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The effects of nonlinear oscillations in compact stars are attracting considerable current interest. In

order to study such phenomena in the framework of fully nonlinear general relativity, highly accurate

numerical studies are required. A numerical scheme specifically tailored for such a study is based on

formulating the time evolution in terms of deviations from a stationary equilibrium configuration. Using

this technique, we investigate over a wide range of amplitudes nonlinear effects in the evolution of radial

oscillations of neutron stars. In particular, we discuss mode coupling due to nonlinear interaction, the

occurrence of resonance phenomena, shock formation near the stellar surface as well as the capacity of

nonlinearities to stabilize perturbatively unstable neutron star models.
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I. INTRODUCTION

The observational and theoretical study of stellar oscil-
lations aimed at gaining insight into stellar structure, an
area called asteroseismology, has been a rich research field
for a long time. This includes the period-luminosity rela-
tion for Cepheids and the variability of RR Lyrae stars first
discovered by Leavitt and Pickering and Flemming, re-
spectively, [1,2]; see [3–5] and references therein for more
recent studies. Similarly, much insight into the structure of
the Sun has been obtained via helioseismology (see [6] for
a recent review). Oscillations have also attracted a great
deal of attention in the context of compact objects, neutron
stars and black holes; consider, for example, the stability
analysis of neutron stars using radial oscillation modes by
Chandrasekhar [7]. More recently, interest in neutron star
and black-hole oscillations has focused on their potential in
the context of gravitational wave (GW) physics [8].

While most insight into stellar oscillations has been
obtained from linear analysis (see, for example, [9–12]),
nonlinear effects are known to play an important role in the
phenomenology of oscillations in various scenarios.
Examples include the nonlinear coupling of modes in the
beat Cepheids (see, for example, [13]) and the saturation of
r-mode oscillations and, thus, GW generation in rotating
neutron stars first studied by Schenk et al. [14] and ex-
tended in [15–19]. More generally, perturbative studies
have been extended to include nonlinear effects up to cubic
order terms in the perturbations [20–22]. Mode coupling in
neutron stars with particular regard to the generation of
GWs has been investigated in the framework of higher-
order perturbation theory in [23,24]; see also [25–28] for a
gauge-invariant framework to compute higher-order per-
turbations including fluid backgrounds. While the present
study focuses on neutron star oscillations, we emphasize
that black-hole oscillations play an equally important role
in GW physics [29,30]. At the linearized level, the corre-

sponding solutions are given in the form of quasinormal
modes [31–34] which dominate the signal from the late
stages of a binary black-hole coalescence (see, for ex-
ample, [31,35–37]). Nonlinearities in black-hole oscilla-
tions have been investigated in the framework of higher-
order perturbation theory as well as numerical relativity
[34,38]. A conclusive answer regarding the presence of
nonlinear signatures in ring-down waveforms resulting
from binary-black-hole inspiral and merger has as yet not
been obtained, however, because of the high numerical
accuracy required for such studies [31].
In comparison with black-hole configurations gravity is

about an order of magnitude weaker in spacetimes con-
taining neutron stars. This has motivated a variety of
hydrodynamic simulations which implement gravitational
effects in the form of some approximation such as
Newtonian theory, the Cowling approximation or confor-
mal flatness [39–44]. The present decade has seen dramatic
progress in the numerical solution of the full Einstein field
equations, however, and has resulted in fully relativistic
simulations of single compact stars, collapse to black holes
and neutron star binaries [45–53]. As in the case of black-
hole simulations the available accuracy has not yet reached
a level to facilitate high-precision studies of nonlinear
effects, in particular, in the mildly nonlinear regime.
In consequence, there currently exists a gap in the

literature studying in the fully nonlinear general relativistic
framework with high-precision mildly and moderately
nonlinear effects in oscillations of compact stars. The
main purpose of the present paper is to fill this gap in the
case of the simplest type of stellar pulsations, radial oscil-
lations of spherically symmetric polytropic stellar models.
We are aware that more realistic simulations of neutron
stars require the inclusion of a multitude of microphysical
effects such as more realistic equations of state and mag-
netic fields. For this reason, our study is intended in the first

PHYSICAL REVIEW D 80, 064012 (2009)

1550-7998=2009=80(6)=064012(16) 064012-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.064012


place to provide a general taxonomy of nonlinear features
that will be encountered in the context of stellar pulsations.
The results also provide valuable tools for calibrating the
accuracy of general relativistic three-dimensional hydro
codes.

Following Refs. [38,54], we achieve the necessary ac-
curacy by formulating the problem in terms of deviations
from an equilibrium background model, as is commonly
done in traditional perturbation theory. In contrast to that
approximation, however, we keep all terms of higher order
in the deviations and thus arrive at a system of equations
equivalent to the original nonlinear system. The main
advantage of this approach is the elimination from the
equations of all terms exclusively containing background
quantities and, thus, the discretization error associated with
these terms. The key improvement over the toy problem
studied in [54] is the inclusion of the entire star including
the important outer layers near the stellar surface.

This paper is organized in five sections. We set up the
numerical framework in Sec. II. In Sec. III we study in
detail the coupling of eigenmodes due to nonlinear effects,
including a more detailed discussion of saturation and
resonance effects. Section IV investigates two further non-
linear effects not directly concerning mode coupling, the
stabilization of linearly unstable stars and the formation of
discontinuities near the stellar surface. Finally, we summa-
rize our findings in Sec. V. Throughout this work we adopt
units corresponding to c ¼ G ¼ 1, where c is the speed of
light and G is the gravitational constant.

II. NUMERICAL FRAMEWORK

A. Evolution equations

The starting point for our description of a dynamic,
spherically symmetric neutron star is the formulation de-
veloped by May and White [55,56]. Specifically, we write
the metric in the form

ds2 ¼ ��2dt2 þ�2dx2 þ r2ðd�2 þ sin2�d�2Þ; (1)

where �, � and areal radius r are functions of time t and
radial position x. Unless stated otherwise, the coordinate x
is initialized by the areal radius of the background con-
figuration (cf. Sec. II B below) and serves as a Lagrangian
coordinate following the motion of the fluid elements
during the time evolution. The neutron star is modeled as
a single component perfect fluid at zero temperature. The
corresponding energy momentum tensor can be expressed
in the form T�� ¼ ð�þ PÞu�u� þ Pg��, where � and P
are energy density and pressure. The four velocity u�

obeys the normalization condition u�u� ¼ �1. Because

the radial coordinate x is comoving with the fluid elements
we have the simple expression u� ¼ ½��1; 0; 0; 0�. We
further assume rest mass conservation and neglect all
heat transfer other than that due to the motion of the fluid.
In particular, this excludes heat transfer by neutrinos or

radiation as well as pair production and interaction with
external fields. The equation of state (EOS) is modeled by a
polytropic law P ¼ K��, where K is the polytropic con-
stant and � the polytropic index.
In order to achieve high accuracy near the boundaries,

we find it important to employ variables with at most linear
asymptotic behavior at both the center and the stellar
surface.1 We therefore describe the stellar model in terms
of a rescaled mass2 function N and a function � which are
defined by

N � 1

2r

�
1� 1

�2

�
; (2)

� ¼ P

�
: (3)

The set of variables is completed by the metric component
� and an auxiliary velocity function w � r;t=� introduced

to obtain a system of partial differential equations of first
order in space and time.
The Einstein equations G�� ¼ 8	T�� and the conser-

vation of energy and momentumr�T
�� ¼ 0 then result in

the following equations:

�;x ¼ ��;x

�
ð1þ �Þ

�
1� �

C2

�
; (4)

N;x ¼ r;x

�
4	�� 2

N

r

�
; (5)

N;t ¼ �w�

�
4	Pþ 2

N

r

�
; (6)

r;t ¼ �w; (7)

w;t ¼ ð1þ w2 � 2NrÞ�;x

r;x
� �ðN þ 4	PrÞ; (8)

�;t ¼ ��ð�þ PÞ
�
w;x

r;x
þ 2w

r

�
: (9)

In these equations, commas are used to represent partial
derivatives and C2 ¼ @p=@� is the sound speed. Only five
of these equations are independent and we choose to use
Eq. (9) in the determination of the eigenmodes below but
not in the nonlinear time evolution.
In order to determine boundary conditions, we first

consider the origin. Because the physical system is spheri-
cally symmetric by construction, all functions that are odd

1See Sec. V B.1 in [57] for a discussion of the difficulties
arising from higher-order falloff of variables near the
boundaries.

2A straightforward calculation shows that m � r2N evaluated
at the surface of the star is the mass parameter of the exterior
vacuum metric in Schwarzschild coordinates.
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in the radius necessarily vanish at the origin, that is rð0Þ ¼
0, Nð0Þ ¼ 0 and wð0Þ ¼ 0. The surface xS of the star is
defined as the radius where the pressure vanishes. We
further define our time coordinate such that the interior
solution matches to the Schwarzschild metric in the exte-
rior. We thus obtain outer boundary conditions PðxSÞ ¼ 0,

corresponding to �ðxSÞ ¼ 0, and �ðxSÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2NðxSÞrðxSÞ

p
.

B. Deviations from an equilibrium configuration

The purpose of this study is to analyze nonlinear effects
in the time evolution of radial oscillations of a neutron star
model with particular regard to the mildly nonlinear re-
gime. Such an investigation requires numerical simulations
of high accuracy. We achieve this by formulating the
numerical evolution in terms of deviations from a station-
ary background configuration. In such a formulation all
terms involving exclusively background quantities and,
thus, the discretization errors associated with these terms
drop out of the equations. Because we are mostly interested
in scenarios where the deviations are small in comparison
with the background terms, the elimination of these error
terms leads to a significant increase in numerical accuracy.

This decomposition requires us to choose a convenient
background. For the study at hand, the obvious choice is a
spherically symmetric, static neutron star, as described by
Tolman, Oppenheimer and Volkoff (TOV) [58,59]. The
system of equations governing the TOV equilibrium con-
figuration is given by the time independent limit of the
system of Eqs. (4)–(8),

�� ;x ¼ �
��;x

��
ð1þ ��Þ

�
1� ��

�C2

�
(10)

�N ;x ¼ �r;x

�
4	 ��� 2

�N

�r

�
(11)

��;x

�r;x
¼

��

1� 2 �N �r
ð �N þ 4	 �P �rÞ; (12)

where we have introduced an overbar to distinguish back-
ground variables from their time dependent counterparts.
Note that �r;x ¼ 1 if we initialize x by the areal radius of the
background model. Next, we formally introduce deviations
from this equilibrium by

fðx; tÞ ¼ �fðxÞ þ �fðx; tÞ: (13)

Here and in the following, the function f stands for either
of the variables f�;N;�; �; P; rg. Following customary
notation in the literature, we denote the radial displacement
by 
 � �r.

We can now insert Eq. (13) into the set of evolution
Eqs. (4)–(8). Of particular significance in the resulting
expressions are the terms containing exclusively back-
ground quantities and no deviations. A straightforward

calculation demonstrates that all these terms drop out of
the equations because, by construction, the background
variables �f obey the stationary limit of Eqs. (4)–(8), that
is, the TOVequations. We are left exclusively with terms of
linear or higher order in the deviations �f and the evolu-
tion equations are given by

��;x ¼ � ��;xð��C2 þ ���C2Þ
�C2

� ��;xð1þ �ÞðC2 � �Þ
�C2

�
��;x½��ðC2 � �Þ þ ð1þ ��Þð�C2 � ��Þ�

�C2

(14)

�N;x ¼ �r;x4	��þ 
;x4	�

� �N;x
þ 
x2N þ �r;xð2�N � 4	 ��
Þ
r

(15)

�N;t ¼ �w
�

r
ð4	rPþ 2NÞ (16)


;t ¼ �w (17)

w;t ¼ ð1� 2 �N �rÞ��;x

r;x
þ ðw2 � 2�Nr� 2 �N
Þ�;x

r;x

� 
x

r;x
ðN�þ 4	Pr�Þ � �r;x

r;x
ð�N�� �� �NÞ

� �r;x
r;x

4	½ �Pð �r��þ 
�Þ þ �Pr��: (18)

The boundary conditions for the deviations follow di-
rectly from those obtained for the full variables f in
Sec. II A. They are given by 
ð0Þ ¼ 0, �Nð0Þ ¼ 0, wð0Þ ¼
0 as well as ��ðxsÞ ¼ 0 and ��ð�þ ��Þ ¼ �2ð
N þ
�r�NÞ.

C. Eigenmodes

In the limit of infinitesimally small deviations �f from
the equilibrium solution �f, the time evolution of the star is
governed by the linearized version of the system (14)–(18).
The solutions to the linearized perturbation equations are
given by an infinite set of oscillation modes with character-
istic frequencies. This set of modes is a vital asset when
interpreting the nonlinear time evolution. For each neutron
star model, we therefore calculate the first 10 eigenmode
profiles and their associated frequencies.
The linearized evolution system is most conveniently

written in terms of the rescaled radial displacement � ¼
�r2
= �� (cf. chapter 26 in [60]) and reduces to the single
partial differential equation

W�;t;t ¼ 1

�r;x

�
�

�r;x
�;x

�
;x
þQ�: (19)

Here, the variables W, � and Q depend only on the
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background quantities. Exact expressions for these auxil-
iary functions are given in Eqs. (A1)–(A3).

Separation of variables straightforwardly implies a har-
monic time dependence, i.e. � � ei!t, where ! is a fre-
quency yet to be determined. The resulting equation
represents a singular Sturm-Liouville problem, and the
solutions �iðxÞ of this eigenvalue problem form a complete
orthonormal set. It is possible, therefore, to expand the
radial displacement function �ðt; xÞ in a series

�ðt; xÞ ¼ X
i

AiðtÞ�iðxÞ; (20)

where the eigenmode coefficients AiðtÞ are given by the
inner product

AiðtÞ ¼ h�; �ii �
Z xS

0
W�ðt; xÞ�iðxÞdx: (21)

The AiðtÞ thus represent a measure of how strongly an
eigenmode i contributes at a given time t.

D. Numerical methods

The equations for the TOV background (10)–(12) as
well as the Sturm-Liouville problem (19) represent two-
point boundary-value problems which can be solved by
means of a relaxation method [61]. We discretize the
evolution system (14)–(18) using the implicit, second-
order accurate Crank-Nicholson scheme. From a numerical
point of view, this implicit evolution scheme turns out to be
conceptually identical to the two-point boundary-value
problems of the background and eigenmode calculation.
We therefore use the same relaxation algorithm for all of
these calculations.

Finally, we compute the integrals appearing in the cal-
culation of the inner products using a standard fourth-order
accurate Simpson’s Rule algorithm.

E. Code tests

The code has been tested in several ways. First, we have
performed a convergence analysis for a polytropic model
with � ¼ 2 andK ¼ 150 km2. We use 801, 1601 and 3201
grid points and obtain second-order convergence for the
background model, the calculation of the eigenmode pro-
files and the time evolution including the eigenmode co-
efficients. In Fig. 1, we show the convergence factors of the
‘2 norms of the evolution variables ��, �N and 
 for a
simulation of a perturbation given initially in the form of
the first eigenmode with an amplitude of 10 m. The con-
vergence factor is defined as

q � ‘2½fc� � ‘2½fm�
‘2½fm� � ‘2½ff� ; (22)

where the subscripts c, m and f stand for coarse, medium
and fine resolution. For a second-order scheme and the
above-mentioned grid setups we expect q ¼ 4. The minor

deviations from this value are due to zero crossings of the
variables involved.
For the second test, we use the constraint Eq. (9) which

vanishes in the continuum limit. In order to quantify the
constraint violation due to the discretization error, we
normalize the numerical constraint by the sum of the ‘2
norms of the individual terms. We find the resulting nor-
malized constraint violations to be of the order of 10�6 or
less.
Third, we test the eigenmode calculation by checking

the completeness of the eigenmode spectrum. This is done
by calculating the weighted sum

P
iA

2
i =h�; �i, which has to

be unity due to the completeness of the basis. In our
simulations we include the first 10 terms in this infinite
series and obtain a maximal deviation from the expected
value of 1 by about 10�4. As a by-product, this result
demonstrates that the first 10 eigenmodes capture most of
the dynamics of the system.
Finally, we compare the eigenmode frequencies with

results available in the literature and observe excellent
agreement; the maximal deviation in the first three eigen-
modes is about 1% from results reported in [11] and less
than 1% from those of [62].
Using the setup described in this section, we obtain

highly accurate time evolutions. In fact, we observe that
the overall error is dominated by the calculation of the
inner products in Eq. (21) via the Simpson algorithm,
rather than the time evolution of the grid variables. We
believe this to be an artifact of the uncertainties in the
eigenmode profiles themselves, the relative error being of
the order of 10�5. Motivated by this assumption, we man-
aged to further improve the accuracy using the fact that our
time evolutions are typically dominated by one particular
eigenmode. First, we identify this mode from the initial
data construction. In the course of the evolution, we cal-
culate the eigenmode coefficient associated with this
mode. Before calculating the other eigenmode coefficients,
however, we subtract the contribution of the dominating
mode from the grid variables. By virtue of the orthogonal-
ity of the eigenmodes, this subtraction does not affect the
other coefficients in the continuum limit. For finite numeri-
cal resolutions, however, the eigenmodes are not perfectly
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FIG. 1 (color online). The convergence factor q of ��, �N
and 
 as functions of time. The obtained results are consistent
with second-order convergence corresponding to q ¼ 4.
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orthogonal and we avoid contamination of the overlap
integrals due to the dominant mode.

Taking into account all numerical effects, we arrive at
the following estimates for the uncertainties. All simula-
tions discussed in the next section start from initial data
consisting of a single mode. This mode is found to domi-
nate the ensuing evolution and we measure its amplitude
with a relative error of 10�5. All other modes are absent in
the initial data, but are excited due to nonlinear effects. The
accuracy of their measurement depends on their amplitude.
For those modes used in our analysis we obtain relative
uncertainties ranging from 10�2 for weak excitation to
10�5 for strong excitation.

III. MODE COUPLING

Before analyzing in detail the coupling of eigenmodes in
our simulations, we need to address a conceptual difficulty
arising from the nonlinear nature of hydrodynamics.
Eigenmodes are, by construction, a feature of a linear
theory and our calculation of the eigenmode spectrum in
Sec. II C required us to specify a background configuration.
Given a dynamic system evolved with the fully nonlinear
theory, we analyze the deviations from that background
configuration by projecting them onto the eigenmodes
associated with that same background. The problem is
that there exists no unique way of decomposing such a
dynamic system into a background plus perturbations.
Different background configurations imply different eigen-
mode spectra. In consequence of this ambiguity, we can
interprete nonzero mode coefficients for modes not present
in the initial data in two ways: (i) excitation due to non-
linear effects and (ii) a change in the background configu-
ration and its eigenmode spectrum due to the finite
amplitude of the initial perturbation. Both interpretations
reflect the nonlinear nature of the theory and the non-
uniqueness of choosing a background makes it impossible
to distinguish in a well-defined manner between those
interpretations. In the remainder of this work we will use
the terminology mode coupling and excitation but, as a
reminder of the ambiguities in the interpretation, we will
put the words in italics. Note, however, that once a par-
ticular choice of the background has been specified, the
ensuing projection of deviations from that background
onto the corresponding eigenmode spectrum is uniquely
defined. In that sense, the following analysis is self-
consistent and any study agreeing upon the same decom-
position can be compared straightforwardly with our
results.

Specifically, our analysis is based on the following
construction of a background model plus nonlinear devia-
tions. We consider either of the two stellar models labeled
1 and 2 in Table I. Numerically, we prescribe the initial
perturbation of this background model by displacing the
fluid elements from their equilibrium positions according
to the profile of the displacement 
 corresponding to one

single eigenmode. From this displacement, we straightfor-
wardly calculate the profiles for the remaining evolution
variables��,�� and�N according to Eqs. (18), (14), and
(15) in that order. Finally, we set the radial velocity w to
zero. In the remainder of this work, we always label the
single mode present in the initial data as j and denote its
amplitude in the form of its surface displacement 
j �

ðxSÞ Similarly, we use the label i to identify all modes
present in the time evolution.
During the evolution, we measure the presence of a

given mode i in the form of the associated eigenmode
coefficient AiðtÞ. In practice, we find these coefficients to
oscillate periodically; cf. Figures 2 and 3. It is convenient,
therefore, to use the resulting oscillation maximum Ai ¼
maxjAiðtÞj as an overall measure of the degree of excitation
of that mode in the entire evolution. The intuitive inter-
pretation of the resulting maxima is greatly helped by their
one-to-one relation with the corresponding displacement
of the stellar surface. We recall for this purpose Eq. (20).
By setting Ak ¼ 1 and Ai ¼ 0 for all i � k in that relation,
we can evaluate the surface displacement �ðxSÞ and, thus,

ðxSÞ corresponding to eigenmode k with unit amplitude
Ak. In Table II, we list the resulting surface displacements
for both stellar models studied in this section. It becomes
clear from the table that we expect to deal with numerically
small values of the coefficients Ak � 1.
In the remainder of this section we will analyze in detail

how initial data given in the form of one single eigenmode
gives rise to the excitation of other modes.

A. Model 1: A � ¼ 2 polytrope

1. Exciting the fundamental mode

We first focus on the coupling of eigenmodes in the case
of model 1, a � ¼ 2 polytrope which is stable against
(linear) radial perturbations. Our first analysis is based on
an initial displacement of the fluid elements given by the
profile of the fundamental eigenmode j ¼ 1. The simula-
tions last for a physical time of 5 ms and the amplitude of
the initial data is varied between 10 cm and 70 m. For
illustration, we show in Fig. 2 the time evolution of the
eigenmode coefficients A1; . . . ; A4 obtained for an initial
surface displacement 
1 ¼ 10 m. Higher-order modes
show a similar behavior with decreasing amplitude. Note
that the coefficients Ai corresponding to weakly excited
modes such as i ¼ 3 and i ¼ 4 in the figure do not oscillate
around zero but reveal an offset. This effect is not surpris-

TABLE I. Physical parameters for the three stellar models
studied in this work.

Model � K �c [g=cm
3] M [M�] R [km]

1 2 150 km2 2:022� 1015 1.555 10.82

2 2.25 700 km2:5 3:600� 1015 1.584 8.414

3 2 150 km2 3:774� 1015 1.655 9.222
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ing bearing in mind that the sinusoidal dependence of the
eigenmode oscillations is a direct consequence of the
separation of variables in Eq. (19) according to �ðt; xÞ ¼
�iðxÞei!it. In the linear limit we expect an eigenmode to
describe a stellar oscillation around the equilibrium con-
figuration. In the present case, however, the weak eigen-
modes have to be viewed as perturbations of a time
dependent background, namely, the equilibrium configura-
tion plus any strongly excited eigenmodes. The observed
offset thus arises as one of the nonlinear effects of the
system. Indeed, we empirically find that it increases quad-
ratically with the amplitude of the initial data and disap-
pears as we reduce the initial displacement of the fluid
elements to zero.

The excitation of higher-order modes inevitably corre-
sponds to a flow of energy away from the initially present
mode. Whereas this effect is too small in the example of

Fig. 2 to be noticeable in the amplitude A1ðtÞ, the strong
coupling between modes 2 and 4 in the case of model 2 in
Fig. 3 demonstrates a strong amplitude modulation of the
mode coefficients. We will discuss this exceptionally
strong coupling in more detail in the context of resonance
effects in Sec. III D below.
As mentioned above, we use the maxima for each of the

jAiðtÞj to determine the degree of excitation of the individ-
ual modes. The resulting values for the first six eigenmodes
are shown in Fig. 4. We have ignored higher-order modes
because they are very weakly excited and therefore subject
to uncertainties larger than the limit discussed in Sec. II E.
The results in the figure show that the amplitude of the

fundamental eigenmode grows linearly with the initial
amplitude 
1, as expected. In contrast, all other eigenmode
coefficients exhibit a quadratic dependence on 
1

Ai ¼ ci;1ð
1Þ2: (23)

The expansion coefficients ci;1 obtained from regression

are listed in Table III. Throughout the entire amplitude
range we do not observe any signs of a transition of the
power laws from quadratic to higher order. This indicates
that the nonlinear interaction is dominated by leading-
order effects. This changes when we consider different
initial data.

2. Exciting higher modes

Next, we consider initial perturbations in the form of the
second and the third eigenmode, respectively. The corre-
sponding plots, now up to and including mode10, are
shown in Fig. 5. As before the eigenmode coefficient of
the initially present mode shows linear behavior. For suffi-

FIG. 3. The envelopes of the amplitudes of the second and
fourth eigenmode coefficients Ai obtained for model 2 and an
initial displacement corresponding to the second mode with a
surface amplitude of 
2 ¼ 10 m. Note that the excitation of
mode i ¼ 4 is so strong that it leads to a visible temporary
decrease in A2ðtÞ.
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FIG. 2. The evolution of the first four eigenmode coefficients Ai obtained for model 1 and an initial displacement corresponding to
the fundamental mode with a surface amplitude of 
1 ¼ 10 m.
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ciently small amplitudes of the initial displacement, we
also observe the quadratic power law for all modes not
present in the initial data. For larger perturbations, how-
ever, these show a clear transition to higher-order power

laws. This transition demonstrates a significant contribu-
tion of couplings beyond the leading-order terms and we
will refer to this regime as the moderately nonlinear re-
gime as opposed to the weakly nonlinear regime where
quadratic coupling terms dominate. The details of the
transition such as the threshold amplitude of the initial
data and the relative significance of the higher-order terms
depend on the individual mode under consideration as well
as on the choice of initial data. We empirically investigate
the transition by fitting the eigenmode coefficients accord-
ing to

Ai ¼ ci;jð
jÞ2 þ di;jð
jÞ3 þ ei;jð
jÞ4 þ fi;jð
jÞ5 þ . . . :

(24)

In practice, we find this series to be dominated by a subset
of the terms on the right-hand side and we explicitly set
subdominant coefficients to zero. The resulting coefficients
are listed in Table IV and the corresponding fits are shown
as the lines in Figs. 4–6. While there appears to be a
tendency for the expansion coefficients ci;j; di;j; . . . to de-

crease for larger mode numbers i, there are exceptions to
this rule. Consider, for example, c3;2 and c4;2 which dem-

onstrate that the second mode couples more strongly to
mode 4 than to mode 3. This is corroborated by the data for
mode 3 (filled diamonds) and 4 (filled upward triangle) in
the left panel of Fig. 5. It is interesting to note in this
context that the frequency ratio of modes 2 and 4 is close
to 1:2. We will return to the issue of resonance phenomena

TABLE III. The quadratic expansion coefficients for the mode
coupling between the fundamental and other modes.

i 2 3 4 5 6

ci;1 [km�2]4:9� 10�32:9� 10�37:9� 10�41:3� 10�41:1� 10�5

10 4 10 3 10 2 10 1
10 14

10 11

10 8

10 5

10 2

1 km

A
m
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6

5

4

3

2

1

FIG. 4 (color online). The maximal eigenmode coefficients of
the first six eigenmodes as functions of the amplitude of the
initial perturbation in form of the fundamental mode. The curves
represent a linear function in 
1 for the fundamental mode and
quadratic power laws for all other modes.

TABLE II. Surface displacement 
ðxsÞ corresponding to eigenmode k with unit amplitude
Ak ¼ 1 for the first two stellar models of Table I.

Mode 
ðxSÞ [km] model 1 
ðxSÞ [km] model 2 Mode 
ðxSÞ [km] model 1 
ðxSÞ [km] model 2

1 2.15 1.54 6 28.64 14.45

2 6.31 3.84 7 35.47 17.43

3 11.08 6.29 8 42.74 20.51

4 16.41 8.88 9 50.42 23.70

5 22.27 11.60 10 58.49 26.98
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FIG. 5 (color online). The maximal eigenmode coefficients of the first ten eigenmodes as functions of the amplitude of the initial
perturbation in form of the second (left panel) and the third (right panel) mode.
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in Sec. III D. Another feature visible both in the expansion
coefficients in Table IV and the curves in Fig. 5 is that the
modes excited due to nonlinear effects form groups of
similar polynomial behavior. For j ¼ 2 they form pairs
and for j ¼ 3 triplets. As a function of the initial amplitude
of mode 2 (mode 3), for example, modes 5 and 6 (modes 7,
8 and 9) show a transition to a cubic power law and modes
7 and 8 (modes 10, 11 and 12) a transition to a fourth-order
power law. See also the block diagonal structure in
Table IV listing the coefficients di;2, ei;2 and fi;2 (coeffi-

cients di;3 and ei;3).
To summarize our findings, we observe a weakly non-

linear regime in which the amplitude of secondary modes
grows quadratically with the amplitude of the initial dis-
placement. In the case of j ¼ 2 or j ¼ 3 and sufficiently
large amplitudes, the mode excitation exhibits a transition
to higher-order power laws. Secondarily excited modes
form multiplets; for initial data in the form of mode j >
1, the excitation of modes i ¼ jþ 1; . . . ; 2j depends quad-
ratically on the initial amplitude, modes i ¼ 2jþ 1; . . . ; 3j
show a transition to a third-order power law, modes i ¼
3jþ 1; . . . ; 4j a transition to a fourth-order power law and
so on. Finally, higher-order modes appear to have a sig-
nificantly stronger tendency to transfer energy to lower-
order modes than the other way around. The latter obser-
vation was also indicated by Papadopoulos and Sopuerta’s
[38] study of black-hole oscillations and suggested to
explain the robustness of black holes to strong
deformations.

B. Model 2: A stiffer equation of state

We now turn our attention to model 2 of Table I. We
want to assess to what extent the observations in the
previous section depend on the equation of state of the
stellar model. As before, we consider three scenarios where
we prescribe initial data in the form of mode j ¼ 1, 2 or 3
and measure the degree of excitation of the other modes up
to and including i ¼ 10 due to nonlinear effects. It is

reassuring to see that using this model we qualitatively
reproduce most of the general features discussed above.
For comparison with the results for model 1, we show in
Tables Vand VI the expansion coefficients and in Fig. 6 the
eigenmode coefficients resulting from initial data in the
form of eigenmode j ¼ 2 or 3.
While confirming the overall behavior observed for

model 1, however, the analysis of model 2 reveals addi-
tional complications arising from two effects which were
barely visible in the analysis of model 1: saturation and
resonance.

C. Saturation

We first discuss the saturation effect observed in the
analysis of model 2. Consider for this purpose the left
panel of Fig. 6 which shows the excitation of modes
resulting for j ¼ 2. We first notice a relatively strong
excitation of mode 4; compare the filled upper triangles
in this plot with their counterparts in Fig. 5 for model 1.
Indeed, the excitation of mode 4 is so strong that the
resulting power law fit crosses the curve for mode 2 at
initial amplitudes just above 10�2 km. Note, however, how
the actual mode coefficients for mode 4 (filled upper
triangles) start deviating from the polynomial fit at such
large amplitudes; the actual excitation of mode 4 is weaker
than expected from extrapolation of the polynomial fit and
the coefficients jA4jmax remain below those of the initially
present mode jA2jmax. It appears that at sufficiently large
amplitudes, mode 4 starts acting as a significant source of
excitation itself and transfers energy to other modes via

TABLE IV. Expansion coefficients for model 1 obtained from fitting Eq. (24) to the data points for initial data in the form of mode
j ¼ 2 and j ¼ 3, respectively.

i ci;2 [km�2] di;2 [km�3] ei;2 [km�4] fi;2 [km�5] ci;3 [km�2] di;3 [km�3] ei;3 [km�4]

1 0.63 0 0 0 0.64 0 0

2 � � � � � � � � � � � � 0.095 0 0

3 0.033 0 0 0 � � � � � � � � �
4 0.12 0 0 0 0.020 0 0

5 4:1� 10�4 0.078 0 0 0.029 0 0

6 1:3� 10�4 0.069 0 0 0.029 0 0

7 1:9� 10�5 0 0.118 0 5:8� 10�4 0.040 0

8 9:4� 10�6 0 0.073 0 4:9� 10�5 0.034 0

9 9:3� 10�6 0 0 0.172 2:3� 10�5 0.019 0

10 1:1� 10�5 0 0 0.101 1:1� 10�5 0 0.057

11 � � � � � � � � � � � � 1:1� 10�5 0 0.036

12 � � � � � � � � � � � � 1:2� 10�5 0 0.020

TABLE V. The quadratic expansion coefficients ci;1 for the
mode coupling between the fundamental and other modes for the
stiffer neutron star model.

i 2 3 4 5 6

ci;1 [km�2] 0.032 0.011 1:5� 10�3 7:6� 10�5 8:9� 10�6
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nonlinear coupling. The equilibrium reached in this way
sets a limit for the growth in amplitude of mode 4. On
closer investigation of the left panel of Fig. 6, we notice a
similar behavior for modes 5 to 8. These modes show
saturation at smaller amplitudes which is compatible with
our general observation that higher-order modes tend to
transfer energy to lower-order modes more efficiently than
the other way round.

We conclude from this observation that for the present
example the assumption of two-mode coupling would
oversimplify the situation. An accurate modeling of the
chain of excitation whereby energy is transferred from
mode 2 via mode 4 to other modes requires us to take
into account higher-order effects in the mode coupling as
provided, for example, by our fully nonlinear numerical
treatment.

D. Resonance effects

Resonance is a well-known phenomenon arising in the
context of the forced oscillator. Following Van Hoolst [22],
we can model the stellar oscillations as a system of forced
oscillators. The time evolution of the oscillation ampli-
tudes is then determined by

d2Ai

dt2
þ!2

i Ai ¼ a0
2
þX

n

ðan sinn�tþ bn cosn�tÞ: (25)

Here � is the frequency and the an and bn are the ampli-
tudes of the driving forces. Assuming for simplicity that
the bn vanish, Eq. (25) has the analytic solution

AiðtÞ ¼
X
n

an
!2

i � ðn�Þ2 sinn�t n�N : (26)

In our case, the driving terms are typically dominated by
the single eigenmode j present in the initial data and
therefore� ¼ !j. This mode should excite with particular

efficiency those modes which have an eigen frequency
close to an integer multiple of !j. In Table VII we show

the frequencies and corresponding ratios for some modes
of model 2 whose frequencies have ratios close to integer
values. Resonance occurs most conspicuously between
modes 2 and 4 and we have already noted the strong
excitation of mode 4 in the left panel of Fig. 6. The effect
is not as dramatic in the case of modes 6 and 8, but we still
observe a preferred excitation of these modes compared
with model 1; compare, for example, their excitation with
that of mode 3 and the corresponding results in the left
panel of Fig. 5. We also note a small deviation in the
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FIG. 6 (color online). The maximal eigenmode coefficients of the first ten eigenmodes as functions of the amplitude of the initial
perturbation in form of the second eigenmode (left panel) or the third eigenmode (right panel) as obtained for model 2.

TABLE VI. Expansion coefficients for model 2 obtained from fitting Eq. (24) to the data points for initial data in the form of mode
j ¼ 2 and 3, respectively.

i ci;2 [km�2] di;2 [km�3] ei;2 [km�4] fi;2 [km�5] ci;3 [km�2] di;3 [km�3] ei;3 [km�4]

1 2.8 0 0 0 3.14 0 0

2 � � � � � � � � � � � � 0.22 0 0

3 0.09 0 0 0 � � � � � � � � �
4 24 0 0 0 0.053 0 0

5 2:1� 10�3 21 0 0 0.084 0 0

6 5:0� 10�4 31 0 0 0.099 0 0

7 2� 10�6 0 2210 0 1:3� 10�3 0.22 0

8 <2� 10�6 0 1650 0 4:1� 10�4 0.18 0

9 <2� 10�6 0 62.8 0 2:0� 10�4 0.11 0

10 <2� 10�6 0 35.2 0 1:5� 10�4 0 0.52
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transition to different power laws in the moderately non-
linear regime. Consider modes i ¼ 9, 10 in the case of j ¼
2 in Table VI. According to the rule, the excitation of these
modes should exhibit a transition to fifth order in 
2, but
instead we observe a fourth-order dependence. We believe
this to be a consequence of the strong excitation of mode 4,
so that our approximation of a single strong mode driving
the coupling is no longer valid.

In all cases of mode coupling, we observe a periodic
transfer of energy back and forth between the eigenmodes
involved. This manifests itself in a modulation of the
oscillation amplitude as apparent, for example, in Fig. 2,
in particular, the upper right panel. Such amplitude modu-
lation is also present in the case of strong resonance. In
contrast to ‘‘normal’’ coupling of eigenmodes, however,
we further observe in cases of strong resonance a modula-
tion period which depends sensitively on the amplitude of
the initial data. We illustrate this in Fig. 7 which displays
the coefficient A4ðtÞ obtained for model 2 and initial data in
the form of the second eigenmode with different ampli-
tudes. As is evident in the figure, larger amplitudes result in
shorter modulation periods. The resulting numerical values
of the modulation frequency are shown in Table VIII and
are well approximated by the linear relation

�modð
2Þ ¼ 7:55 Hzþ 577 Hz

2

km
: (27)

In the perturbative limit 
2 ! 0 we obtain a modulation
frequency of�mod ¼ 7:55 Hz. A detailed interpretation in
the context of coupled harmonic oscillators [22] is beyond
the scope of this paper, largely because it is highly non-
trivial to calculate the coupling constants. We note, how-
ever, the close resemblance between the measured
modulation frequency and the difference between the in-
volved eigenmodes’ frequencies

�mod 	 
!

2
¼ !4 � 2 �!2

2
	 6:5 Hz: (28)

Note that 
! is orders of magnitude below the individ-
ual frequencies !2 and !4 and therefore subject to a larger
relative error. Within this error, the measured value agrees
with the prediction of Eq. (27).
Leaving a detailed investigation for future work, we

tentatively interpret our observations as follows. The
modulation frequency is closely related to the difference
in the frequencies of the coupling modes and decreases
significantly as we approach resonance. As has already
been discussed in Sec. III C, nonlinear effects set a limit
on the resonance. They further result in a deviation of the
modulation frequency from the limit of perfect resonance
�mod ! 0 Hz.
In comparison, the resonance between modes 2 and 4 of

model 1 is less pronounced and we find the modulation
frequency to be independent of the amplitude of the initial
data. Indeed, Eq. (28) predicts 
! ¼ 141 Hz for model 1.
This value is an order of magnitude larger than that ob-
tained for model 2 and appears to be much more robust to
effects of a finite initial amplitude 
2 as given by the
second term on the right-hand side of Eq. (27).

IV. FURTHER NONLINEAR EFFECTS

In this section we consider two nonlinear effects which
are not directly related to the coupling of eigenmodes.
First, we study the stability properties of a stellar model
close to the maximum of the mass-radius relation but
located on the unstable branch. From linear theory, we
would expect this model to be unstable to small perturba-
tions away from its equilibrium configuration. Second, we
investigate the consequences of the vanishing of the speed

FIG. 7. The evolution of the fourth eigenmode coefficient for
different perturbation amplitudes.

TABLE VIII. This table presents the frequencies obtained by
fitting the envelopes of the eigenmode coefficients evolution
with sinusoidal functions.

Initial amplitude [m] Frequency � [Hz]

0.1 8.21

1 8.27

10 12.29

20 18.98

30 25.30

TABLE VII. The frequencies and the most promising reso-
nance factors !2i=!i or !3i=!i for some of the eigenmodes of
model 1 and model 2.

Model 1 Model 2 Model 1 Model 2

Mode i !i [kHz] !i [kHz] !2i=!i !3i=!i !2i=!2 !3i=!i

1 10.908 11.197 � � � � � � � � � � � �
2 35.299 47.526 1.975 2.890 2.000 2.939

3 53.011 72.024 1.925 � � � 1.940 � � �
4 69.711 95.065 1.919 � � � 1.931 � � �
5 85.985 117.527 � � � � � � � � � � � �
6 102.026 139.694 � � � � � � � � � � � �
7 117.935 161.685 � � � � � � � � � � � �
8 133.756 183.570 � � � � � � � � � � � �
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of sound at the stellar surface with regard to the formation
of discontinuities near the surface.

A. Stabilization of linearly unstable stars

A particularly interesting scenario for the investigation
of nonlinear effects is that of marginally stable neutron
stars. It is well known that neutron stars of sufficient
compactness become unstable with respect to their funda-
mental radial oscillation mode [7]. The onset of this insta-
bility occurs at zero frequency of the fundamental mode.
At this point linear perturbation terms cancel in the equa-
tions and the higher-order perturbations become more
important.

We study this effect quantitatively for model 3 of
Table I. We have already mentioned that this model is
unstable, i.e. its fundamental oscillation mode has an
imaginary frequency !2

1 ¼ �779 Hz2. We test the predic-
tion of the linearized theory by prescribing initial data in
the form of this fundamental eigenmode using an ampli-
tude of 10 m. The surprising result of the fully nonlinear
time evolution is shown in Fig. 8; the star oscillates peri-
odically over many milliseconds without any sign of in-
stability. We find this general behavior independent of
whether the initial displacement represents an expansion
(dashed curve) or a compression (solid curve) of the star,
even though these two scenarios differ in the details of the
ensuing oscillations. This result demonstrates that nonlin-
ear effects have the capacity to stabilize a linearly unstable
neutron star. It will be interesting in future work to study
this effect in more detail from an analytic point of view.

In addition to this qualitative difference between pertur-
bative predictions and the nonlinear evolution, we observe
a variety of quantitative deviations. Contrary to expecta-
tions from linearized theory, the sign of the initial pertur-
bation of the star has an impact on the resulting oscillation
pattern. In particular, the frequency and amplitude of the
oscillation differ significantly for the two cases as is ap-
parent in Fig. 8. We further observe an offset of the
eigenmode coefficient indicating that the star is no longer
oscillating symmetrically around its equilibrium position.
We have already identified such an offset as a nonlinear
effect in Sec. III A 1. In the present example, however, the
offset is much larger. We further note that the solid curve

does not have sinusoidal shape but is visibly distorted.
Finally, we find that the oscillation frequency of the non-
linear evolution depends not only on the sign but also on
the initial amplitude of the perturbation. Indeed, the mea-
sured values differ substantially from those predicted by
linear theory. This is illustrated in Fig. 9, where we show
the oscillation frequency as a function of the amplitude in
the range �40 m to þ40 m. As expected intuitively, we
obtain larger real frequencies, i.e. larger deviations from
the linear prediction, for larger amplitudes of the initial
data. Conversely, we recover the linear limit and observe
collapse of the stellar model when choosing initial pertur-
bations of sufficiently small amplitude, in the decimeter
range for the present example.

B. Shock formation at the surface

Analysis of the asymptotic structure of the TOV model
combined with a polytropic equation of state (cf. Sec. 5.2.5

of [62]) shows that the speed of sound vanishes as ð�rS �
�rÞ1=2 at the surface regardless of the parameters of the
polytrope. Here �rS is the radius of the star. Because of
this decrease of the speed of sound, a signal of finite width
propagated towards the surface will be compressed; its tail
moves faster than its head. Naturally one may ask under
which circumstances this gives rise to shock formation. In
order to investigate this question, we consider model 1 of
Table I.
First, however, we need to take care of a numerical

difficulty arising in this context. In order to guarantee
adequate numerical resolution of the expected features
close to the surface, we switch from the radial coordinate
x to a rescaled radius y related by

dy ¼ 1
�C
d�r ! �r;y ¼ �C; (29)

where �C2 ¼ @ �P
@ �� is the speed of sound. A straightforward

calculation shows that the speed of sound measured in
terms of y now approaches a finite value at the surface,
thus eliminating the danger of under resolving features.30 20 40
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FIG. 8. The coefficient of the fundamental eigenmode. The
dashed line corresponds to an initial expansion of the star, the
solid line to a compression.
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FIG. 9. The frequency of the fundamental mode as function of
the initial perturbation. The frequencies have been obtained by a
Fourier analysis of the nonlinear evolution.

3We note that this potential lack of numerical resolution is not
a problem in the evolution of the eigenmodes discussed above
because of their oscillatory character.
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Even more remarkably, this decompactification is achieved
by mapping a finite interval in x to a finite interval in the
new variable y. For more details on this procedure we refer
the reader to [62,63]. For the numerical analysis we perturb
model 1 by setting the initial velocity

wðt ¼ 0Þ ¼ Be�ðððy�y0Þ2Þ=ðbÞÞ; (30)

where width and center of the Gaussian pulse are set to b ¼
0:05 km2 and y0 ¼ 30 km, respectively. The general be-
havior of this pulse during a fully nonlinear time evolution
now depends exclusively on its initial amplitude B. In
practice, we observe three different types of behavior.
For sufficiently small amplitudes, the pulse is reflected at
the surface and we do not observe shock formation. At
moderate amplitudes the pulse gets reflected at the bound-
ary, but a discontinuity inw as well as�� develops shortly
after reflection. This is shown in the left panel of Fig. 10 for
an amplitude B ¼ 2� 10�4. As we further increase the
amplitude, discontinuities develop in the variables w, ��
and �� before the pulse reaches the stellar surface. This
scenario is illustrated for the variable �� and using an
initial amplitude B ¼ 10�3 in the right panel of Fig. 10.

Shock formation at the stellar surface has recently been
studied in the context of a plane parallel model in
Newtonian gravity by Gundlach and Please [64]. In par-
ticular, their Eq. (27) provides the minimum amplitude
required for shock formation in terms of amplitude v0 as
well as width ~�1 and initial location ~�0 of the initial pulse.
(We use a tilde to distinguish their ~� from our evolution
variable defined in Eq. (3).) This equation neglects a factor
1=2, which we reintroduce for the comparison with our
numerical simulations. The starting point for the following
discussion is therefore

v0

~�1
&

1

2

�
~�1

~�0

�
nþð1=2Þ

; (31)

where the polytropic index is defined by � ¼ 1þ 1=n.
Translating this expression into the coordinates used

throughout this work, we arrive at the following condition4

D � v0x
nþ1
?

�rnþð3=2Þ
1

&
ffiffiffi
g

p ¼ const: (32)

Here x? ¼ jrS � �r0j, �r0 is the position and �r1 the character-
istic length scale of the initial perturbation and rS and g are
radius and gravitational acceleration at the surface of the
background model, respectively. The derivation of relation
(31) does not take into account the precise shape of the
wave packet, however, which may enter as a dimensionless
constant.
In order to test their prediction numerically we perform a

series of simulations with Gaussian initial data. As a
measure of the characteristic length scale �r1 in Eq. (32),
we choose the full width at half maximum (FWHM) of the
Gaussian. For our model 1 wehave apolytropic index n¼1

and
ffiffiffi
g

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=r2S

q
¼ 0:1337. The resulting two-parameter

study is summarized in Table IX. For each combination of
width �r1 and initial position �r0 we start with a very small
amplitude of the initial perturbation and repeat the simu-
lation at increasingly larger amplitude until we observe
formation of a discontinuity. The resulting threshold am-
plitude v0 is then used to evaluate the left-hand side of
Eq. (32).
The numerical uncertainties in this study are dominated

by the difficulties in determining when a discontinuity has
actually formed. First, we have to discretize the amplitude
v0 in order to keep the number of simulations at an accept-
able level. Second, numerical dissipation may suppress
shock formation. Finally, there is some freedom in choos-
ing a critical gradient to define a discontinuity. In our
simulations we choose the critical value to be w;y ¼
0:05 km�1. Bearing in mind all these difficulties, we esti-
mate the numerical accuracy of the critical amplitude v0 to
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FIG. 10. Snapshots of the evolution of the velocity w for a moderate amplitude B ¼ 2� 10�4 of the initial perturbation (left panel)
and of �� obtained for an amplitude B ¼ 10�3.

4This expression corrects Eq. (28) in [64] by adding a missing
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x?=x0

p
.
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be about 10%. Within these uncertainties, we observe good
agreement with the predictions of [64]. The obtained val-
ues for D are listed in Table IX.

As long as the initial position of the pulse is not too close
to the center the left-hand side of Eq. (32) shows little
variation with the pulse width and initial location. Bearing
in mind that (32) has been derived for plane parallel
geometry and in the Newtonian approximation, the ob-
served increase in variability of the coefficient in
Table IX at small x0 is not surprising. For radii close to
the surface the determination of the width and the position
of the pulse is limited because the pulse steepens and
deviates significantly from a purely Gaussian profile.
Values obtained in this regime are thus given in
parentheses.

In summary, Eq. (32) as well as the numerical study
illustrate nicely that the significance of nonlinear effects
does not only depend on the amplitude of the evolving
feature. Instead, the length scale on which profiles change
is equally important and may generate significant devia-
tions from perturbative predictions at comparatively small
amplitudes of the signal.

For completeness we note that the stellar model used in
this study oversimplifies the structure of the stellar surface.
A crust expected to form at the surface of a neutron star is
likely to result in more complex phenomena and requires a
more detailed treatment. As has been mentioned above,
however, the primary purpose of our study is to probe the

taxonomy of nonlinear effects in the weakly and moder-
ately nonlinear regime. We postpone the sophistication of a
realistic neutron star model to future work. In this spirit,
our analysis leads to two main conclusions. First, the
theoretical modeling of neutron star surfaces requires par-
ticular care and, second, the surface exhibits a rich phe-
nomenology, not always concurrent with immediately
intuitive expectations.

V. SUMMARY

In this paper we have investigated a variety of nonlinear
effects associated with radial oscillations of polytropic
neutron star models. We have performed our study in the
framework of fully nonlinear general relativity and have
achieved a high level of numerical precision by formulat-
ing the time evolution in terms of finite deviations from an
equilibrium configuration which in our case is given by a
TOV model.
The first nonlinear effect studied in detail is the coupling

of eigenmodes due to nonlinear effects. In the absence of a
unique decomposition of a fully nonlinear dynamic model
into background and deviations, we have performed one-
parameter studies using as initial data the equilibrium
configuration perturbed in the form of one single eigen-
mode profile with varying amplitude. Our results and their
interpretation are to be understood in the context in this
particular construction of a reference background. By vir-
tue of the completeness of the eigenmode spectrum, we are
able to measure the excitation of modes not contained in
the initial data by calculating eigenmode coefficients from
overlap integrals. This analysis has revealed two qualita-
tively different regimes depending on the amplitude of the
initial data. For sufficiently low values, we find the exci-
tation of modes to increase quadratically with the ampli-
tude. In the context of analytic studies based on coupled
oscillators, as, for example, employed by Van Hoolst [22],
we interpret this quadratic dependence as a leading-order
coupling between different modes. In the case of an initial
perturbation given by the fundamental eigenmode, this
quadratic dependence persists over the entire range of
initial surface displacements of up to 70 m. Initial data of
higher modes with sufficient amplitude, however, result in
a transition in the excitation of modes to higher-order
power laws. Specifically, our results indicate that second-
arily excited modes appear in multiplets; initial data of
eigenmode j excites modes i ¼ jþ 1; . . . ; 2j according to
a quadratic power law, modes i ¼ 2jþ 1; . . . ; 3j with
cubic dependence and so on. Strong resonance effects
may cause some complications, however, which manifest
themselves in deviations from this rule. This behavior
demonstrates the significance of higher-order coupling of
eigenmodes. The onset of this moderately nonlinear re-
gime occurs at amplitudes of the order of a few meters, but
the details appear to vary with the stellar model. As a
general rule, we find higher-order modes to pass energy

TABLE IX. The left-hand side of Eq. (32) for critical pertur-
bations that are sufficiently large to generate shocks close to the
surface.

�r0 in [km] v0jrS��r0jnþ1

�rnþð3=2Þ
1

for initial width
ffiffiffiffiffiffiffiffi
b=2

p
0.2 0.3 0.4 0.5

6.79 0.180 0.196 0.204 0.207

7.13 0.168 0.182 0.189 0.191

7.45 0.157 0.170 0.176 0.178

7.76 0.148 0.160 0.165 0.167

8.05 0.141 0.152 0.157 0.158

8.32 0.135 0.145 0.150 0.151

8.58 0.130 0.140 0.144 0.145

8.82 0.126 0.135 0.139 0.140

9.05 0.123 0.132 0.135 0.136

9.27 0.120 0.129 0.132 0.133

9.47 0.118 0.126 0.130 0.130

9.66 0.117 0.125 0.128 0.129

9.83 0.115 0.123 0.127 0.128

9.99 0.114 0.123 0.126 0.127

10.13 0.114 0.122 0.126 0.128

10.27 0.114 0.122 0.126 0.128

10.38 0.114 0.123 0.127 0.130

10.46 0.114 0.123 0.129 0.131

10.58 (0.115) (0.125) (0.131) (0.134)

10.65 (0.116) (0.127) (0.134) (0.139)

10.72 (0.118) (0.130) (0.138) (0.141)
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to lower-order modes more efficiently than the other way
around.

Our results confirm the intuitive expectation that eigen-
modes with an integer frequency ratio interact particularly
efficiently. This resonance manifests itself most conspicu-
ously in the second and fourth eigenmode of the stiffer
model considered in this study where the frequency ratio is
equal to two within three digits. Initial data in the form of
the second mode can excite the fourth mode with such
efficiency that both amplitudes become comparable. When
this happens, we observe a further complication in the
nonlinear behavior: the strong excitation of mode 4 results
in a significant transfer of energy to other eigenmodes and
its amplitude saturates, i.e. it stops growing in accordance
with the expected power law. A similar behavior is ob-
served for other pairs of modes, as, for example, modes 2
and 6. Overall, resonance appears to be weaker for larger
deviations of the involved frequency ratios from an integer
value.

A particularly fertile ground for the analysis of nonlinear
effects is given by stellar models close to the stability limit
of the mass-radius relation. Instability manifests itself in
the vanishing of the oscillation frequency of the fundamen-
tal eigenmode [7] in which case the linear (in the devia-
tions) terms in the evolution equations cancel. The
resulting dominance of higher-order terms leads to a vari-
ety of effects. Most notably, our results show that nonlinear
effects have the capacity to stabilize stars expected to be
unstable in linear analysis; initial perturbations lead to a
periodic pulsation of the star instead of the expected gravi-
tational collapse. Nonlinearity further manifests itself in a
visible distortion of the time dependence of the oscillations
away from sinusoidal character. Also, the oscillation pat-
tern depends on the initial phase of the perturbation. It will
be interesting to investigate in future work to what extent
this stabilization is a generic feature and how it depends on
the physical properties of the stellar model.

Finally, we have studied the formation of discontinuities
near the surface of the star by evolving Gaussian pulses
propagating from the stellar interior towards the surface. In
particular, we have compared our numerical findings with
analytic predictions by Gundlach and Please [64] who give
threshold amplitudes for the initial amplitude of the pulse
depending on its initial location in the sense that ampli-
tudes above this threshold lead to shock formation and
those below do not. Within the accuracy of the analysis,
approximately 10%, our numerical results confirm the
predictions of Gundlach and Please in the range of validity
of their model.

In summary, the precision of the numerical method
proposed here has enabled us to identify a number of
nonlinear effects with no approximation other than that
of a rather simple stellar model. Our results suggest a
variety of extensions for future work. These include the
refinement of the stellar model by including, for example,

realistic equations of state, magnetic fields and, most im-
portantly, relaxing the condition of spherical symmetry.
The main obstacle for the latter appears to us to be the
extension of the comoving, Lagrangian formulation to
higher dimensional problems. We find a careful treatment
of the stellar surface to be crucial in our study. A possible
avenue towards achieving this goal is the use of level set
methods and fast marching methods [65] specifically de-
signed to follow the motion of interfaces in numerical
simulations.
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APPENDIX A: THE EIGENMODE EQUATION

In the limit of infinitesimally small deviations �f from
the equilibrium variables �f, the time evolution of the star is
governed by the linearized version of the system (14)–(18).
The combination of these equations into the single, second-
order partial differential Eq. (19) for the rescaled displace-
ment � is discussed in detail in [60]. The coefficientsW,�
and Q in that equation are given by

� ¼ �C2ð ��þ �PÞ
��3 ��

�r2
(A1)

W ¼ ð ��þ �PÞ
�� ��3

�r2
(A2)

Q ¼ �
�C2

�� ��;x

��

�
2 þ 4

�r

��;x

��
� 8	 ��2 �P

�
; (A3)

where the metric function �� ¼ ð1� 2 �N �rÞ�1=2.
In order to numerically solve the eigenmode equation,

we write it as a first-order system in the variable 
 and
make the ansatz 
ðt; xÞ ¼ 
ðxÞei!t.

0 ¼ �C2
;x � B (A4)

B;x ¼ �
�C2 �r;x
�

� ��

�r2

�
�

�r;x

�
�r2

��

�
;x

�
;x
þ �r;xð!2W þQÞ

�



�
�
�r;x
�

� ��

�r2

�
2
��

�r2

��

�
2 �

�r;x

�
;x
�

�C2
;x

�C2

�
B (A5)

0 ¼ ð!2Þ;x: (A6)

The last equation simply expresses the fact that the
frequency ! is constant. The purpose of introducing this
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equation becomes apparent when we consider the bound-
ary conditions. Spherical symmetry requires the displace-
ment 
 to vanish at the origin. The auxiliary variable B
vanishes by definition at the stellar surface. The value of B
at the origin determines the amplitude of the profile 
ðxÞ.
Because eigenmodes are only defined up to a constant
factor, we are free to choose for Bð0Þ an arbitrary finite

value. We thus have a two-point-boundary-value problem
for the three variables 
ðxÞ, BðxÞ and !ðxÞ which we solve
with a relaxation algorithm. In particular, the solution for
the constant !ðxÞ provides us with the frequency of the
eigenmode. Solutions only exist for specific values of the
frequency and finding a given mode requires a relatively
careful initial guess.
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