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We investigate perturbations of the Schwarzschild geometry using a linearization of the Einstein

vacuum equations within a Bondi-Sachs, or null cone, formalism. We develop a numerical method to

calculate the quasinormal modes, and present results for the case ‘ ¼ 2. The values obtained are different

than those of a Schwarzschild black hole, and we interpret them as quasinormal modes of a Schwarzschild

white hole.
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I. INTRODUCTION

The theory of a linear perturbation of a black hole was
developed some time ago [1–4]; see also Ref. [5] and the
review in[6]. The essential idea is that the vacuum Einstein
equations are linearized about the Schwarzschild (or Kerr)
geometry described by the usual ðt; r; �;�Þ coordinates.
Then a standard separation of variables ansatz is applied,
with metric quantities behaving as an unknown function of
r� Y‘mð�;�Þ expði�tÞ (actually, the angular dependence
is somewhat more complicated, and the technical details
can be found in the literature). There results an ordinary
differential equation in r, and the quasinormal modes are
obtained by finding the special values of � for which
solutions exist that satisfy appropriate boundary conditions
in the neighborhood of the event horizon, and of infinity.

Quasinormal mode theory has become a cornerstone of
modern general relativity theory. They have been seen in
numerical relativity simulations of binary black hole co-
alescence. And, while not yet actually observed, it is
strongly expected that they will be measured by the
LIGO collaboration, and certainly by Laser
Interferometer Space Antenna (LISA), yielding precise
information about the parameters describing a black hole
from some coalescence event.

In the usual approach to linear perturbations of a black
hole, the linearization is performed using standard
Schwarzschild (or Kerr) coordinates ðt; r; �;�Þ. It is also
possible to perform the linearization using Bondi-Sachs
coordinates, which is a coordinate system based on out-
going null cones. This has been done in previous work in
order to obtain analytic solutions of the linearized Einstein
equations for the purpose of testing numerical relativity
codes. As with the usual approach, one ends up with a
second order ordinary differential equation involving ‘ and
� as parameters, Eq. (5). However, when the quasinormal
modes were calculated for this equation, it was found that
they are not the standard ones. Different physical problems
are considered in the two cases, as illustrated in the Penrose
diagram of Schwarzschild spacetime (Fig. 1).K is a typical
hypersurface used in finding the quasinormal modes of a
black hole, and the direction of wave propagation at the

boundaries of K is shown by arrows. On the other hand, N
is a typical hypersurface used in finding the quasinormal
modes of Eq. (5). From the direction of wave propagation
on N, the resulting quasinormal modes can be interpreted
as being those of a white hole.
The plan of this paper is as follows. Section II summa-

rizes previous work on the Bondi-Sachs metric and line-
arized solutions within that framework. Section III
describes our approach to calculating the quasinormal
modes, and Sec. IV presents the results. We end with a
conclusion in Sec. V.

II. BACKGROUND MATERIAL

The Bondi-Sachs formalism uses coordinates xi ¼
ðu; r; xAÞ based upon a family of outgoing null hypersurfa-
ces. We label the hypersurfaces by u ¼ const, null rays by
xA (A ¼ 2, 3), and the surface area coordinate by r. In this
coordinate system, the Bondi-Sachs metric [7–9] takes the
form

ds2 ¼ �
�
e2�

�
1þW

r

�
� r2hABU

AUB

�
du2 � 2e2�dudr

� 2r2hABU
BdudxA þ r2hABdx

AdxB; (1)

where hABhBC ¼ �A
B and detðhABÞ ¼ detðqABÞ, with qAB
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FIG. 1. Penrose diagram illustrating the differences, in terms
of location and boundary conditions, between the hypersurfaces
K and N.
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being a unit sphere metric. We represent qAB by means of a
complex dyad qA. For example, in the case that the angular
coordinates are spherical polar ð�;�Þ, the dyad takes the
form

qA ¼ ð1; i sin�Þ: (2)

For an arbitrary Bondi-Sachs metric, hAB can be repre-
sented by its dyad component

J ¼ hABq
AqB=2: (3)

We also introduce the spin-weighted field U ¼ UAqA as
well as the (complex differential) eth operators ð and �ð
[10]. In Schwarzschild spacetime, W ¼ �2M, � ¼ 0,
UA ¼ 0, and J ¼ 0.

We use Z‘m, rather than Y‘m, as spherical harmonic basis
functions, where [11] the Z‘m have orthonormal properties
similar to those of the Y‘m, and are real.

We assume the following ansatz, representing a small
perturbation of the Schwarzschild geometry:

� ¼ Reð�0ðrÞei�uÞZ‘m;

U ¼ ReðU0ðrÞei�uÞðZ‘m;

J ¼ ReðJ0ðrÞei�uÞð2Z‘m;

W ¼ �2Mþ Reðw0ðrÞei�uÞZ‘m: (4)

Using the above ansatz, Ref. [11] constructed the result-
ing linearized Einstein vacuum equations. As expected, the
angular and time dependence factored out, and a system of
ordinary differential equations (in r) was obtained. As
discussed in Ref. [11], the system can be manipulated to
give

x3ð1� 2xMÞd
2J2
dx2

þ 2
dJ2
dx

ð2x2 þ i�x� 7x3MÞ
� 2ðxð‘2 þ ‘� 2Þ=2þ 8Mx2 þ i�ÞJ2 ¼ 0; (5)

where J2ðxÞ ¼ d2J0=dx
2 and x ¼ 1=r. [Actually, Ref. [11]

gave Eq. (5) only in the case ‘ ¼ 2, and here we give the
formula for general ‘.]

III. PROBLEM SPECIFICATION

We note that Eq. (5) has singularities at x ¼ 0 and x ¼
0:5M. The problem is to find values of � for which there
exists a solution to Eq. (5) that is regular everywhere in the
interval ½0; 0:5M�; these values of � are the quasinormal
modes. This is the same situation that is faced when finding
the quasinormal modes of a black hole. The first solution to
this problem was obtained by using series solutions around
the singular points, and a numerical solution of an ordinary
differential equation within the interior of the interval [4].
Subsequently, it was shown [12] how the theory of 3-term
recurrence relations [13] for the series solution about x ¼
0:5M could be used to determine the quasinormal modes.

It is straightforward to write Eq. (5) with the origin
transferred to x ¼ 0:5M, and then to evaluate the recur-

rence relation satisfied by a regular solution [see Eqs. (24)
and (25) below]. We find a 4-term, rather than a 3-term,
recurrence relation. While it may be that the quasinormal
modes could be found by an approach similar to that of
[12], this is not a practical option since there does not seem
to be available a well-developed mathematical theory of 4-
term recurrence relations.
Instead, we proceed along the lines used in [4]. We

construct the asymptotic series about the essential singu-
larity at x ¼ 0, and use it to find a solution to within a
specified tolerance at a point x0 > 0. We then use this
solution as initial data for a numerical solution of Eq. (5)
in the range ðx0; xcÞ where xc < 0:5M; actually, as in [4],
we do not integrate Eq. (5) directly but first convert it to
first-order Ricatti form. Finally, we construct the regular
series solution about x ¼ 0:5M and use it to find a solution
at x ¼ xc. Then a value of � is a quasinormal mode if the
difference at x ¼ xc between the regular series solution
and the numerical solution vanishes.

A. Asymptotic series solution about the essential
singularity at x ¼ 0

Since the singularity is essential, the resulting series
solution has a radius of convergence zero, although it is
asymptotic. We use [14] to determine rigorous bounds on
the error of approximating the solution by its first n terms.
Note that a series solution J2ðxÞ ¼ P1

n¼1 anx
n to Eq. (5)

can be generated by the recurrence relation

an ¼ �an�1

n2 þ n� 6

2i�ðn� 1Þ þ an�2M
2nðnþ 2Þ
2i�ðn� 1Þ ; (6)

with a1 ¼ 1, a2 ¼ 0.
In order to use the theory developed in [14], we must

first transform Eq. (5) to an asymptotic form by

x ! z ¼ 1

x
(7)

and investigate the solution about the singularity at infinity.
We find

z2ðz� 2Þ d
2J2ðzÞ
dz2

� zð2z2i�þ 2z� 10Þ dJ2ðzÞ
dz

� ð2z2i�þ 4zþ 16ÞJ2ðzÞ ¼ 0; (8)

where we have normalized the scaling of z by settingM ¼
1. We evaluate quantities used in [14]:

f ¼ � 2ðz� 5þ i�z2Þ
zðz� 2Þ ; g ¼ � 2ð2zþ 8þ i�z2Þ

z2ðz� 2Þ ;

f0 ¼ �2i�; f1 ¼ �2� 4i�; g0 ¼ 0;

g1 ¼ �2i�; � ¼ i�; � ¼ 2þ 2i�: (9)

Then the solutions can be written as
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J2jðzÞ ≍ expð�jzÞz	j

X1
s¼0

as;j
zs

; (10)

where

�1 ¼ 0; 	1 ¼�1; �2 ¼ 2i�; 	2 ¼ 3þ 4i�:

(11)

Following [14], we let the solution to Eq. (8) be

J2ðzÞ ¼ LnðzÞ þ 
nðzÞ; (12)

where

LnðzÞ ¼ expð�1zÞz	1

Xn�1

s¼0

as;1
zs

(13)

and define the residual RnðzÞ by
d2LnðzÞ
dz2

þ fðzÞ dLnðzÞ
dz

þ gðzÞLnðzÞ ¼ RnðzÞ
z

; (14)

with

jRnðzÞj � Bn

znþ1
(15)

in some region jzj> b and where Bn is calculable.
Reference [14] obtains a bound on 
nðzÞ, provided the
quantity Cðn; b; �Þ defined immediately below satisfies
C< 1, where

Cðn; b; �Þ ¼ �
ffiffiffiffi
�

p
�ð12 ðnþ 1Þ þ 1ÞÞ

j2i�j�ð12 ðnþ 1Þ þ 1
2ÞÞðnþ 1Þ ; (16)

where � is bounded by

� � j4i�j þ
��������8

1þ i�

b� 2

��������þ
��������32

1

bðb� 2Þ
��������

þ j2i�j
�
j2þ 4i�j þ

��������2
3� 4i�

b� 2

��������
�
: (17)

Given � and b, we use numerics to determine conditions on
n such that C< 0:99 and then we bound 
nðzÞ by

j
nðzÞj � 2Bn

�ð1� Cðn; b; �Þjzjnþ1
: (18)

We also need to bound the error 
0nðxÞ in using a finite

series to estimate dJ2ðxÞ
dx . Noting that

dJ2ðxÞ
dx

¼ �z2
dJ2ðzÞ
dz

; (19)

the bound on the error is

j
0nðxÞj � 2ji�jBn

�ð1� Cðn; b; �Þjzjn�1
: (20)

Numerical implementation

We have written MATLAB code that takes as input � and
b, and then finds � and the lowest value of n such that C<
0:99. Then the code finds the maximum of the absolute
values of 
nðbÞ and 
0nðx ¼ 1=bÞ. A bisection method
program takes � as input and refines b until the absolute
value of the maximum error is in the range ð0:5; 1Þ �
machine precision (about 2� 10�16). The code returns
the values of 1=b and LnðbÞ=L0

nðx ¼ 1=bÞ.

B. Numerical integration of Eq. (5)

The first step is to transform Eq. (5) into first-order
Ricatti form. Defining a new dependent variable vðxÞ by

J2ðxÞ ! vðxÞ ¼ 1

J2ðxÞ
dJ2ðxÞ
dx

; (21)

we obtain

x3ð1� 2xÞ
�
dv

dx
þ v2

�
þ 2xð2xþ i�� 7x2Þv

� 2ð2xþ 8x2 þ i�Þ ¼ 0: (22)

The numerical integration of Eq. (22) near the singular-
ity at x ¼ 0 can be tricky because we need the results to be
as accurate as possible. We found that a fourth order
Runge-Kutta scheme (ODE45 in MATLAB) performed better
than the stiff schemes, provided stringent tolerance con-
ditions were used (specifically, RelTol ¼ 10�12,
AbsTol ¼ 10�12, MaxStep ¼ 2� 10�6). Under these con-
ditions, each integration to xc ( ¼ 0:25) takes the of order
of 100 s.

C. Series solution about the regular singularity at
x ¼ 0:5M

We first make the transformation

x ! s ¼ 1� 2x (23)

to Eq. (5) and obtain

sð1� sÞ3 d
2J2ðsÞ
ds2

� ð1� sÞð4i�� 3þ 10s� 7s2Þ dJ2ðsÞ
ds

� 4ði�þ 3� 5sþ 2s2ÞJ2ðsÞ ¼ 0: (24)

This equation has a series solution
P1

0 ans
n that satisfies

the recurrence relation

a0 ¼ 1; a1 ¼ 4
3þ i�

3� 4i�
;

a2 ¼ 15ð4þ 3i�Þ
2ð1� i�Þð3� 4i�Þ ;

an ¼ an�1

4ni�� 8i�� 5� 3n2 � 4n

nð4i�� n� 2Þ
þ an�2

4þ 3n2 þ 2n

nð4i�� n� 2Þ þ an�3

ð1� nÞð1þ nÞ
nð4i�� n� 2Þ :

(25)
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The radius of convergence of the above series is s < 1,
and, given �, the numerical evaluation of the coefficients,
and then of the series, is straightforward. Using xc ¼ 0:25
means that we need to evaluate the series at s ¼ 0:5. We
terminate summation of the series at the first term smaller
than 10�18 (typically, about 60 terms), and thus expect the
result to be accurate to within machine precision (about
2� 10�16).

IV. RESULTS

We have written a MATLAB program that, given a value
of �, first uses the asymptotic series to find the value v0 of
vðxÞ [as defined in Eq. (21)] at x ¼ x0 ¼ 1=b, and then
integrates numerically Eq. (22) between x0 and xc ¼ 0:25,
obtaining a complex number vþ ¼ vðxcÞ; and second uses
the regular series about x ¼ 0:5 to find v� ¼ vðxcÞ.
Defining

g� ¼ vþ � v�; (26)

the quasinormal modes are those values of � such that g� is
indistinguishable from zero.

We calculated g� for values of � in the range � ¼ aþ
ib, 0:1 � a � 1:07, 0:05 � b � 0:89, in increments of
0.03. The results are shown in the contour plot in Fig. 2.
The black, dotted line is the zero contour of Imðg�Þ, the
red, solid line is the zero contour of Reðg�Þ, and the blue,
dashed line is the boundary of a region where the compu-
tation is probably unreliable (because the computed curve
oscillates, indicating that a smaller step length is required).
Clearly, the quasinormal modes lie at the intersection of a
red and a green line, and from the plot we can read off an
estimate for the lowest mode, � ¼ 0:9þ 0:63i. We then
applied a secant method, obtaining a final estimate for the
lowest quasinormal mode at

� ¼ 0:883þ 0:614i: (27)

In this case, x0 ¼ 0:03 649 322 879 5438, v0 ¼
0:03 683 852 181 8950þ 0:000 637 428 772 012i, � ¼
0:98 851 779 024 0599, and 62 terms were used in the
asymptotic series. The contour plot indicates another qua-
sinormal mode at about � ¼ 1:06þ 0:63i, but we did not
investigate further.

We now use the value in Eq. (27), and vary the numerical
methods so as to determine the accuracy with which g� has
been determined. In Fig. 3 the integration between x0 and
xc is carried out with different values of MAXSTEP, 2�
10�6, 10�6, and 5� 10�7, and also an error of an amount
ð1þ iÞ � 10�15 is introduced into the value of v0 at x0 in
the case MaxStep ¼ 2� 10�6. Also, numerical integration
of Eq. (22) as well as a series solution is used in the range
ðxc; 0:5Þ. The various curves lie on top of each other and are
visually indistinguishable. Taking all these options into
account, the maximum value noted for g� was ð6:02þ
5:87iÞ � 10�4. Using intermediate results from the secant
root-finding process to estimate

@�

@g�
¼ 3:95þ 0:69i; (28)

it follows that the possible error in Eq. (27) is

jð3:95þ 0:69iÞ � ð6:02þ 5:87iÞ � 10�4j ¼ 0:003; (29)

so that Eq. (27) should be amended to read

� ¼ 0:883þ 0:614iþ 0:003k; (30)

where k is a complex number satisfying jkj � 1.
The lowest quasinormal mode of a Schwarzschild black

hole is at � ¼ 0:3 7367þ 0:08 896i. We have used this
value in our code, and obtained Fig. 4 from which it is
clear that this value of � is not a quasinormal mode of
Eq. (5).
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FIG. 2 (color online). Contour plot in the complex plane of �
showing the contours where Reðg�Þ ¼ 0 (red, solid line) and
Imðg�Þ ¼ 0 (black, dotted line) as well as the boundary of the
region of unreliable computation (blue, dashed line).
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FIG. 3 (color online). The real (solid line) and imaginary
(dotted line) parts of vðxÞ in the quasinormal mode case � ¼
0:883þ 0:614i.
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V. CONCLUSION

Using a linearization of the vacuum Einstein equations
about the Schwarzschild geometry, within a Bondi-Sachs
framework, we have constructed a numerical procedure to
calculate the quasinormal modes. The value of the lowest
mode in the case ‘ ¼ 2 is not a quasinormal mode of a
Schwarzschild black hole, and further the lowest quasinor-
mal mode of a Schwarzschild black hole is not a quasinor-
mal mode of Eq. (5). As discussed in the Introduction, this
apparent discrepancy can be avoided by interpreting the

quasinormal modes of Eq. (5) as being those of a white
hole rather than those of a black hole.
The results obtained depend crucially on the validity of

Eq. (5), and thus it is important to discuss the extent to
which this has been verified. Equation (5) was derived in
[11], and there has been no subsequent, independent deri-
vation. Nevertheless, Eq. (5) has been subject to some
consistency checks since Ref. [11] confirmed that solutions
obtained also satisfy the remaining Einstein equations (the
constraint equations). Further in the caseM ¼ 0, solutions
based on Eq. (5) have been used as analytic solutions for
the testing of numerical relativity codes based on the
Bondi-Sachs metric, and the expected order of conver-
gence was observed [15,16].
The evidence for the existence of black holes is now

very strong. However, the question about the existence of
white holes is much more problematic since such objects
cannot form from regular initial data, but instead must have
been created as part of the creation of the Universe. The
present work provides a possible observational signature of
a white hole, since it is, in principle, possible for a gravi-
tational wave detector to extract the parameters of a qua-
sinormal mode from a gravitational wave signal.
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Szilágyi, Classical Quantum Gravity 24, S327 (2007).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.15

−0.1

−0.05

0

0.05

0.1

FIG. 4 (color online). The real (solid line) and imaginary
(dotted line) parts of vðxÞ in the case � ¼ 0:3 7367þ
0:08 896i, indicating that the lowest quasinormal mode of a
Schwarzschild black hole is not a quasinormal mode of
Eq. (5).
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