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We construct asymptotically AdS black hole solutions, with a self-interacting bulk scalar field, in the

context of 5D general relativity. As the observable universe is characterized by spatial flatness, we focus

on solutions where the horizon of the black hole, and subsequently all 3D hypersurfaces for fixed radial

coordinate, have zero spatial curvature. We examine two cases for the black hole scalar hair: (a) an

exponential decaying scalar field profile and (b) an inverse power scalar field profile. The scalar black hole

solutions we present in this paper are characterized by four functions fðrÞ, aðrÞ, �ðrÞ, and Vð�ðrÞÞ. Only
the functions �ðrÞ and aðrÞ are determined analytically, while the functions fðrÞ and Vð�ðrÞÞ are

expressed semianalytically by integral formulas in terms of aðrÞ. We present our numerical results and

study in detail the characteristic properties of our solutions. We also note that the potential we obtain has a

nonconvex form in agreement with the corresponding ‘‘no hair theorem’’ for AdS spacetimes.
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I. INTRODUCTION

According to the ‘‘no hair conjecture’’ by R. Ruffini and
J. A. Wheeler [1], conventional black holes, namely, vac-
uum solutions of the Einstein-Maxwell system, are fully
described by the parameters of mass, electric and magnetic
charge, and angular momentum. Parameters such as multi-
pole moments, which are introduced when spherical sym-
metry is broken, are absent after gravitational collapse of
matter sources inside the black hole event horizon.

Although black hole solutions are severely restricted in
the case of the standard Einstein-Maxwell action, new
solutions can be obtained for generalized actions, which
include, for example, scalar or non-Abelian Gauge fields.
The so-called ‘‘no hair theorems’’ are formulated for spe-
cific models, under certain symmetry and asymptotic be-
havior considerations for the metric, and set concrete
restrictions to the corresponding vacuum solutions.

A neutral scalar field with a self-interaction potential
term Vð�Þ is served as a first example of a study beyond the
Einstein-Maxwell action. The corresponding ‘‘no hair
theorem’’ has been formulated long ago by Bekenstein in
Ref. [2]. Accordingly, there is no asymptotically flat black
hole solution with a nontrivial continuous scalar ‘‘hair’’ for
a convex potential Vð�Þ (V 0ð�Þ � 0). However, nontrivial
scalar black hole solutions can be obtained if we relax
some of the above conditions of the ‘‘no hair theorem.’’
Recent (analytical or numerical) asymptotically flat solu-
tions in four dimensions with ‘‘scalar hair’’ are presented in
Refs. [3–8], while asymptotically AdS solutions can be
found, for example, in Refs. [9–15]. The issue of the

stability against linear perturbation around the scalar field
also has been examined, see Refs. [4,11–13,16,17].
We would like to emphasize that the scalar black hole

solutions, which are presented in the above mentioned
references, do not introduce new quantities which could
characterize the black hole, beyond the standard ones of
mass, electric (or magnetic) charge, and angular momen-
tum. Hence, the meaning of the ‘‘no hair conjecture’’
remains, see also the relative discussions in Refs. [18,19].
Note that in Ref. [20] an analytical solution with a scalar
field conformally coupled to gravity which introduces a
new quantity (in particular a scalar charge) is presented,
but the scalar field blows up on the event horizon of the
black hole, see also the comments in Ref. [8].
In this paper we study 5D asymptotically AdS black hole

solutions with scalar hair in a semianalytical way.We focus
to solutions where all 3D hypersurfaces for fixed radial
coordinate r have zero spatial curvature, in contrast with
the usual case where the horizon of the black hole is
characterized by spherical symmetry (or with positive
spatial curvature). In the present approach, the self-
interaction potential Vð�Þ of the scalar field is assumed
to be an undetermined function, and there is a freedom in
the choice of the scalar field profile �ðrÞ. Note that the
functions aðrÞ and fðrÞ which appear in the black hole
metric, as well as the potential Vð�Þ, depend on the spe-
cific choice of the scalar field. We have examined two
cases for the scalar field: (a) an exponential decaying
profile and (b) an inverse power profile, of Eqs. (11) and
(12) below correspondingly. Note that these profiles [(a)
and (b) above] have been studied previously by
Lechtenfeld and coauthors in Refs. [3,4], for 4D black
hole solutions in asymptotically flat space-time, with an
analogous methodology that we follow in this paper. In the
solutions, we present the functions �ðrÞ and aðrÞ, which
are determined analytically, while the functions fðrÞ and
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Vð�ðrÞÞ are expressed semianalytically by integral formu-
las in terms of aðrÞ. In the main part of this work we present
our results in figures and the characteristic properties of our
solutions are discussed. We see that the reconstructed
potential Vð�Þ, for the specific choices of the scalar field
(a) and (b), has a nonconvex form in agreement with the
corresponding ‘‘no hair theorem’’ for AdS5 space-times
which is presented in Sec. IV of this work.

The interest for five-dimensional AdS black holes is
motivated by extra-dimensional theories, and mainly by
the so-called brane world models [21–25] which promise a
resolution for the hierarchy problem. In the case that we
examine, our world is assumed to be trapped in a hyper-
surface of fixed radius r in the background of a five-
dimensional AdS black hole vacuum [26]. This also ex-
plains why we have focused on solutions for which spatial
3D sections are characterized by zero curvature, in agree-
ment with the current astrophysical phenomenology. Note
that in contrast with the standard vacuum of Randall-
Sundrum [24,25], the five-dimensional AdS black hole
vacuum does not preserve 4D Lorentz invariance on the
brane, which may have interesting phenomenological im-
plications, see, for example, Refs. [26,27]. Note also that in
the framework of AdS/CFT correspondence, an AdS5
black hole background is of particular interest as it can
trigger a thermal conformal field theory on the AdS5
boundary (brane), see Ref. [28].

II. 5D ADS BLACK HOLES WITH A SELF-
INTERACTING BULK SCALAR FIELD

We consider the following 5D action

S ¼
Z

d5x
ffiffiffiffiffiffi
jgj

q �
1

2�5

R� 1

2
g��r��r��� Vð�Þ

�
;

�; � ¼ 0; 1; 2; 3; 5 (1)

for general relativity, with a bulk self-interacting scalar
field with a potential Vð�Þ, where �5 ¼ 8�G5 (G5 is the
5D Newton constant). Note that the extra dimension is
parametrized by the coordinate x5 ¼ r (radius of the black
hole), while the other coordinates x0, x1, x2, x3 correspond
to the usual 4D space-time. In addition, we have assumed
that a negative cosmological constant � is incorporated in
the potential of the scalar field, according to the equation
� ¼ Vð0Þ (Vð0Þ< 0).

The Einstein equations for the above action read

R�� � 1
2g��R ¼ �5T

ð�Þ
�� ; (2)

and the energy-momentum tensor Tð�Þ
�� for the bulk scalar

field is

Tð�Þ
�� ¼ r��r��� g��½12g��r��r��þ Vð�Þ�: (3)

If we use Eqs. (2) and (3) we obtain the equivalent equa-
tion:

R�� ¼ �5ð@��@��þ 2
3g��Vð�ÞÞ: (4)

Now for the metric of the black hole solution we make the
following ansatz

ds2 ¼ �fðrÞdt2 þ f�1ðrÞdr2 þ a2ðrÞdx2; (5)

where dx2 is the metric of the spatial 3-section, which in
our case is assumed to have zero curvature, in agreement
with the current astrophysical phenomenology, pointing
toward spatial flatness of the observable universe.
In the case of the metric of Eq. (5), if we use Eq. (4) we

find the following three independent differential equations

f00ðrÞ þ 3
a0ðrÞ
aðrÞ f

0ðrÞ þ 4

3
Vð�Þ ¼ 0; (6)

a0ðrÞ
aðrÞ f

0ðrÞ þ
�
2
ða0ðrÞÞ2
a2ðrÞ þ a00ðrÞ

aðrÞ
�
fðrÞ þ 2

3
Vð�Þ ¼ 0;

(7)

f00ðrÞ þ 3
a0ðrÞ
aðrÞ f

0ðrÞ þ 6

�
a00ðrÞ
aðrÞ þ 1

3
ð�0ðrÞÞ2

�
fðrÞ

þ 4

3
Vð�Þ ¼ 0: (8)

It is worth noting that when the Einstein equations are
satisfied, the equation for the scalar field [Eq. (37) below]
is satisfied automatically. In particular, this equation is
equivalent to the conservation equationr�T�� ¼ 0, where

T�� is given by Eq. (3) above. However, we could derive

Eq. (37) (for the scalar field) straightforwardly from
Eqs. (6)–(8). This is left as an exercise for the interested
reader.
All the quantities, in the above equations, have been

rendered dimensionless via the redefinitions
ffiffiffiffiffiffi
�5

p
� ! �,

�5‘
�2V ! V, and r=l ! r, where the AdS5 radius l in the

above rescaling is defined as l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�6=ð�5�Þp
.

If we eliminate the potential Vð�Þ from the above
equations we obtain

a00ðrÞ þ 1
3ð�0ðrÞÞ2aðrÞ ¼ 0; (9)

f00ðrÞ þ a0ðrÞ
aðrÞ f

0ðrÞ �
�
4
ða0ðrÞÞ2
a2ðrÞ þ 2

a00ðrÞ
aðrÞ

�
fðrÞ ¼ 0;

(10)

where the potential can be determined from Eq. (6) if the
functions aðrÞ and fðrÞ are known.
We observe that in the above two differential equations

(9) and (10) we have three unknown functions, hence we
have the freedom to choose one of them; for example, the
scalar field �ðrÞ, and the other two functions aðrÞ and fðrÞ
can be determined subsequently. We will consider continu-
ous scalar field deformations that are localized in a small
region of r, while for large values of r they tend rapidly to
zero. Mainly, we aim to study the following two cases for
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the scalar field: (a) an exponential profile and (b) an inverse
power profile, which are given by the following equations

�1ðrÞ ¼ �0e
�ðr=dÞ; (11)

�2ðrÞ ¼ q

rn
: (12)

As we will see in the next section the above choices of
Eqs. (11) and (12) can lead to analytic solutions for the
function aðrÞ by solving Eq. (9). However, the other func-
tions fðrÞ and Vð�Þ can be determined semianalytically.
Note that these profiles have been studied previously by the
authors of Refs. [3,4] in a similar problem for 4D black
hole solutions with a self-interacting phantom scalar field.

Now, if the function aðrÞ has been obtained for a specific
choice of the scalar field �ðrÞ, the function fðrÞ can be
determined by Eq. (10), for which the general solution can
be expressed as a linear combination of two independent
solutions:

fðrÞ ¼ C1a
2ðrÞ þ C2a

2ðrÞ
Z þ1

r

dr0

a5ðr0Þ : (13)

In order to fix the constants of integration C1 and C2, we
assume that for large r the solution approaches the well-
known AdS5 Schwarzschild black hole solution. For the
asymptotic behavior, see for example [26,27], and refer-
ences therein. Thus we will look for solutions with the
following asymptotic behavior:

aðrÞ ! r; (14)

fðrÞ ! r2 � �

r2
; (15)

where � is a dimensionless constant of integration.1 Note
that the previous consideration for the asymptotic behavior
of the black hole solution is reasonable because the scalar
field vanishes in the infinity and the scalar field potential
Vð�Þ approaches a negative nonzero value � ¼ Vð0Þ,
which corresponds to the 5D cosmological constant. If
we compare Eq. (13) and (15) in the limit of large rwe find

C1 ¼ 1; C2 ¼ �4�; (16)

hence we obtain the formula

fðrÞ ¼ a2ðrÞ
�
1�

Z þ1

r

4�

a5ðr0Þdr
0
�
: (17)

Note that the integration over r0 is restricted in the range
r0 > rs, where rs is the largest zero of the function aðrÞ that
represents the physical singularity of the black hole. The
horizon of the black hole rh can be determined via the
equation fðrhÞ ¼ 0, or equivalently by the equation

Z þ1

rh

1

a5ðr0Þ dr
0 ¼ 1

4�
; (18)

which always has a unique positive solution rh larger that
rs. This means that, independently of the choice of the
scalar field profile and from the mass of the black hole �,
the singularity rs is protected by a horizon rh. In order to
establish the existence of a root of Eq. (18) we consider the
function

GðrÞ ¼
Z þ1

r

1

a5ðr0Þ dr
0: (19)

This function is continuous in the open interval ðrs;þ1Þ.
In addition, we will assume that the function aðrÞ, for r >
rs, has a profile which is given by Fig. 1, or equivalently
that it is a strictly monotonically increasing function in the
interval ðrs;þ1Þ. From this we can conclude that GðrÞ is
also a strictly monotonically increasing function in the
interval ðrs;þ1Þ. In addition, we can see that for r !
þ1 ) G ! 0 and for r ! rs ) G ! þ1. From the in-
termediate value theorem of real analysis there is a coor-
dinate value rh, in the interval ðrs;þ1Þ, for which
GðrhÞ ¼ 1=4� as 0< 1=4�<þ1. The uniqueness of
rh is demonstrated by the fact that GðrÞ is a strictly mono-
tonically increasing function. We would like to emphasize
that in this proof we have considered scalar fields of the
form of Eqs. (11) and (12), or more specifically scalar
fields that are nonzero for r ¼ 0 and tend monotonically
to zero for r ! þ1. This guarantees that aðrÞ is a strictly
monotonically increasing function, as it is required for this
theorem.
By replacing Eq. (17) into Eq. (6), the scalar field

potential Vð�ðrÞÞ can be expressed in terms of the function
aðrÞ, according to the equation

FIG. 1. The factor a2ðrÞ as a function of r for d ¼ 1 and �0 ¼
6, 12. We observe that the position of the physical singularity rs
becomes larger when �0 increases.

1The mass of the black hole, without the scalar hair, is m ¼
ð8�G5Þ�1‘2�.
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Vð�ðrÞÞ ¼ �6�
a0ðrÞ
a4ðrÞ þ

�
4�

Z þ1

r

1

a5ðrÞdr� 1

�

�
�
6ða0ðrÞÞ2 þ 3

2
a00ðrÞaðrÞ

�
: (20)

III. NUMERICAL ANALYSIS

We will study two classes of solutions for the profiles of
Eqs. (11) and (12) above. The warp factor aðrÞ can be
determined analytically by the differential equation (9),

while the black hole factor fðrÞ and the potential V̂ðrÞ ¼
Vð�ðrÞÞ will be computed by the integral formulas of
Eqs. (17) and (20). The potential Vð�Þ as a function of
the scalar field � can be determined by the replacement

r ¼ r�1ð�Þ in the function V̂ðrÞ.

A. The exponential profile of Eq. (11)

In the case of the exponential profile�1ðrÞ ¼ �0e
�ðr=dÞ,

from Eq. (9) we get the analytic solution

aðrÞ ¼ ~C1J0

�
�0e

�ðr=dÞffiffiffi
3

p
�
þ ~C2Y0

�
�0e

�ðr=dÞffiffiffi
3

p
�
; (21)

where the constants of integration ~C1 and ~C2 are fixed if we
take into account the asymptotic behavior aðrÞ in the large
r limit, see Eq. (14) above. If we expand the Bessel
functions J0ðxÞ, Y0ðxÞ for small argument x (large r) we
find

~C 1 ¼ d

�
ln

�
�0

2
ffiffiffi
3

p
�
þ �

�
; ~C2 ¼ ��d

2
: (22)

As we see in Fig. 1 the function a2ðrÞ is an oscillating
function with an infinite number of zeroes. Note that r can
be negative, as it is just a coordinate and not the ‘‘real’’
radius of the black hole, which is represented by the
function aðrÞ. The next step is to determine the largest
zero rs of a

2ðrÞ (aðrsÞ ¼ 0), which is the physical singu-
larity of the black hole. It is reasonable to ignore com-
pletely the part of aðrÞ for r � rs, which has no physical
meaning, and to keep only the region for r > rs, which
corresponds to the 5D AdS black hole solution. Also in
Fig. 1 we see that, for fixed d, the position rs of the
singularity becomes larger when �0 increases.

As the physical space of the parameter r is restricted for
r > rs, the maximum value of the scalar field �ðrÞ is not
�0, the maximum value for the scalar field�max is given by
the equation

�max ¼ �0e
�ðrs=dÞ; (23)

which is exponentially suppressed by the factor e�ðrs=dÞ.
We have checked numerically that �max is an increasing
function but depends very weakly on �0. For example, for
�0 ¼ 50 we obtain �max ¼ 2:68, and for �0 ¼ 1000 we
obtain �max ¼ 3:74. This can be explained if we take into

account that the coefficient ~C1 in Eq. (21) is logarithmi-
cally dependent on �0.
In Fig. 2 we have plotted the function fðrÞ for several

values of�0 assuming that the value of d is fixed. Note that
fðrÞ has a singularity and an event horizon as a conven-
tional black hole solution. In this figure we see that outside
the horizon, fðrÞ is weakly dependent on the parameter�0.
Such a behavior is expected because the parameter that has
an impact on fðrÞ is the maximum value of the scalar �max

and not the parameter �0. Note that �max weakly depends
on�0 and remains comparatively small even for very large
values of �0, as is mentioned in the previous paragraph.

FIG. 2. The factor fðrÞ as a function of r for � ¼ 10, d ¼ 1,
and �0 ¼ 6, 12, 18. We observe that for r ! þ1 we recover the
well-known AdS5 Schwarzschild black hole solution.

FIG. 3. The factor fðrÞ as a function of r for � ¼ 10, � ¼ 6,
and d ¼ 8, 12, 16. We observe that when d � 1, outside the
event horizon, the scalar black hole differs significantly from the
AdS5 Schwarzschild black hole (bold line in the figure).
Although it is not displayed in the figure, we have checked
that for enough large r we recover the well-known AdS5
Schwarzschild black hole solution, even for d ¼ 12 and d ¼ 16.
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On the other hand, in Fig. 3 we see that the function fðrÞ
is strongly dependent on d, for fixed�0. For large d (d is an
estimate for the size of the scalar field), in particular, for
d � ffiffiffiffi

�4
p

, we observe that outside the horizon, the black

hole solution becomes significantly different from the cor-
responding AdS5 black hole solution without the scalar

field (bold line in the figure). Note that for d� ffiffi½p 4��, as
we see in Fig. 2, fðrÞ tends rapidly to its asymptotic
behavior r2 ��=r2 for r > rh (rh is the position of the
event horizon of the black hole with the scalar field).

The potential Vð�ðrÞÞ, if we subtract the contribution
from the cosmological constant � ¼ Vð0Þ, has been plot-
ted as a function of the radius coordinate r in Fig. 4. It has
two characteristic features: (a) it blows up near the singu-
larity of the black hole rs, and (b) it tends to a constant
value equal to the 5D cosmological constant � when r
tends to infinity. Now we can obtain the potential as a
function of � by constructing the parametric plot
ð�ðrÞ; Vð�ðrÞÞ � Vð0ÞÞ, as it is presented in Fig. 5. In the
left panel we see that the potential becomes infinitely large
near �ðrsÞ, hence the scalar field is restricted in the region
0 � � � �ðrsÞ. In the right panel we see that the potential
has minimum and the difference Vð�ðrÞÞ � Vð0Þ becomes
negative in a large region near the axes origin, namely, the
potential has a nonconvex form in agreement with Beken-
stein ’s ‘‘no hair theorem.’’
Also we have performed numerical computation by

covering other ranges of the free parameters of the model,
and we have checked that the above general features,
which are exhibited in Figs. 1, 2, 4, and 5, are preserved.
In order to establish the singularity nature of rs [rs is the

largest zero of the function aðrÞ] it is not enough to know
that the metric tensor, or the Riemann tensor, becomes
infinite for r ¼ rs, as it may be an artifact of the specific
coordinate system we use. Hence, scalar quantities like the
Ricci scalar R, or higher order scalar quantities such as
R��R

�� and R���	R
���	, have to be considered. In the

case of the standard 5D AdS Schwarzschild black hole
the Ricci scalar R is constant (R¼�20=l2). Note that
R��R

��¼80=l4 is also constant. Thus, in order to estab-

lish the singularity nature of the black hole at the point

FIG. 4. The potential Vð�ðrÞÞ as a function of r for � ¼ 10,
d ¼ 1, and �0 ¼ 6. It blows up for r ! rs, while for large r it
tends to a constant value equal to 5D cosmological constant. We
also see that minimum value of the potential is inside the black
hole horizon rh.

FIG. 5. The potential Vð�Þ � Vð0Þ as a function of � for � ¼ 10, d ¼ 1, and �0 ¼ 6. In the left panel we observe that the potential
blows up at the point where the scalar field becomes equal to �ðrsÞ. In the right panel we have plotted in detail the negative part of the
potential [Vð�Þ � Vð0Þ], and we see that it possesses a local minimum in the range �ðrhÞ<�<�ðrsÞ.
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r¼ rs we have to compute the Kretschmann scalar
R���	R

���	. We obtain that

R���	R
���	 ¼ 40

l2
þ 72

�

r8
; (24)

which blows up for r ¼ 0. However, in the case of the
black hole solutions with the scalar field, we see in Fig. 6
that the Ricci scalar scalar blows up for r ¼ rs, contrary to
the usual case. Thus it is not necessary to compute the
Kretschmann scalar in order to show that the point r ¼ rs
is a singularity. Note that we have performed similar
numerical calculations for several of our solutions, beyond
those which are presented in Fig. 6, and we have seen that
the infinite value of the Ricci scalar at the point r ¼ rs is a
general feature.

B. The inverse power profile of Eq. (12)

For the inverse power profile �2ðrÞ ¼ q=rn the differ-
ential equation (9) can be solved analytically with solution

aðrÞ ¼ ~C3

ffiffiffi
r

p
J�ð1=2nÞ

�
qffiffiffi
3

p
rn

�
þ ~C4

ffiffiffi
r

p
Y�ð1=2nÞ

�
qffiffiffi
3

p
rn

�
:

(25)

A comparison with the asymptotic behavior of Eq. (14)
implies

~C 4 ¼ 0; ~C3 ¼ �

�
1� 1

2n

��
q

2
ffiffiffi
3

p
�
1=2n

; (26)

where we have assumed that n � 1=2ðkþ 1Þ, ðk ¼
0; 1; 2::Þ. Note that for n ¼ 1 the function aðrÞ takes the
simple form

aðrÞ ¼ r cos

�
qffiffiffi
3

p
r

�
: (27)

However, as we will see subsequently, the value of n is
restricted according to the relation n � 2.
The functions aðrÞ, fðrÞ, and Vð�Þ for the scalar field

with the inverse power profile have similar characteristic
features with those of the exponential profile scalar field
that was examined in the previous subsection. For this
reason we have restricted the number of figures in this
section. However, in the case of the inverse power profile
an additional analysis is required in order to satisfy the
asymptotic behavior of aðrÞ and fðrÞ, as it is given by
Eqs. (14) and (15) above, or we can write

aðrÞ ! r; fðrÞ ! r2 ��

r2
þO

�
1

rc

�
; c� 2: (28)

Note that the next to leading term r2, in Eq. (28) for the
function fðrÞ, is assumed to tend to zero like 1=r2. Now if
we take for granted an asymptotic behavior q=rn for the
scalar field we can satisfy Eq. (28) only if we set concrete
restrictions to the power n. For large r, the function aðrÞ
can be written as

aðrÞ ’ rþ 
hðrÞ; (29)

where 
hðrÞ is assumed to be a small correction if it is
compared with r (
hðrÞ � r). If we replace aðrÞ in Eq. (9),
in the case of the inverse power profile scalar field �ðrÞ ¼
q=rn, we obtain that the correction 
hðrÞ is given by the
equation


hðrÞ ¼ � cn
r2n�1

; cn ¼ nq2

6ð2n� 1Þ : (30)

In the special case where n ¼ 1=2 we obtain that


hðrÞ ¼ q2

12
lnðrÞ (31)

For n > 1=2 we have 2n� 1> 0, and then 
h ! 0 for
r ! þ1. This is a first restriction for the asymptotic
behavior of the scalar field. However, from fðrÞ we will
set a stronger restriction as we will see below.
By replacing aðrÞ ’ rþ 
hðrÞ in Eq. (17), if we keep

only linear terms in 
hðrÞ, we obtain the corresponding
asymptotic formula for fðrÞ:

fðrÞ ’ r2 � �

r2
� 2cn

r2n�2
þ . . . ; (32)

where we have neglected the terms that vanish faster than
1=r2n�2. In order to guarantee the behavior of the AdS5
Schwarzschild black hole r2 ��=r2 in the large r limit,
we have to impose the stronger restriction n > 2, hence the
additional term 1=r2n�2 in Eq. (32) vanishes faster than
1=r2. Note that in the case where n ¼ 2 the asymptotic
behavior is of the form r2 ��eff=r

2, where we have de-
fined an effective mass �eff ¼ �þ 2cn.
In Fig. 7 we have plotted the function fðrÞ in the case of

the inverse power scalar field profile, for n ¼ 0:2, 1, 2. We
present this figure in order to check the asymptotic formula
of Eq. (32) above. We see that for n ¼ 0:2 the asymptotic

FIG. 6. The Ricci scalar as a function of the radius r for � ¼
10, d ¼ 1, and �0 ¼ 6, 12, 18. We see that the Ricci scalar
blows up near the singularity point rs.
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behavior is not of the form r2 ��=r2, but we have an
asymptotic behavior r2 þ 2jc0:2jr1:6 which is in agreement
with the formula of Eq. (32). In particular, the deviation
between the curves with n ¼ 0:2 and n ¼ 2 in Fig. 4 is due
exactly to the term r1:6 in the previously mentioned asymp-
totic behavior. For n ¼ 1 we observe an asymptotic behav-
ior of the form r2 � 2c1. This behavior can be confirmed in
Fig. 7 if we compare the n ¼ 1 and n ¼ 2 curves for fðrÞ
which have a constant difference. Note that the curve with
n ¼ 2 exhibits an asymptotic behavior of the form r2 �
�=r2 (AdS5 Schwarzschild black hole) as we see in Fig. 8.
In the same figure we see also that for n ¼ 3 we have a
similar asymptotic behavior.

Now by replacing aðrÞ ¼ rþ 
hðrÞ in Eq. (20) we can
obtain the asymptotic formula for the potential Vð�Þ when
� ! 0,

Vð�Þ ’ Vð0Þ þ 1
2m

2
n�

2 þ . . . ; m2
n ¼ nðn� 4Þ: (33)

We have neglected higher order terms of the form �c with
c > 2. Note that for n > 4 the mass term in Eq. (33)
becomes positive, however the nonconvex nature of the
potential arises for larger values of �, as we have checked
numerically. For n ¼ 4 the mass term becomes zero and
the higher order terms become significant, but even in this
case we obtained numerically that the potential is
nonconvex.

Now it is worthwhile to compare with the exponential
profile scalar field of Eq. (11), for which we find

aðrÞ ’ rþ 
hðrÞ; 
hðrÞ ¼ �2
0

12
ðdþ rÞe�ð2r=dÞ (34)

while the corresponding asymptotic formula for fðrÞ is

fðrÞ ’ r2 � �

r2
þ�2

0

6
ðdrþ r2Þe�ð2r=dÞ þ . . . : (35)

For�ðrÞ ¼ �0e
�r=d we see that the functions aðrÞ and fðrÞ

approach their asymptotic behavior in an exponentially fast
way independently from the values of the parameters �0

and d, in contrast with the case of the inverse power profile
1=rn for which we have to set restrictions to the parameter
n (n � 2). The potential Vð�Þ, in the case of the exponen-
tial profile scalar field, for � ! 0 is

Vð�Þ ’ Vð0Þ þ 1

2

�
ln

�
�

�0

��
2
�2 þ . . . ; (36)

where we have neglected terms of the form lnð�Þ�2 and
�2 as they tend to zero faster than ½lnð�Þ�2�2. Note that
the above equation for small� implies a positive derivative
V0ð�Þ, however, it becomes negative for slightly larger
values of�, with r > rh, as we have confirmed by numeri-
cal calculations. In the left panel of Fig. 5 we have plotted
the negative part of Vð�Þ � Vð0Þ for small�. Note that the
region where V 0ð�Þ is positive, due to the term ½lnð�Þ�2�2

in Eq. (36), is very close to the axes origin and it is not
visible in this figure.

IV. THE NONCONVEX NATURE OF THE SCALAR
FIELD POTENTIAL

The equation for the scalar field

1ffiffiffi
g

p @�ð ffiffiffi
g

p
g��@��Þ � V 0ð�Þ ¼ 0 (37)

can be used in order to demonstrate a ‘‘no hair theorem’’
like that of Bekenstein in the special case of 5DAdS space-
time we examine (see also [3] in the case of Minkowski
space-time). If we multiply by � and integrate by parts,
from rh (horizon of the black hole) to infinity, we obtain

FIG. 8. The function fðrÞ for the inverse power type scalar
field for n ¼ 2, q ¼ 102 and n ¼ 3, q ¼ 103, and � ¼ 10. We
see that for n ¼ 2, 3 the asymptotic behavior of the black hole is
of the standard form r2 ��=r2, as it is expected by the asymp-
totic formula of Eq. (32).

FIG. 7. The function fðrÞ for the inverse power type scalar
field, for n ¼ 0:2, 1, 2, q ¼ 4, and � ¼ 10. We observe that for
n ¼ 0:2 and n ¼ 1 the asymptotic behavior of the black hole is
not of the standard form r2 ��=r2.
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ðgrr ffiffiffi
g

p
�@r�Þþ1

rh �
Z þ1

rh

drgrr
ffiffiffi
g

p ð@r�Þ2

¼
Z þ1

rh

dr
ffiffiffi
g

p
�V 0ð�Þ: (38)

The boundary term vanishes.2 Because in the previous
paragraph, in order to satisfy the asymptotic behavior of
Eq. (28) for the function fðrÞ, we impose the restriction
�ðrÞ ’ 1=rn with n > 2, for r ! þ1 (namely �ðrÞ tends
to zero faster than 1=r2). In addition, the scalar field �ðrÞ
and the first derivative of the scalar field @r�ðrÞ are regular
on the horizon r ¼ rh, while the metric component grr

vanishes on the horizon and becomes positive (grr > 0) for
r > rh. From Eq. (38) We obtain thatZ þ1

rh

drgrr
ffiffiffi
g

p
�ð@r�Þ2 ¼ �

Z þ1

rh

dr
ffiffiffi
g

p
�V0ð�Þ: (39)

As we have assumed that �> 0, from the above equation
we conclude that V0ð�ðrÞÞ< 0, at least in a region of the
radius r with r > rh. This confirms the nonconvex nature
of the potential Vð�Þ for 5D scalar black hole solutions
which behave asymptotically like an AdS5 Schwarzschild
black hole (n � 2). For 0< n< 2, as we have mentioned
previously, the Einstein equation possesses black hole
solutions (with a horizon and a singularity, see Fig. 7)
but their asymptotic behavior is not of the form r2 �
�=r2. Even in this case (0< n< 2) we have checked
numerically that the potential does not possess a convex
form.

V. CONCLUSIONS

We studied 5D scalar black hole solutions, with flat 3D
slices, by using a semianalytical way. In our approach, first

we chose the scalar field �ðrÞ and subsequently the corre-
sponding self-interacting potential Vð�Þ was determined.
We focused on continuous scalar field configurations,

which are nonzero in a small region of r near the origin and
vanish rapidly in the large r limit. In particular, two cases
for the black hole scalar hair were examined: (a) an ex-

ponential decaying scalar field profile � ¼ �0e
�r=d and

(b) an inverse power scalar field profile � ¼ q=rn. The
constants of integration in the metric of the scalar black
hole solution are fixed by assuming an asymptotic behavior
identical with that of an AdS5 Schwarzschild black hole.
We show that this asymptotic behavior can be achieved
only if the scalar field vanishes asymptotically like 1=r2 or
faster. However, we constructed black hole solutions [with
a horizon and a singularity for the profile (b)] even in the
interval 0< n< 2, but we show that they do not have an
asymptotic behavior of the form r2 ��=r2.
We found that the reconstructed potential Vð�Þ, for the

cases (a) and (b), has a double well form (see Fig. 4 above).
However, as we see, it blows up near the singularity of the
black hole �ðrsÞ, hence the scalar field is restricted in the
region 0 � � � �ðrsÞ. We also demonstrated (and
checked numerically) a ‘‘no hair theorem’’ for our case,
which requires a nonconvex form for the potential Vð�Þ, or
equivalently that V 0ð�ðrÞÞ is negative at least in a region of
r with r > rh, in order to have a nontrivial solution for the
scalar field. Although this theorem has been proven only
when the scalar field vanishes asymptotically like 1=r2 or
faster, our numerical results show that the nonconvex
nature of the potential remains even in the region 0< n<
2 for the profile (b).
Finally, we would like to state that the stability of our

solutions, against linear scalar field perturbations, has not
been examined in this work, and it is left for further
investigation.
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