques can only be applied if there are exactly four
regular singular points in the equation. In contrast the AIM
has an even broader appeal in that it can be applied some-
what2 independently of the singularity structure of the
ordinary differential equation, and thus to a larger class
of equations without much modification or effort. The fact
that the AIM may be of use when there are more than four
singular points, or when other methods become prohibi-
tively difficult, are compelling reasons to investigate it
further.
In this paper we use the AIM to find the eigenvalues of

the simply rotating (nþ 4) Kerr-(A)dS spheroidal harmon-
ics, but because this equation has four regular singular
points we will also take this opportunity to compare the
convergence rate of the AIM to that of the CFM (after first
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1Unlike the asymptotically flat limit (� ¼ 0) which only has
three regular singular points.

2Of course some manipulation is first required to put the
equation into the AIM form.
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transforming into the Heun form). This serves as a double
check of our results.

The paper is organized as follows: In Sec. II we give an
overview of the AIM method and put our equation into the
AIM form, then in Sec. III we first transform our equation
into the Heun form and then describe the CFM method. In
Sec. IV we analytically calculate the first three coefficients
of the eigenvalue in the small c expansion, before finishing
with some concluding remarks and analysis.

II. THE ASYMPTOTIC ITERATION METHOD

To write the angular equation in a form suitable for the
AIM we substitute x ¼ cos� and obtain:

ð1�x2Þð1þ�x2ÞS00ðxÞþ
�
nð1�x2Þ�x2

x

þ�xðnþ2�ðnþ3Þx2Þ�xð1þ�x2Þ
�
S0ðxÞ

þ
�
Akjm�c2ð1�x2Þ

1þ�x2
�m2ð1þ�Þ

1�x2
�jðjþn�1Þ

x2

�
SðxÞ¼0:

(2)

Note that the separation constant Akjm above corresponds

to a simple eigenvalue shift in the asymptotically flat cases
studied thus far [10], as can be verified by setting � ¼ 0
[compare to equation (3.3) of Ref. [10] ]. However, if � �
0 such a shift is not possible, because of the nontrival 1þ
�x2 factor in the denominator. This means that the � ! 0
limit will agree with the asymptotically flat case only after
an eigenvalue shift. Also, note that because the above
equation is invariant under m ! �m we shall consider
only m � 0.
The AIM can be implemented by multiplying Skjm by

the characteristic exponents (as in Sec. III for Heun’s
method); however, we have found that the most suitable
form (fastest converging) is obtained by multiplying the
angular mode function by [2,3]

SkjmðxÞ ¼ ð1� x2Þjmj=2ykjmðxÞ; (3)

which leads to a differential equation in the AIM form:

y00 ¼ �0y
0 þ s0y; (4)

where [for Kerr-(A)dS]:
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�
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�
;

(5)

and where the primes of y denote derivatives with respect
to x. Differentiating Eq. (4) p times with respect to x, leads
to:

yðpþ2Þ ¼ �py
0 þ spy; (6)

where the superscript p indicates the p-th derivative with
respect to x and

�p ¼ �0
p�1 þ sp�1 þ �0�p�1 and

sp ¼ s0p�1 þ s0�p�1:
(7)

For sufficiently large p the asymptotic aspect of the
‘‘method’’ is introduced, that is

spðxÞ
�pðxÞ ¼ sp�1ðxÞ

�p�1ðxÞ � �ðxÞ; (8)

which leads to the general eigenfunction solution [1]:
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�
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�

�
�
C2þC1

Z x
exp

�Z x0 ½�0ðx00Þþ2�ðx00Þ�dx00
�
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�
;

(9)

for given integration constants C1 and C2, which can be
determined by imposing a normalization condition. Within
the framework of the AIM, a sufficient condition for im-
posing termination of the iterations is when �pðxÞ ¼ 0, for
a given choice of x, where [3]

�pðxÞ ¼ spðxÞ�p�1ðxÞ � sp�1ðxÞ�pðxÞ: (10)

For each value of m and k (or j), in a given
(nþ 4) dimensions, the roots of �p leads a tower of
eigenvalues ðm; ‘1; ‘2; . . .Þ, where larger iterations give
more roots and better convergence for higher ‘ modes in
the tower.
It was noticed [2,3] that the AIM converges fastest at the

maximum of the potential, which in four dimensions oc-
curs at x ¼ 0 (even with � � 0 and for general spin-s).
However, in the higher-dimensional case we could not
determine the relevant Schrödinger like form and thus
the maximum of the potential could not be analytically
obtained. Nevertheless, as can be seen from the plots in
Fig. 1 we found that the point x ¼ 1

2 ¼ cos�3 , in general,

gave the fastest convergence.
One can also compare the relative rate of convergence

between the AIM and CFM (see the next section) methods
for a typical eigenvalue by looking at the log plots of the
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error, as shown in Fig. 1 and 2. Because of the typically
exponential decrease in the error as a function of iteration
number, if one is prepared to continue going to higher
orders in the iterations of the AIM, eventually the AIM
eigenvalues will exactly equal those of the CFM to any
level of precision.

For the purposes of consistency we calculate each ei-
genvalue to 10 significant figures and put in brackets the
minimum number of iterations required to reach this pre-
cision for both methods. From Tables I, II, III, IV, and V it
can be seen that larger k modes require more iterations to
achieve the same level of precision. Care should be taken
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FIG. 1 (color online). Plot of the convergence of a typical eigenvalue A711 (n ¼ 1, c ¼ 1, and � ¼ 1) under p iterations of the AIM
for various choices of x ¼ f0:45; 0:5; 0:6; 0:75g. Shown on the left is the eigenvalue versus p, while on the right is a log plot of the
estimated error, jAkjmðpÞ � Akjmð1Þj.
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FIG. 2. Plot of the convergence of a typical eigenvalue (j ¼ m ¼ 1, k ¼ 7, n ¼ 1) under p iterations of the CFM. The eigenvalue is
shown on the left, while on the right is a log plot of the estimated error, jAkjmðpÞ � Akjmð1Þj.

TABLE I. Selected eigenvalues, Akjm, obtained from the AIM for the Kerr-AdS case with c ¼ 1, � ¼ �0:05, n ¼ 1 (extra
dimensions), and m ¼ 0. Numbers in brackets represent the number of iterations required to reach convergence at the quoted
precision, where subscript A and C are shorthand for AIM and CFM, respectively.

k j ¼ 0 j ¼ 1 j ¼ 2

0 0:497 864 331 8 ð14ÞAð3ÞC 3:317 784 170 ð14ÞAð3ÞC 8:201 525 517 ð14ÞAð3ÞC
1 8:304 871 188 ð15ÞAð4ÞC 15:124 668 14 ð15ÞAð4ÞC 23:932 761 70 ð16ÞAð4ÞC
2 23:898 473 47 ð16ÞAð5ÞC 34:634 409 13 ð17ÞAð5ÞC 47:359 990 84 ð18ÞAð5ÞC
3 47:292 277 91 ð17ÞAð6ÞC 61:932 481 79 ð19ÞAð6ÞC 78:565 373 26 ð21ÞAð7ÞC
4 78:484 429 57 ð20ÞAð8ÞC 97:026 003 65 ð21ÞAð8ÞC 117:562 267 4 ð22ÞAð8ÞC
5 117:474 738 1 ð23ÞAð9ÞC 139:916 595 6 ð23ÞAð9ÞC 164:354 439 6 ð24ÞAð9ÞC
6 164:263 156 0 ð25ÞAð10ÞC 190:604 795 2 ð24ÞAð10ÞC 218:943 293 1 ð27ÞAð10ÞC
7 218:849 666 4 ð27ÞAð11ÞC 249:090 823 6 ð27ÞAð11ÞC 281:329 449 5 ð29ÞAð11ÞC
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when interpreting what information the iteration number
gives us. Firstly, as one iteration of the AIM is not equiva-
lent to one iteration of the CFM we can not relate this
directly to computational speed. In fact although typically
we need to iterate the AIM about twice as many times as
the CFM the actual process time is often longer by factors

of up to 100. That said we have not attempted to optimize
either of the two methods here and it is not our current
intention or purpose to do so.
The results of the AIM for different values ofm, j, and k

are presented in Tables I, II, III, IV, and V. These results
shall be discussed in Sec. V after discussing alternate

TABLE III. Selected eigenvalues, Akjm, obtained from the AIM for the Kerr-AdS case with c ¼ 1, � ¼ 1, n ¼ 1 (extra dimensions),
and m ¼ 0. Numbers in brackets represent the number of iterations, required to reach convergence at the quoted precision, where
subscript A and C are shorthand for AIM and CFM, respectively.

k j ¼ 0 j ¼ 1 j ¼ 2

0 0:379 627 919 5 ð32ÞAð7ÞC 3:507 876 364 ð29ÞAð7ÞC 8:963 027 775 ð32ÞAð7ÞC
1 12:090 342 80 ð29ÞAð8ÞC 21:464 617 33 ð33ÞAð8ÞC 32:773 054 05 ð32ÞAð8ÞC
2 34:995 269 05 ð35ÞAð9ÞC 50:253 955 59 ð36ÞAð10ÞC 67:417 765 77 ð35ÞAð10ÞC
3 69:437 164 66 ð39ÞAð11ÞC 90:473 697 03 ð42ÞAð11ÞC 113:429 014 6 ð38ÞAð11ÞC
4 115:370 452 6 ð40ÞAð12ÞC 142:164 144 2 ð42ÞAð12ÞC 170:887 014 3 ð41ÞAð12ÞC
5 172:790 136 5 ð44ÞAð13ÞC 205:333 788 6 ð45ÞAð14ÞC 239:813 561 7 ð47ÞAð14ÞC
6 241:694 984 6 ð48ÞAð15ÞC 279:985 386 0 ð48ÞAð15ÞC 320:216 631 0 ð50ÞAð15ÞC
7 322:084 563 3 ð51ÞAð15ÞC 366:120 057 2 ð53ÞAð15ÞC 412:099 717 5 ð53ÞAð15ÞC

TABLE II. Selected eigenvalues, Akjm, obtained from the AIM for the Kerr-AdS case with c ¼ 1, � ¼ �0:05, n ¼ 1 (extra
dimensions), andm ¼ j. Numbers in brackets represent the number of iterations required to reach convergence at the quoted precision,
where subscript A and C are shorthand for AIM and CFM, respectively.

k j ¼ m ¼ 1 j ¼ m ¼ 2 j ¼ m ¼ 3

0 8:302 051 467 ð13ÞAð2ÞC 23:900 671 65 ð13ÞAð2ÞC 47:297 150 54 ð13ÞAð2ÞC
1 23:899 023 19 ð15ÞAð3ÞC 47:294 443 54 ð15ÞAð3ÞC 78:488 716 05 ð16ÞAð4ÞC
2 47:292 819 32 ð16ÞAð4ÞC 78:486 334 67 ð18ÞAð5ÞC 117:478 624 4 ð18ÞAð5ÞC
3 78:484 905 85 ð19ÞAð6ÞC 117:476 465 4 ð15ÞAð6ÞC 164:266 783 0 ð20ÞAð6ÞC
4 117:475 169 9 ð20ÞAð7ÞC 164:264 768 0 ð22ÞAð7ÞC 218:853 120 4 ð22ÞAð7ÞC
5 164:263 559 0 ð23ÞAð8ÞC 218:851 201 5 ð24ÞAð8ÞC 281:237 596 0 ð25ÞAð8ÞC
6 218:850 050 2 ð26ÞAð9ÞC 281:235 743 8 ð26ÞAð9ÞC 351:420 187 2 ð27ÞAð9ÞC
7 281:234 632 5 ð28ÞAð10ÞC 351:418 382 9 ð29ÞAð10ÞC 429:400 880 7 ð30ÞAð10ÞC

TABLE IV. Selected eigenvalues, Akjm, obtained from the AIM for the Kerr-AdS case with c ¼ 1, � ¼ 1, n ¼ 1 (extra dimensions),
and m ¼ j. Numbers in brackets represent the number of iterations, required to reach convergence at the quoted precision, where
subscript A and C are shorthand for AIM and CFM, respectively.

k j ¼ m ¼ 1 j ¼ m ¼ 2 j ¼ m ¼ 3

0 12:103 230 09 ð26ÞAð6ÞC 35:370 747 07 ð24ÞAð7ÞC 70:272 221 03 ð25ÞAð7ÞC
1 35:088 563 75 ð31ÞAð8ÞC 69:807 900 28 ð31ÞAð9ÞC 116:186 787 1 ð28ÞAð8ÞC
2 69:529 786 76 ð36ÞAð10ÞC 115:733 107 5 ð34ÞAð10ÞC 173:594 439 6 ð32ÞAð10ÞC
3 115:461 092 2 ð35ÞAð11ÞC 173:147 506 6 ð37ÞAð11ÞC 242:491 618 5 ð37ÞAð12ÞC
4 172:879 464 3 ð38ÞAð12ÞC 242:048 974 8 ð41ÞAð13ÞC 322:876 112 6 ð38ÞAð13ÞC
5 241:783 471 8 ð45ÞAð14ÞC 322:436 310 5 ð45ÞAð14ÞC 414:746 722 0 ð45ÞAð15ÞC
6 322:172 492 2 ð50ÞAð15ÞC 414:308 883 1 ð48ÞAð16ÞC 518:102 780 0 ð50ÞAð16ÞC
7 414:046 229 4 ð53ÞAð17ÞC 517:666 348 1 ð53ÞAð17ÞC 632:943 898 7 ð53ÞAð18ÞC

TABLE V. Selected eigenvalues, Akjm, via the AIM (we found that 32 iterations were required in every case to obtain the quoted
precision) for different numbers of dimensions of the Kerr-dS case with c ¼ 1, � ¼ 1, m ¼ j ¼ k ¼ 0.

n 2 3 4 5 6 7

A000 0.284 048 793 2 0.225 367 061 7 0.186 059 964 8 0.158 067 567 9 0.137 203 681 6 0.121 096 072 5
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approaches to obtaining the angular eigenvalue for Kerr-
(A)dS spheroids.

III. HEUN’S METHOD FOR DE-SITTER CASE

As we mentioned earlier we could also work with a 4-
term recurrence relation directly and use Gaussian elimi-
nation to obtain a 3-term recurrence, which then allows for
the eigenvalues to be solved using the CFM. However, if
we write the angular equation, Eq. (1), in terms of the
variable x ¼ cosð2�Þ [9], as

ð1� x2Þð2þ ~�ð1þ xÞÞS00ðxÞ þ
�
n� 1� ðnþ 3Þx

þ ~�

2
ð1þ xÞðnþ 1� ðnþ 5ÞxÞ

�
S0ðxÞ

þ
�
Aklm

2
þ c2ðx� 1Þ

2ð2þ ~�ð1þ xÞÞ þ
m2ð1þ ~�Þ

x� 1

� jðjþ n� 1Þ
xþ 1

�
SðxÞ ¼ 0; (11)

and define x ¼ 2z� 1, with the mode functions scaled by
the characteristic exponents:

QðxÞ ¼ 2jmj=2ðz� 1Þjmj=2ð2zÞj=2
�
zþ 1

~�

��ðic=2 ffiffiffi
~�

p Þ
yðzÞ;

(12)

(note in this section we define � ! ~� ¼ a2� to avoid
confusion with the standard Heun notation). The angular
mode equation can now be written in the Heun form
[13,14]:�

d2

dz2
þ
�
�

z
þ �

z�1
þ �

zþ 1
~�

�
d

dz
þ ��z�q

zðz�1Þðzþ 1
~�Þ
�
yðzÞ¼ 0;

(13)

where

� ¼ 1

2

�
jþ jmj � i

cffiffiffiffi
~�

p
�
;

� ¼ 1

2

�
jþ jmj þ nþ 3� i

cffiffiffiffi
~�

p
�
;

(14)

� ¼ 1

2
ð2jþ nþ 1Þ; � ¼ 1þ jmj;

� ¼ 1� i
cffiffiffiffi
~�

p ;
(15)

and

q ¼ �m2

4
þ 1

4

�
j� i

cffiffiffiffi
~�

p
��
jþ nþ 1� i

cffiffiffiffi
~�

p
�

� 1

4~�
½ðjþ jmjÞðjþ jmj þ nþ 1Þ � Akjm�; (16)

with the constraint

�þ �þ 1 ¼ �þ �þ �: (17)

Note that these results are identical to the Kerr-AdS case
considered by Kodama et al. [9] by choosing ~� ¼ �a2=R2

with c ¼ a!.
To compare with the AIM method we shall use the fact

that a 3-term recurrence relation is guaranteed for any
solution to Heun’s differential equation [13,14]:

�0c1 þ �0c0 ¼ 0; (18)

�pcpþ1 þ �pcp þ �pcp�1 ¼ 0; ðp ¼ 1; 2; . . .Þ;
(19)

where for Kerr-(A)dS

�p ¼ �ðpþ 1Þðpþ r� �þ 1Þðpþ r� �þ 1Þðpþ �Þ
ð2pþ rþ 2Þð2pþ rþ 1Þ ;

(20)

�p ¼ �pðpþ rÞð�� �Þ þ ½pðpþ rÞ þ ���½2pðpþ rÞ þ �ðr� 1Þ�
ð2pþ rþ 1Þð2pþ r� 1Þ � 1

~�
pðpþ rÞ � q; (21)

�p ¼ �ðpþ �� 1Þðpþ �� 1Þðpþ �� 1Þðpþ r� 1Þ
ð2pþ r� 2Þð2pþ r� 1Þ ;

(22)

with

r ¼ jþ jmj þ nþ 1

2
: (23)

It may be worth mentioning that there is a removable
singularity in �p for the initial condition p ¼ 0 with r ¼
1 (when n ¼ 1 and j ¼ jmj ¼ 0), which for the five-
dimensional case, n ¼ 1, implies that this initial condition
must be treated separately. Once a 3-term recurrence rela-
tion is obtained the eigenvalue Akjm can be found (for a

given!) by solving a continued fraction of the form [6,10]:

�0 � �0�1

�1�
�1�2

�2�
�2�3

�3� . . . ¼ 0: (24)

We have used this method to compare with the AIM seen in
Tables I, II, III, IV, and V. The convergence of this method
is shown for a typical representative eigenvalue in Fig. 2,
further results are discussed in Sec. V.

IV. ANALYTIC RESULTS FOR SMALL ROTATION

It is also useful to have some analytic expressions at
hand for the angular eigenvalues. For small c, these can be
obtained by standard perturbation theory [11] or by using
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eigenfunction expansion methods [15]. However, a very
convenient approach well suited to symbolic computations
is the method used by Berti et al. [10], also see Ref. [13]. In
the limit c ! 0 the infinite series terminates at some finite
k and we are left with [9]

Akjm ¼ ð2kþ lþ jmjÞð2kþ lþ jmj þ nþ 1Þ: (25)

Choosing 2k ¼ l� ðjþ jmjÞ, we find the correct c ¼ 0
limit: Akjm ¼ lðlþ nþ 1Þ, with the constraint l �
jþ jmj. Then, in order to now find the small c perturbative
expansion of Akjm it is convenient to use the inverted CFM,

which is the k-th inversion of Eq. (24) [10]:

�k � �k�1�k

�k�1�
�k�2�k�1

�k�2� . . .
�0�1

�0

¼ �k�kþ1

�kþ1�
�kþ1�kþ2

�kþ2� . . . ; (26)

and assume a power series expansion of the form:

Akjm ¼ X1
p¼0

fpc
p: (27)

When we substitute this power series into Eq. (26) the
terms fp can be found by equating powers of c [after a

series expansion of Eq. (26)]. For the asymptotically flat
case [10] it is very simple to go to large powers of c, where
(in general) results to order cp can be obtained by going to
order k ¼ p in Eq. (26). Unfortunately, for the Kerr-(A)dS
case the expressions are complicated by the inclusion of
the curvature term � ¼ a2� (for example the four dimen-
sional case is given in Ref. [13]). Although results for any
value of � can be stored on a computer, they are too large
to present on paper. Thus, given below are results up to and
includingOðc2Þwith a further series expansion up toOð�Þ:

f0 ¼ lðlþ nþ 1Þ; (28)

f1 ¼ �

cð2lþ n� 1Þð2lþ nþ 3Þ ð2l
4 þ 4ðnþ 1Þl3 þ ð2m2 þ 3nðnþ 2Þ � 1Þl2 þ ðnþ 1Þð2m2 þ n2 þ 2n� 3Þl

þm2ðnþ 1Þðnþ 3Þ � j2ðn2 þ 2lnþ 4nþ 2lðlþ 1Þ þ 3Þ � jðn� 1Þðn2 þ 2lnþ 4nþ 2lðlþ 1Þ þ 3ÞÞ; (29)

f2 ¼� 1

c2

�
1

2
�

�
�c2ð2l2 þ 2lðn� 1Þþ nðnþ 2Þþ 5Þðj� l�jmjÞðj� lþjmjÞðjþ l�jmjþ n� 1Þðjþ lþjmj þn� 1Þ

ð2lþ n� 3Þð2lþn� 1Þ3ð2lþnþ 1Þ
þ c2ð2l2 þ 2lðnþ 3Þþ ðnþ 3Þ2Þðj� l�jmj� 2Þðj� lþjmj � 2Þðjþ l�jmj þnþ 1Þðjþ lþ jmj þnþ 1Þ

ð2lþ nþ 1Þð2lþnþ 3Þ3ð2lþnþ 5Þ
þ 2

ð2lþ n� 1Þð2lþnþ 3Þ f�2j2ðl2 þðl� 1Þnþ l� 3Þ� 2jlðnþ 3Þðlþnþ 1Þ� 2l4 � 4l3ðnþ 1Þ
þ l2ð2m2 � 3nðnþ 2Þþ 1Þ� lðnþ 1Þð�2m2 þn2 þ 2n� 3Þ� 2m2ðnþ 3Þgþ 2jðjþnþ 1Þ� 2m2Þ

þ c

�
f1 � 2cð�j2 � jnþ jþ lðlþnþ 1Þþm2 þn� 1Þ

ð2lþn� 1Þð2lþ nþ 3Þ
��

: (30)

The singular behavior in the denominators of f1 and f2
always cancels for n ¼ 1, because the constraint l � jþ
jmj with 2k ¼ l� ðjþ jmjÞ being an integer, always leads
to a zero in the numerator as well. This can be verified
explicitly case by case. Note that if this expression is to be
used for explicit numerical calculations then the limit must
be chosen carefully.

It appears that in the case of Kerr-(A)dS, odd powers of c
also contribute to the spin-0 case (or tensor part of the
graviton perturbations). Note that in the limit � ! 0 these

results do not quite agree with the results given in Ref. [10],
because of the eigenvalue shift in Eq. (2). This can simply
be remedied by adding �c2 to the f2 term. The exact
eigenvalue solution is compared with the small c expansion
in Table VI, which shows good agreement.

V. ANALYSIS & DISCUSSION

We have calculated to ten significant figures the eigen-
values shown in Tables I to IV of the (nþ 4)-dimensional

TABLE VI. Comparison of the small c expansion and the exact result (via the AIM or CFM)
for the Kerr-(A)dS case with j ¼ 1, k ¼ m ¼ 0, and n ¼ 2 (extra dimensions), for given values
of c and (results quoted to 6 s.f.).

ðc; �Þ (0.1, 0.05) (0.1, �0:05) (0.5, 0.1) (0.5, �0:1) (0.5, 0.5) (0.5, �0:5)

A010 4.016 80 3.988 33 4.095 88 4.044 57 4.179 55 3.908 00

Small c 4.017 08 3.988 63 4.097 00 4.045 85 4.199 30 3.943 55
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simply rotating Kerr-(A)dS angular separation equation
using the AIM. This generalizes the results found in
Refs. [2,3] to Kerr asymptotically de Sitter or anti–
de Sitter spacetimes. Our results were also checked using
the CFM. Although we only considered a real parameter
c ¼ a!, we could also have used a purely imaginary or
complex value of c, and thus, the AIM may be of use for
quasinormal mode analysis. For brevity we presented re-
sults for n ¼ 1 extra dimensions only, but we have also
checked the dependence on dimension, as can be seen in
Table V for the fundamental k ¼ 0 mode.

All numerics and symbolic computations used
MATHEMATICA where we found that the CFM eigenvalue

solutions converged very quickly with accurate results
even after a continued fraction depth of only p ¼ 15. As
a check of our numerics we also compared our CFM results
with some independent CFM code [16], where we found
identical results. (Note, that because our method is sym-
bolic we can use the NSolve command in MATHEMATICA,
as opposed to the method in Ref. [16] that uses
FindRoot).

One point worth mentioning is that the � ! 0 limit
cannot be taken via Heun’s method, because the recurrence
relation (and hence the continued fraction) diverges for this
case. In contrast the AIM has no such problem. The AIM
also gives an alternative approach to obtain the eigenfunc-
tions in terms of simple integrals, which may be useful for
symbolic computations. Another commonly used approach
would be to the use the series solution method of Leaver
[6].

We also obtained new results for the small c expansion
of the angular eigenvalue Akjm up to Oðc3Þ. Because of the
complexity of these expressions, we only presented the
coefficient of each power up to Oð�2Þ, where it is interest-
ing to note that the small � expansion of the small c series
does allow us to obtain the � ! 0 limit analytically from
the CFM. As future work it would also be interesting to
compare this result with that obtained by standard pertur-
bation theory [11] or eigenfunction expansion [15]
approaches.

It is also worth mentioning that the AIM (or Heun’s
method) can also be applied to the case when there are
two or more rotation parameters (nonsimple) [8], where
some interesting studies have already investigated sphe-
roids in five dimensions for Kerr-AdS in the near degen-

erate (equal rotation) limit [17]. However, each dimension
must be considered case by case, because a general ex-
pression for (nþ 4) dimensions has not been found. We
intend to report on the angular spheroids (and associated
radial equations) for these interesting cases in the near
future.
In conclusion, we have highlighted how the AIM can be

applied to higher-dimensional scalar or tensor gravitational
(for n � 3) spheroidal harmonics, which arise in the sepa-
ration of metrics in general relativity. We have seen that the
AIM requires very little manipulation in order to obtain a
fast route to the angular eigenvalues, which may be useful
for cases where Heun’s method may not apply. However,
the AIM does have some shortfalls, because although we
did not attempt to optimize either algorithm, our imple-
mentation of the AIM was found to be much slower than
that of the CFM. Considering that the CFM essentially
involves expanding out p nested fractions, whereas the
AIM involves taking p-th order derivatives, this behavior
is not surprising. However, for most of the cases we
considered only a few seconds were required to reach the
desired level of accuracy and thus, timing was not a large
concern.
We hope that the AIM might be of some topical use, for

example, in the angular spheroids needed in the phenome-
nology of Hawking radiation from spinning higher-
dimensional black holes [18]. We have recently used a
combination of all the techniques discussed in this work
to evaluate the angular eigenvalues, Akjm, for real c ¼ a!,

which are needed for the tensor graviton emission rates on
a simply rotating Kerr-de-Sitter black hole background in
(nþ 4) dimensions [19].
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