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We propose a new framework unifying cold dark matter (CDM) and modified Newtonian dynamics

(MOND) to solve their respective problems on galactic scales and large scale structure formation. In our

framework the dark matter clusters on large scales but not on galactic scales. This environment

dependence of the dark matter behaviors is controlled by a vector field, which also produces the

MOND effects in galaxies. We find that in this framework only a single mass scale needs to be introduced

to produce the phenomena of CDM, MOND, and also dark energy.
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I. INTRODUCTION

The observed universe appears to not be made purely of
standard model particles and Einstein gravity. We have yet
to identify the physics of the missing constituent(s). Data
on galactic and larger scales are often used to argue for the
modified Newtonian dynamics (MOND) and the cold dark
matter (CDM) frameworks, respectively. Linear growth of
large scale structure in the early universe, such as the
cosmic microwave background (CMB), favors the CDM
idea, and nonlinear structures on the scale of galaxy clus-
ters agree very well with numerical CDM simulations. On
the other hand, on smaller scales, Milgrom’s MOND for-
mula [1] captures the tight correlation of the observed
baryonic mass distribution within a spiral galaxy vs the
observed gravitational acceleration at each radii of that
galaxy. This applies to galaxies with a wide range of scales,
formation histories, and environments, from dwarf to ellip-
tical galaxies [2–6]. The amazing accuracy of this relation
and the fact that it predicts a correct Tully-Fisher relation
even for tidal dwarf galaxies [7] motivate the noncovariant
MOND theory [8] and a class of covariant theories [9–15],
to eliminate the need for the CDM particles.

However, both CDM and covariant MOND have their
own problems. So far, the most challenging difficulty for
covariant MOND theories is in producing early growths of
large scale structure and fitting the CMB data [16–18] on
which CDM works very well. Also, massive neutrinos
seem to be indispensable even in covariant MOND to
explain the lensing data in galaxy clusters [19,20]. In
comparison, thanks to its simplicity, the CDM framework
enjoys many tools for sophisticated numerical simulations,
yet the properties of galaxies in these simulations are not in
good agreement with observations. The overproduction of
dark structures in small scales is well known as the sub-

structure problem and the cusp problem. A common as-
sumption to solve this problem is that the CDM particle is
ballistic and will always follow the same geodesic equation
as a collisionless star would.
Indeed, CDM and MOND are both complementary and

mutually exclusive: if both exist in galaxies, then obviously
new problems will arise. A natural way out of this dilemma
is to have a ‘‘CDM’’ which is no longer cold in the
environments where MOND dominates, e.g., letting it
develop a nonzero pressure or have a much smaller mass
(for particles) there. This environment dependence may be
controlled by a scalar field, but in this case the different
dark matter behaviors in different regimes (galactic, clus-
ter, and cosmological) indicate that the coupling between
the scalar field and the dark matter must be fine-tuned (if it
is possible anyway), because of the dynamical nature of the
scalar field. In order to see why, note that the MONDian
behavior is only expected where the Newtonian accelera-
tion jr�j is smaller than the MOND parameter a0 (on
galactic scales), but not in the solar system (where jr�j �
a0), nor on cosmological scales in most of the cosmic
history (where cH � a0). These suggest that we should
use both jr�j=a0 and cH=a0 as the criteria about the
environment dependence of the dark matter behaviors. A
scalar field dark matter faces not only the challenge to
reproduce MOND when jr�j & a0 [21], but also to fol-
low both r� and cH through a correct dynamical evolu-
tion, because there are no inherent characteristic quantities
which mimic r� or cH in normal scalar field models.
In most attempts to construct relativistic MOND, a

vector field is used, which can easily overcome the second
challenge faced by scalar fields. Furthermore, from pre-
vious studies of timelike unit-norm vector fields (the Æther
field�a [22]), we know that there are four possible kinetic
terms for �a, which have different properties in different
regimes. If we write these kinetic terms as K �
Kab

cdra�
crb�

d with Kab
cd ¼ c1g

abgcd þ c2�
a
c�

b
d þ

c3�
a
d�

b
c þ c4�

a�bgcd, in which ci’s are dimensionless
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constants, then Table I briefly summarizes the behaviors of
these terms in different regimes. More specifically, in the
static limit the c1 and c4 terms are / ðr�Þ2, while in the
background the c1;2;3 terms are / ðcHÞ2 (see [11] for an

earlier discussion about this point).
These facts suggest that the Æther field �a should be a

natural candidate to control the environment dependence
of the dark matter’s behavior, most probably through a
coupling to the latter. In this work we shall give a simple
example to illustrate this principle. The idea is very
straightforward: let the behavior of the dark matter depend
on K=a20, which could be very large on cosmological

scales in most of the cosmic history (K� c2H2 � a20)
and in the solar system (K� jr�j2 � a20), but becomes

of order unity or less on galactic scales K� jr�j2 & a20.
In the first case the dark matter has (nearly) zero pressure
and zero sound speed, and thus is actually cold, while in the
latter situations it acquires a nonzero pressure and nonzero
sound speed, and thus no longer clusters; instead then, the
�a field will produce the MOND effect.

II. OUR MODEL AND ITS BEHAVIORS

A distinction between our model and previous ones [9–
12,18] is that we are not using �a to grow the large scale
structure, which proves difficult. Instead, we introduce a
dark matter ’ which is controlled by �a through a cou-
pling. For illustration purposes, we take ’ as a k-essence
field [23], though our principle can be applied much more
generally (see a discussion below). We start from the
following Lagrangian density:

L ¼ �gð’;X;KÞ þ Vð’;KÞ þ �ð�a�a � 1Þ; (1)

in which g and V are arbitrary functions, ’ is a dimen-
sionless scalar field, X � 1

2ra’ra’, and K and �a are

defined above; � is a Lagrange multiplier ensuring that�a

has unit norm. For gð’;X;KÞ, we use a generic power law
in X with the power dependent on K:

gð’;X;KÞ ¼ gðX;KÞ ¼ 2w

�
X

a20

�ðwþ1Þ=2w
a20; (2)

in which the normalization a20 is always justified because ’

(hence X) could be rescaled; w ¼ wðK3

a2
0

Þ, which has the

meaning of the dark matter equation of state, is a free
function introduced to produce the desired effects, and
K3 � c3�

a
d�

b
cra�

crb�
d only has the c3 term. Here c3

is a constant, and we adopt 1
w ¼ 3þ ðK

a2
0

Þn, where n ¼ 1 for

illustration. We further choose Vð’;KÞ ¼ VðK4Þ, where
K4 � c4ðwÞ�a�bgcdra�

crb�
d has only the c4 term;

here c4 can be a function of w, but for the simplicity of
arguments, we shall first treat c4 as a constant first. Note
that our choices of the c3 and c4 terms above are designed
so that we have a clean separation between the dark matter
behaviors in cosmological background (g) and in the static
limit (V). This is achieved because the c3 term only has
effects on the former while the c4 term only affects the
latter (cf. Table I).
A variation with respect to the metric tensor gives the

following energy momentum tensor1:

8�GTab ¼ gXra’rb’� gab½gðX;KÞ � VðKÞ�
� 2rc½ðVK � gKÞð�cJðabÞ þ�ðaJcbÞ
��ðaJbÞ

cÞ� þ 2rc½ðVK � gKÞJcd��d�a�b

� 2c4VKð�drd�cÞð�ere�
cÞ�a�b

þ 2c4VKð�crc�aÞð�drd�bÞ; (3)

where we have defined Jac � Kab
cdrb�

d and

gK � @gðX;KÞ
@K

; VK � @Vð’;KÞ
@K

: (4)

We could also derive the scalar and vector field equations
of motion, but they are not needed here.
The energy momentum tensor for the k-essence field is

defined as (see below for a discussion)

8�GT’
ab ¼ gXra’rb’� gabgðX;KÞ; (5)

which resembles the energy momentum tensor of a perfect

fluid T’
ab ¼ ð�’ þ p’Þuaub � p’gab with ua ¼ ra’ffiffiffiffiffi

2X
p , en-

ergy density �’, and pressure p’:

8�G�’ ¼ 2XgX � gðX;KÞ; (6)

8�Gp’ ¼ gðX;KÞ: (7)

Substituting Eq. (2) into Eqs. (6) and (7) it is easy to check

w ¼ p’

�’

¼ 1

3þ K
a20

: (8)

So we see that when K � a20 this behaves as dust while

when K � a20 it behaves as radiation. Furthermore, when

it behaves as dust the sound speed c2s satisfies

TABLE I. The behaviors of the ci terms in different relevant
regimes (þ means there is effect and � means no effect). The
static limit of the terms actually depend on spatial configuration
of the vector field, but this can be consistently regarded as of
higher order.

Terms c1 c2 c3 c4

Cosmological background þ þ þ �
Cosmological perturbation þ þ þ þ
Static limit þ � � þ

1Note that in Eq. (3) the K in gðX;KÞ can be different from
that in Vð’;KÞ (e.g., having different ci’s). Consequently, if, for
example, the K in Vð’;KÞ has no c4 term, then c4VK is zero,
but this does not necessarily mean that c4gK is also zero and
vice versa.
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c2s ¼ gX
2XgXX þ gX

¼ 1

3þ K
a2
0

! 0; (9)

so that it has the desired clustering property of CDM.

Remember that we have chosen the K in wðK
a2
0

Þ as to

have only a c3 term. It requires no fine-tuning to choose c3
so that all through the cosmic historyK� 3c3H

2c2 � a20,
since cH0 � 6a0 and H >H0 at earlier times, as the result

of which a choice of c3 �Oð100–102Þ guarantees 1
w � K

a2
0

�
108c3 � 1 (if we use n > 1 in w then c3 could even be set
to 1). This indicates that in our model the scalar field does
behave like CDM in the background expansion and the
large scale structure formation, where there is significant
Hubble expansion.

At this stage one may beworried about the other terms in
the energy momentum tensor in Eq. (3): are they large
enough to spoil the good CDM behaviors we have obtained
so far? We discuss how VðKÞ and VK are negligible
separately below. For the gK terms, from Eq. (2) we get

gK ¼ 8�Gp’

2a20

�
log

X

a20
� 2w

�
: (10)

To see that gK � 1, note that p’ ¼ w�’ � �’a
2
0=K

when K ¼ 3c3ðcHÞ2 � a20 and 8�G�’=3ðcHÞ2 �Oð1Þ,
so

8�Gp’

2a20
� 4�G�’

K
� 4�G�’

c2H2
�Oð1Þ: (11)

Meanwhile, the current fractional energy density of dark
matter is 0.2, which means that 8�G�’0 � 0:6ðcH0Þ2 �
20a20, so we have

8�G�’ ¼ 2

�
X

a20

�
wþ1=2w

a20 � 20a20ð1þ zÞ3;

in which z is the redshift, or�
X

a20

�
wþ1=2w ¼ Bð1þ zÞ3

with B� 10. As a result

log
X

a20
¼ 2w

wþ 1
½logBþ 3 logð1þ zÞ� �OðwÞ � 1

today; logðX
a2
0

Þ=w increases with redshift logarithmically at

high redshifts, e.g., logðX
a20
Þ=w�Oð102Þ at z� 1010. But

w / ð1þ zÞ�3 and ð1þ zÞ�4 in the matter and radiation
dominated eras so that indeed both w and logðX

a2
0

Þ decrease
quickly with redshift. This above analysis shows that
gK �Oð100–102Þw � 1 in all the cosmological epochs
of interests, which is easy to understand because g� a20 is

very small while K
a2
0

is very large (this order-of-magnitude

estimate holds for general n’s). The smallness of gK
strongly suppresses the effects of the Æther terms in

Eq. (3), making them negligible. In fact, the T’
ab in

Eq. (5) is not conserved, but the smallness of gK implies
that the energy exchange between ’ and �a is just negli-

gible. Then, as p
� ,

_p
_� , and

�p
�� �OðwÞ � 1, Eqs. (35), (36) of

[24] show that the perturbation growth also mimics that of
CDM for reasonable parameters. Numerical results will be
reported in a forthcoming paper.
We next consider the cluster scales, where the observa-

tions are not compatible with MOND alone but necessarily
incur a certain amount of dark matter. An example is the
bullet cluster, in which the offset between the gas and dark
matter distributions is hard to explain by MOND. These
scales generally have not decoupled from the background
expansion, where according to our model the dark matter is
still cold. Thus this model has the potential to explain the
observations on cluster scales.
On galactic scales, the spacetime is more or less static,

which means thatK3

a2
0

is small enough to makew ¼ c2s ! 1
3 ,

so that the pressure support is strong enough to prevent any
further collapse of dark matter. This eliminates the CDM in
galaxy systems as we expected, since otherwise CDM and
MOND will coexist, spoiling MOND’s good fit with data.
Now, with the scalar field dark matter not clustering and
the gK (with only c3 term) having no effect in the static
weak field, it is the role of the VðKÞ (only c4 term) to
produce the MOND effect. To do this, let us use the metric
ds2 ¼ ð1þ 2��Þdt2 � ð1� 2��Þdxidxj and write �a ¼
�a
0 þ ��a in which �a is the perturbation of �a and � is a

small positive quantity. Then up to first order in �, it is easy

to derive that G00 ¼ �2�;i
;i ¼ 2@i@i�, where we have

used the fact that � ¼ � thanks to the absence of aniso-
tropic stresses. For the energy density of the fields [cf. the
right-hand side of Eq. (3)], we already know that the first
line as well as all gK terms have negligible or zero effects;
also it is easy to show that up to first order in � the last three
lines all vanish, while the second line reduces to
�2riðc4VK�;iÞ. Defining � � 1� c4VK the Poisson
equation now reads [actually there is also a VðKÞ on the
right-hand side of Eq. (12), but this is like a cosmological
constant and will not cluster]

2@i½�ðxÞ@i�� ¼ 8�G�b; (12)

where �b is the local baryon energy density and the argu-
ment of �ðxÞ is

x �
�
K
a20

�
1=2 ¼ jr�j

ð�c4Þ�1=2a0
;

where we have used K ¼ �c4jr�j2 up to Oð�2Þ in the
static limit. We could choose the form of VðKÞ or � as in
[11]

1��ðxÞ ¼
�
1þ x

3

��3 ¼ VðKÞ
Vð0Þð1þ x

3Þð1þ 2x
3 Þ

; (13)

where Vð0Þ ¼ ð�c4Þ�1ð3a0Þ2. Clearly the MOND limit
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�ðxÞ ! x is recovered when x ! 0 if we choose c4 ¼ �1.
In general VðKÞ serves as a nonuniform dark energy
potential [11], whose local minimum can recover the
MOND equation, and the background value behaves as a
cosmological constant far away from galaxies Vð0Þ ¼
ð3a0Þ2. Such a Vð0Þ with c4 ¼ �1 is however not enough
to account for the dark energy with 8�G�DE � 81a20, and
we will come back to this point later.

In the Solar System, again the k-essence field ’ does not
cluster, and the c3 term in gK has no effect. But here the
MOND effect and cosmological constant effect are both
suppressed because, from Eq. (13), VðKÞ ! 54x�1a20 �
a20, and�ðxÞ ! 1� ð1þ x=3Þ�3 ! 1 in the strong gravity
regime in which x * Oð106Þ � 1. In fact, the Newtonian
gravity and the parametrized post-Newtonian limits are
recovered [11].

III. DISCUSSION

We want to point out that the model described above is
only a very simple one for the Lagrangian equation (1).
One can also, for example, use the oscillation of a canoni-
cal scalar field around its potential minimum to provide the
dark matter, with the steepness of the potential depending
on K=a20. In a more phenomenological way, we could

simply postulate a coupling between dark matter particles
and the vector field (like the coupling with a scalar field) as
a result of which the dark matter particle mass depends on
K
a2
0

. Furthermore, it is also interesting to see if the parameter

a20 is indeed determined dynamically. These possibilities

will be considered in details in forthcoming papers.
The interesting fact a0 � cH0 suggests that there may be

some fundamental relations between MOND and dark
energy. In fact, there are many possible ways by which
our model can be generalized to include dark energy as
well. One way is that at late times when H�H0 the dark
matter decays into dark energy (e.g., its equation of state w
becomes �1). The idea here is to use the quantity a0 to
determine both the transitions from CDM to MOND and
from CDM to dark energy. A more straightforward method
is to have a cosmological constant in VðKÞ: as is shown
above, the MOND effect only depends on VK but not Vð0Þ,
and we can use the dark energy density to fix Vð0Þ so that
the combination of dark energy and MOND completely
determines VðKÞ. Another interesting possibility is to note
that in Eq. (13) the MOND effect requires c4 ¼ �1 while
dark energy requires c4 �� 1

9 . This can be easily

achieved, again using our principle of environment depen-
dence: let c4 depend on K3, for example, with c4 ¼
�ð3–6wÞ�2. In this case VðKÞ acts as an environment-
dependent cosmological constant, which accounts for the
cosmic acceleration in background cosmology (w ! 0)

and approaches zero in the solar system (w ! 1=3). Note
that dark energy and MOND are unified with a single
VðKÞ in the latter two possibilities, and we thus have a
full Lagrangian as

L ¼ �2wa20

�
X

a20

�
1þw=2w þ VðKÞ; (14)

in which VðKÞ ¼ ð9a0Þ2ð1� 2wÞ2ð1þ 2x
3 Þ=ð1þ x

3Þ2 and

x ¼ ffiffiffiffiffiffiffiffi
K4

p
=a0 for the third possibility. Interestingly, a0 �

cH0 is a single mass scale introduced for this model to
relate CDM, MOND, and dark energy together. All the
other parameters (ci’s, n) are dimensionless and �Oð1Þ,
and there are no fine-tunings of them: the huge difference
between the dark matter density �’ at earlier times and the

scale
a2
0

8�G comes as a generic result of the dynamical

evolution of the vector field. In this sense the vector field
acts as a leverage, making the tiny mass scale a0 capable of
characterizing the large energy density of dark matter.
Meanwhile, this could also shed further light on the dark
energy coincidence problem, since the dark energy domi-
nance begins at the time when galaxies have formed (and
we observers come into existence), both characterized by
our fundamental mass scale a0.

IV. SUMMARY

In this work we have tried to tackle the problem of how
to unify CDM and MOND in a consistent way. The idea is
to give the dark matter an environment dependence, mak-
ing it behave like CDM on large scales, while reproducing
the MOND (Newtonian dynamics) in the static and weak
(strong) field limits, respectively. Although the idea of an
environment dependence is not new, it is novel to use the
vector (�a) field as the switch. We show how the particular
properties of the vector field make it very effective for this
purpose. Our model provides a general framework which
can potentially solve the problems of CDM on galactic
scales and of MOND on larger scales. It could also be
generalized to include dark energy in a way such that all
the phenomena of CDM, MOND, and dark energy are
related to one parameter a0, which is the single mass scale
introduced in our model. Both fields in Eq. (14), likely
effective, should provide insights to people seeking the
fundamental fields in particle physics theories.
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