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Bellaterra, 08193 Barcelona, Spain

2Physics Department, Princeton University, Princeton, New Jersey 08544, USA
(Received 28 April 2009; published 2 September 2009)

Chern-Simons modified gravity is a four-dimensional, effective theory that descends both from string

theory and loop quantum gravity, and that corrects the Einstein-Hilbert action by adding the product of a

scalar field and the parity-violating, Pontryagin density. The Chern-Simons modification deforms the

gravitational field of spinning black holes, which is now described by a modified Kerr geometry whose

multipole moments deviate from the Kerr ones only at the fourth multipole ‘ ¼ 4. This paper investigates

possible signatures of this theory in the gravitational-wave emission produced in the inspiral of stellar

compact objects into massive black holes, both for intermediate- and extreme-mass ratios. We use the

semirelativistic approximation, where the trajectory of the small compact object is modeled via geodesics

of the massive black hole geometry, while the gravitational waveforms are obtained from a multipolar

decomposition of the radiative field. The main Chern-Simons corrections to the waveforms arise from

modifications to the geodesic trajectories, which in turn are due to changes to the massive black hole

geometry, and manifest themselves as an accumulating dephasing relative to the general relativistic case.

We also explore the propagation and the stress-energy tensor of gravitational waves in this theory, using

the short-wavelength approximation. We find that, although this tensor has the same form as in general

relativity, the energy and angular momentum balance laws are indeed modified through the stress-energy

tensor of the Chern-Simons scalar field. These balance laws could be used to describe the inspiral through

adiabatic changes in the orbital parameters, which in turn would enhance the dephasing effect.

Gravitational-wave observations of intermediate- or extreme-mass-ratio inspirals with advanced ground

detectors or with the Laser Interferometer Space Antenna could use such dephasing to test the dynamical

theory to unprecedented levels, thus beginning the era of gravitational-wave tests of effective quantum

gravity theories.
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I. INTRODUCTION

The experimental verification of symmetry breaking is
one of the most powerful tools to understand in which
direction to extend the current canon toward more funda-
mental physical theories. For example, the experimental
confirmation of the violation of charge conjugation, parity
transformation and time-reversal symmetries in elemen-
tary particle interactions forced the improvement of the
quantum field theory of particles into what is today the
standard model. Similarly, violation of symmetries in
gravitational interactions can push toward generalizations
of general relativity (GR) by providing the first experimen-
tal evidence of high-energy extensions.

Gravitational parity violation can be tuned by the inclu-
sion of a Pontryagin term in the Einstein-Hilbert action,
which defines an effective, four-dimensional gravitational
theory: Chern-Simons (CS) modified gravity [1]. In fact,
the inclusion of such a term in the action is inescapable in
four-dimensional compactifications of perturbative string
theory (i.e. type I, IIb, heterotic, etc.) due to the Green-
Schwarz anomaly-canceling mechanism [2]. This fact can

also be extended to the nonperturbative sector in the pres-
ence of Ramond-Ramond scalars (D-instanton charges)
due to duality symmetries [3]. Such a term also arises
naturally in loop quantum gravity when the Barbero-
Immirzi parameter is promoted to a scalar field coupled
to the Nieh-Yan invariant [4–6]. More generically, the
Pontryagin correction to the action also arises unavoidably
in effective field theories, as it has been recently shown in
the context of cosmological inflation [7].
The action of dynamical CS modified gravity (DCSMG)

consists of the Einstein-Hilbert term plus the product of a
scalar field and the Pontryagin density (the contraction of
the Riemann curvature tensor with its dual), plus the action
for this scalar field and/or other matter fields. The CS
corrections modify the field equations for the metric com-
ponents by adding two extra terms to the Einstein equa-
tions: the so-called C tensor and a stress-energy tensor for
the scalar field. The C tensor depends on derivatives of the
CS scalar and the contraction of the Levi-Civita tensor with
covariant derivatives of the Ricci tensor and the dual
Riemann tensor. In addition, the variation of the action
with respect to the CS scalar field leads to an equation of
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motion for this field, which is sourced by the Pontryagin
density.

The CS gravitational modification has been investigated
mostly in the nondynamical framework, in which the scalar
field is nondynamical (there is no kinetic term for it in the
action), and hence it is assumed to be an a priori prescribed
spacetime function. Such studies include an analysis of
well-posedness [8], exact solutions [1,9], approximate so-
lutions [1,10–14], matter interactions [15,16], cosmology
[3,17–19], and astrophysical tests [20–22]. Nondynamical
CS modified gravity has been shown to be theoretically
problematic in relation to Schwarzschild black hole per-
turbation theory [23], the existence of stationary and axi-
symmetric solutions [24], and the uniqueness of solutions
of the theory [25].

The detailed study of the dynamical formulation of CS
modified gravity has only recently begun. This paper is the
second in a series that deals with the details of the dynam-
ics of CS modified, spinning black holes. In the first paper
[25], henceforth paper I, an approximate solution was
found for a spinning black hole, using the slow-rotation
approximation and a small-coupling approximation. The
first type of approximation restricts attention to black holes
with small angular momentum per unit mass, while the
second one allows one to search for small CS deformations
of known GR solutions. The new solution corresponds to a
deformation of the Kerr metric whose deviations fall off
with a high power of the distance to the black hole.

In this paper, we concentrate on the study of intermedi-
ate- and extreme-mass-ratio inspirals (IMRIs and EMRIs,
respectively) in the context of DCSMG. Such systems
consist of a small compact object (SCO) (with masses in
the range 1–30M�) orbiting around a (spinning) massive
black hole (MBH) (with masses in the range 104–107M�)
in the case of EMRIs, and an intermediate-mass black hole
(IMBH) (with masses in the range 102–104M�; see [26] for
a review on the evidence of the existence of IMBHs) in the
case of IMRIs. Another IMRI possibility would be that of
an IMBH falling into a MBH, a system with obviously also
an intermediate-mass ratio (see [27] and references
therein). The mass ratios involved are then in the range
(10�2–10�4) for IMRIs and (10�4–10�7) for EMRIs.

EMRIs (and IMRIs involving an IMBH-MBH binary)
are important sources of gravitational waves (GWs) for
future space detectors [28] as the Laser Interferometer
Space Antenna (LISA) [29–33], whereas IMRIs are im-
portant sources for second generation ground based detec-
tors (see [34,35]), such as Advanced LIGO [36] and
Advanced VIRGO [37], and for future planned third gen-
eration detectors as the Einstein Telescope [38]. Both
IMRIs and EMRIs are high-precision sources that can
produce a high number of detectable GW cycles. Hence,
GW observations of these systems will have a strong
impact on astrophysics, cosmology, and fundamental phys-
ics [39–41], the latter of which we shall be concerned with

here (see [42] for a detailed account of IMRI and EMRI
astrophysics and related science).
The construction of IMRI/EMRI waveforms for data

analysis purposes is a difficult problem since the accuracy
needed for detection and extraction of physical parameters
is quite high. For the case of EMRIs, techniques for con-
structing sufficiently accurate templates for detection is
currently underway, mainly through the use of the adia-
batic approximation [43–52]. Methods to build sufficiently
accurate templates for parameter estimation have not yet
been fully developed, the main difficulty being that one
requires a more precise treatment of the self-gravity of the
SCO and its impact on the gravitational waveform. For
IMRIs, one might have to incorporate the finite-size effects
of the SCO on the waveforms, since the mass ratio is not so
extreme.
In this article, we will use a simpler method to describe

EMRIs, the so-called semirelativistic approximation [53],
in which the motion of the SCO is taken to be geodesic on
the MBH spacetime (Kerr in GR and modified Kerr in
DCSMG) and the GWs are computed using a multipolar
decomposition [54] assuming that they propagate from the
source to the observer in flat space. In the radiation zone,
the different multipoles are fully determined by the trajec-
tory of the SCO and its derivatives. Such a scheme there-
fore neglects radiation-reaction effects that scale with the
square of the mass ratio of the system. One can add these
effects by using different types of approximations that
provide expressions for the change of the constants of
motion in terms of the properties of the GWs emitted
[55–58]. Given the nature of the semirelativistic approxi-
mation, it is clear that it has accuracy limitations in the
sense that it is not good enough for creating a template
bank for parameter estimation. However, as we argue in
this paper, it will suffice to understand the type of correc-
tions induced in CS modified EMRIs and IMRIs.
We begin by considering the trajectory of the SCO in the

MBH background. We find that the motion of a test particle
in DCSMG is exactly described by the geodesic equations,
as in GR. Trajectory modifications are thus produced en-
tirely by the modified geometry of the MBH background,
which is here described by the modified Kerr solution
found in paper I. These modifications include corrections
to the geodesic equations and to the fundamental frequen-
cies of motion. Since the CS correction to the MBH
background is a high-order, strong-field effect, the multi-
poles of the hole are not corrected up to the ‘ ¼ 4 multi-
pole, suggesting that a test of the Kerr geometry might be
difficult with LISA. This theory is thus an interesting
illustration of how the geometry of a MBH can be changed
by physically well-motivated curvature corrections to the
Einstein-Hilbert action.
We continue with a discussion of GW generation in

DCSMG, which for EMRIs and IMRIs can be studied
using black hole perturbation theory. We see that the
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perturbations, and hence the GW emission, are indeed
corrected by the C tensor and the stress-energy tensor of
the CS scalar field. Expanding in the mass ratio and in the
CS coupling constants that act as CS deformation parame-
ters, we find that the second-order corrections to GW
emission are the usual GR radiation-reaction effect (pro-
portional to the square of the mass ratio) and a new CS
correction (proportional to the product of the mass ratio
and the CS coupling constants). Depending on the strength
of these constants, this modification could be much smaller
than, comparable to, or bigger than radiation-reaction ef-
fects. In this paper, as a first exploratory study of these
questions, we shall neglect these second-order effects, and
thus, we shall model GW emission through the usual GR
multipolar expansion. Modifications to GW emission,
hence, originate from corrections to the geodesic trajecto-
ries of the SCO, which in turn arise due to the modified
MBH geometry.

With these tools at hand, we then proceed to solve the
geodesic equations for a set of EMRI systems and compare
the GWs generated in GR with those generated in
DCSMG. Figure 1 shows the changes in the waveforms,
essentially an accumulating dephasing, for the last 11 mi-
nutes of the plus-polarized waveform after 128 days of
evolution for the system described in the caption. The GR
waveforms are here denoted with a dotted blue line, while
the DCSMG waveforms are denoted with a solid black
line. The amount of CS dephasing depends on the specific
type of orbit and the magnitude of the CS correction, where
we generically find a strong effect on the waveform for
orbits that spend the longest close to the MBH.

Our study suggests that a GW observation of highly
relativistic IMRIs and EMRIs could place constraints on

the dynamical theory that are orders of magnitude larger
than current binary pulsar ones [25]. This constraint de-
pends strongly on how relativistic the system is, as well as
on the signal-to-noise ratio of the event, and on the total
mass of the system. Including radiation-reaction effects
should allow us to search, for the first time, for radiative
effects associated with the CS scalar field in the neighbor-
hood of compact objects, which is simply not possible with
binary pulsars (see [59,60] for detailed information on tests
of gravitational theories, in particular, for tests with pul-
sars). To confirm these expectations a detailed analysis
using appropriate data analysis tools is required, but shall
not be performed here.
Remarkably, a physically well-motivated curvature-

squared correction to GR, like the one studied here, seems
to lead to spinning black hole solutions and GWs that
resemble the GR prediction quite closely. This fact sug-
gests that GW detectors should be able to detect GWs,
irrespective of whether GR or CS waveform templates are
employed. As long as the precise nature of the massive
compact object or the structure of the true gravitational
theory does not modify the GR predictions enough, as we
show is the case in DCSMG, the current data analysis
algorithms should be able to extract the signals by using
purely GR templates and performing incoherent searches
of the data in short segments (e.g. roughly three weeks).
However, in our case, the CS modification may prevent us
from connecting these segments together and associate
them to a specific EMRI or IMRI system.
Although the study of GWs emitted by EMRIs associ-

ated to non-Kerr backgrounds is not new [61,62], the
analysis presented here is the first one to consider an
alternative to the Kerr metric that derives from a concrete
and physically well-motivated alternative theory of gravity
(based on high-order curvature corrections to GR). In
contrast to arbitrary quasi-Kerr deformations, the black
hole solution considered here deviates from Kerr signifi-
cantly only in the strong-field region and only through
gravitomagnetic components. Thus, mismatches between
GW signals of EMRIs in this background (and in DCSMG)
and GWs in Kerr (and in GR) are dominated exclusively by
truly strong-field effects and not by subleading, weak-field
corrections. Tests of such modified theories seem to require
not only the detection of a sufficiently large number of
segments, but also the reconstruction of a unique GW
signal.
We conclude this paper with a discussion of the role of

radiation-reaction effects in DCSMG through the short-
wavelength approximation. In particular, we investigate
how one could introduce these effects in the adiabatic
approximation (that is, in the regime where the rate of
change of the orbital parameters due to GW emission is
much smaller than the typical orbital periods) in order to
construct truly inspiraling IMRI/EMRI waveforms in
DCSMG. This calculations typically involve the computa-
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FIG. 1 (color online). Plus-polarized waveform as a function
of time using a Kerr background (dotted blue line) and the CS
deformed metric (solid black line). The pericenter is at r ¼ 6M
(with M ¼ 4:5� 106M�), the inclination angle is 0.3 radians,
the spin angular momentum is J=M2 ¼ 0:4, while the CS
coupling strength is set at �=M4 ¼ 0:4. For more details on
this system see Sec. VA and for further details on the precise
definition of the CS coupling strength see Sec. II.
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tion of fluxes of energy and angular momentum in order to
estimate the change in the constants of motion. One pos-
sible way of estimating these fluxes is through the effective
stress-energy tensor of the gravitational waves, which is
defined in the so-called short-wavelength approximation
(see [63] and references therein). We find that the effective
GW stress-energy tensor, the Isaacson tensor, and thus the
GW stress-energy loss, is the same in DCSMG as in GR.
The backreaction of this loss on the background, however,
is different in DCSMG because GW losses must here be
supplemented by the stress-energy distribution of the CS
scalar field. Truly inspiraling IMRI/EMRI waveforms can
then be constructed in DCSMG by supplementing the
semirelativistic approximation with adiabatic changes of
the orbital parameters due to both GW and CS scalar field
stress-energy losses.

The details of this study are organized as follows:
Section II discusses the basics of DCSMG, its linearized
version, the study of GW polarization in this theory, and
reviews the small-coupling approximation; Sec. III de-
scribes test-particle motion in DCSMG, including the ex-
pression of the modified Kerr solution, and the derivation
of the equations for timelike geodesics. We also discuss
how the fundamental frequencies of geodesic motion are
modified due to the changes in the MBH metric; Sec. IV
describes GW generation in the modified theory and the
type of semirelativistic approximation that we use; in
Sec. V we apply the previous results to construct numeri-
cally the trajectories and waveforms; Sec. VI discusses
GW propagation in the short-wavelength approximation
and shows that the GW energy momentum tensor and
emission in DCSMG is the same as in GR. We also
calculate the stress-energy emission due to the CS scalar
field and the modification to the background (averaged)
scalar field due to terms quadratic in the perturbation of the
Riemann tensor; Sec. VII concludes and discusses future
research directions.

We use the following conventions throughout this work.
Greek letters and a semicolon are used to denote indices
and covariant differentiation, respectively, on the four-
dimensional spacetime. We denote covariant differentia-

tion with respect to the background metric by �r�B� or by

B�j�. Partial differentiation with respect to the coordinate

x� is denoted as @�B� or B�;�. Symmetrization and anti-

symmetrization are denoted with parentheses and square
brackets around the indices, respectively, such as Að��Þ :¼
½A�� þ A���=2 and A½��� :¼ ½A�� � A���=2. We use the

metric signature ð�;þ;þ;þÞ and geometric units in
which G ¼ c ¼ 1.

II. CHERN-SIMONS MODIFIED GRAVITY

In this section we describe the formulation of CS modi-
fied gravity that we shall employ and establish some basic
notation (see also paper I). We begin with a discussion of

the basics of the modified theory, but refer the reader to
paper I or the upcoming review [64] for further details. We
continue with a review of the linearized theory in DCSMG.
Then we study basic properties of GW polarization in
DCSMG, illustrated with plane waves. Finally we intro-
duce the small-coupling approximation.

A. General formulation

The starting point is the action of DCSMG:

S ¼ SEH þ SCS þ Sð#Þ þ Smat; (1)

where

SEH ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p
R;

SCS ¼ �

4

Z
d4x

ffiffiffiffiffiffiffi�g
p

#�RR;

Sð#Þ ¼ ��

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½g��ðr�#Þðr�#Þ þ 2Vð#Þ�;

Smat ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
Lmat;

(2)

where � ¼ ð16�GÞ�1 is the gravitational constant; � is the
coupling constant of the CS scalar field # with the parity-
violating Pontryagin density �RR given by

�RR :¼ R���	
�R���	 ¼ 1

2

����R���	R

�	
��; (3)

where the asterisk denotes the dual tensor, constructed
using the antisymmetric Levi-Civita tensor 
����; � is a
constant that determines the gravitational strength of the
CS scalar field stress-energy distribution. The different
terms in Eq. (1) correspond to the following: the first one
is the Einstein-Hilbert action; the second one is the CS
gravitational correction; the third one is the CS scalar field
action, which contains a kinetic and a potential term Vð#Þ,
both of which distinguish the dynamical formulation from
previous ones; and the fourth one is the action correspond-
ing to matter degrees of freedom.
Upon variation of the action with respect to the metric

and the CS scalar, we obtain the field equations of
DCSMG:

G�� þ �

�
C�� ¼ 1

2�
ðTmat

�� þ Tð#Þ
�� Þ; (4)

�h# ¼ �
dV

d#
� �

4
�RR; (5)

where Tmat
�� is the matter stress-energy tensor and Tð#Þ

�� is the

stress-energy of the CS scalar field, given by
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Tð#Þ
�� ¼ �½ðr�#Þðr�#Þ � 1

2g��ðr�#Þðr�#Þ � g��Vð#Þ�:
(6)

In this work we will study only the case in which the
potential term associated with the CS scalar field is as-
sumed to vanish1 (V ¼ 0). The tensor C�� (the so-called C
tensor) in Eq. (4) can be split into two parts, C�� ¼ C��

1 þ
C��
2 , where

C��
1 ¼ ðr�#Þ
�	�ð�r�R

�Þ
	;

C��
2 ¼ ðr�r	#Þ�R	ð��Þ�:

(7)

As we have mentioned, there are two conceptually dis-
tinct CSmodified gravity theories: a dynamical version and
a nondynamical version. In the former, the quantities� and
� are arbitrary, and the field equations are the ones we have
given in Eqs. (4) and (5). The nondynamical version is
characterized by the choice� ¼ 0 at the level of the action,
and thus the evolution equation for the CS scalar becomes a
differential constraint on the space of allowed solutions,
the so-called Pontryagin constraint �RR ¼ 0.

The nondynamical theory presents a certain number of
difficulties that make it less physically interesting than the
dynamical formulation [23–25]. In the former, one can
show that single-parity perturbation modes lead to an over-
constrained system of perturbed equations, disallowing
generic quasinormal ringing [23]. Moreover, spinning
black hole solutions were found to be strongly restricted
by the Pontryagin constraint, in some cases also leading to
an overconstrained system [24]. Finally, the freedom in the
choice of the CS scalar field was shown to lead to nonun-
ique solutions with infinite energy scalars in paper I [25].

Most of the difficulties and arbitrariness of the non-
dynamical theory can be avoided by adopting the dynami-
cal framework, i.e. DCSMG theory, where the freedom
regarding the CS scalar field reduces to the choice of initial
conditions. The stationary state of the CS scalar has been
seen to be independent of the initial conditions, being
determined only by the metric through the source term in
the evolution equation for # [25]. For these reasons, we
choose here to study the dynamical formulation.

B. Radiation zone expansion

GWs are properly defined only at future null infinity, but
in practice one can define such waves perturbatively in the
so-called radiation zone, i.e. several GW wavelengths
away from the location of the sources. In order to study
GWs in DCSMG, let us split the spacetime metric as the

sum of a background metric �g�� (we use the overbar to

denote objects associated with the background) and a
metric (GW) perturbation h��:

g �� ¼ �g�� þ 
h�� þOð
2Þ; (8)

where 
 is a bookkeeping perturbative parameter, associ-
ated to the smallness of the metric perturbation relative to
the background, which we use to label the order of the
approximation.
In this section and in other parts of this paper, we

simplify equations by using the Lorenz gauge

ðh�� � 1
2h�g

��Þj� ¼ 0; (9)

where h ¼ �g��h�� is the trace of the metric perturbation

with respect to the background. Since we shall be at first
interested in computing the DCSMG corrections to gravi-
tational radiation measured by observers in the radiation
zone, we shall restrict the gauge further by supplementing
it with the trace-free condition

h ¼ 0; (10)

leading to a transverse-traceless gauge far away from the
source.
The restriction to the radiation zone in this section

allows us to focus on a flat background �g�� ¼ ���, a

good approximation sufficiently far away from the source.
In Secs. III and IV we will lift this restriction and consider
more generic backgrounds. When considering generic
backgrounds we will also find it essential to decompose

# into a background field �# and a perturbation. For the
present case of a flat background, this is not necessary,
since the background field must necessarily reduce to a
constant. We expect then # to be sourced by the metric
perturbation, leading to certain leading-order corrections
to the equations of motion for wave generation.
In this gauge and with a flat background, the leading-

order Riemann, dual Riemann, and Ricci tensors are [66]

R��� ¼ 
½h�½�;�� � h½�;���� þOð
2Þ; (11)

�R	��� ¼ 
 �
	���h�
½�;��

� þOð
2Þ; (12)

R�� ¼ � 


2
h�h�� þOð
2Þ; (13)

respectively, where h� ¼ ���@�@� is the flat-space

d’Alembertian and �
���� is the flat-space Levi-Civita
symbol or tensor density (not to be confused with the
bookkeeping parameter 
). The leading-order C tensor in
this gauge is then

1In string theory, the # field corresponds to the axion, which
possess a shift symmetry and a vanishing potential along certain
flat directions. The axion is a moduli field, which, when stabi-
lized by supersymmetry breaking [65], acquires a nonflat poten-
tial. Such a potential would arise at the scale of supersymmetry
breaking, which is much larger than the gravitational scale.
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C�� ¼ � 


2
ð@�#Þ �
�	�ð�h�h�Þ	;�;

� 


2
ð@��#Þ �
�	�ð�j½h��;j�Þ	 � h�Þ�;�	� þOð
2Þ:

(14)

Combining these leading-order expressions, we find that
the modified field equations in trace-reversed form become

� 1

�
�T�� ¼ 
h�h�� þ�

�
ð@�#Þ
 �
�	�ð�h�h�Þ	;�

þ�

�
ð@��#Þ
 �
�	�ð�½h��;j�Þ	� h�Þ�;�	�;þOð
2Þ;

(15)

�h# ¼ ��

2

2 �
����h�	;��h�

½�;	�
� þOð
3Þ; (16)

where �T�� ¼ T�� � ð1=2Þ���T is the trace-reversed ver-

sion of the total stress-energy tensor T�� ¼ Tmat
�� þ Tð#Þ

�� .

We see clearly that the metric perturbation is sourced by
�T��, which implies that the contribution of this source

must also be of leading-order Oð
Þ, while the scalar field
is sourced by the Pontryagin density that is of leading
Oð
2Þ in the radiation zone. Note in this regard that, as
we already pointed out, we have not yet introduced a
perturbative expansion for the CS scalar field.

C. Gravitational-wave polarizations

Since we are dealing with a different theory of gravity,
one must be specially careful of not assuming GW prop-
erties that hold only in GR. In this sense, a question of
particular relevance that arises with alternative theories of
gravity refers to the number of independent GW polar-
izations. DCSMG possesses an extra degree of freedom
described by the CS scalar field, and thus, additional GW
polarizations could in principle be present. This issue can
be investigated by following the pioneering work of
[67,68], where a formalism is presented to study far-field
gravitational radiation in any metric theories of gravity.
One then finds that only six possible independent GW
polarizations are possible, leading to a suitable classifica-
tion [the so-called Eð2Þ classification] of alternative
theories.

In this framework one focuses on the propagation of
monochromatic plane waves in the radiation zone (i.e.
assuming weak fields) and their effect on test masses.
This can be done by considering the geodesic deviation
equation (see e.g. [63,69]), which describes the relative
acceleration between nearby geodesics:

UrðU�r�X
�Þ :¼ A� ¼ R�

��U
�UX�; (17)

where U� is the test mass four-velocity and X� is the so-
called deviation vector, which describes the displacement
between test masses. Different GW polarizations will in-
duce a different deviation effect on test masses, that can be

classified via the structure of the Riemann tensor. Thus, the
Eð2Þ classification sorts metric theories based on the van-
ishing or nonvanishing of the Newman-Penrose scalars (in
an appropriate Newman-Penrose null basis), associated
with the Riemann curvature tensor, which can be shown
to describe GW polarizations.
Applying this procedure to DCSMG (one can use the

formulas of the linear theory presented above), we find that
only the two GW polarizations also present in GR are
observable far away from sources. Such a study had not
yet been performed in DCSMG, although several inves-
tigations exist in the nondynamical theory: [1] proved the
above result in the nondynamical theory for a linearly time-
dependent scalar field, while [12,13] extended this result to
generic time-dependent scalars. This fact can be further
illustrated by studying the properties of exact plane waves
(solution of the full field equations). We have included
such a study in Appendix A.

D. The small-coupling approximation

This approximation consists of expanding the modified
field equations in the dimensionless parameter � ¼
Oð�=M4Þ, where � :¼ �2=ð��Þ and M is a characteristic
mass associated with the particular system under consid-
eration. To that end, we assume that � is a small perturba-
tion parameter associated with the CS gravitational
modifications and the physical system under study. As
we did in the linearized theory, � will be also used as a
bookkeeping parameter for labeling the different perturba-
tive orders, but we will set it to unity at the end of our
calculations. Combining this approximation with the linear
one we can set up a two-parameter perturbative scheme, in
� and 
, that in the context of the DCSMG was introduced
in paper I and we refer to this work for details (for a general
discussion about multiparameter perturbation theory see
[70], and in the context of GR see [71–75]). As in paper I,
the order counting shall assume that � ¼ Oð�Þ such that
�=� ¼ Oð1Þ and � ¼ Oð�=�Þ without loss of generality.
The metric perturbations h�� and the CS scalar field �

can then be expanded as

h�� ¼ X
a;b


a�bhða;bÞ�� ; # ¼ X
a;b


a�b#ða;bÞ; (18)

where hða;bÞ�� and #ða;bÞ stand for the perturbations of
Oð�a; �bÞ and aþ b � 1. Introducing these expansions
in the field equations one can then set up a bootstrapping
method that consists of first solving the evolution equation
for the CS scalar field and then using this solution in the
modified Einstein field equations to solve for the CS cor-
rection to the metric perturbations. In order to prevent the
existence of metric perturbations whose dominant behavior
is dramatically different from GR, we shall immediately

set hð0;aÞ�� ¼ 0 for all a. This choice is justified because we
are here interested in CS deformations of GR solutions that
possess the proper limit that as � ! 0, the modified theory
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reduces to GR. As such, one cannot allow metric perturba-
tions that modify the flat-space nature of the background in
a �-independent manner.

III. TEST-PARTICLE MOTION

The first approximation to the dynamics of IMRI/EMRIs
is to treat the SCO as a point particle which according to
GR follows geodesic motion. In this section we study how
this picture is modified in DCSMG, from the change in the
geometry of the MBH to the change in the structure of the
geodesic equations.

A. MBH geometry

In GR, the geometry of a spinning MBH is described by
the Kerr metric, but in the study of CS gravitational mod-
ifications it is well known that this is no longer the case
[24]. Recently, the corrections to the gravitational field of a
spinning black hole have been found [25] in DCSMG using
the slow-rotation approximation2 a=M � 1 (where M re-
fers to the MBH mass and a is the MBH spin parameter),
and the small-coupling approximation up to second order
in a=M and � . The form of the nonvanishing metric com-
ponents using coordinates in which the GR part of the
metric is Kerr in Boyer-Lindquist coordinates ðt; r; �; �Þ is

�gtt ¼ �
�
1� 2Mr

2

�
;

�gt� ¼ � 2Mar

2
sin2�þ 5

8

�

M4

a

M

M5

r4

�
1þ 12M

7r
þ 27M2

10r2

�

� sin2�;

�grr ¼ 2

�
;

�g�� ¼ 2;

�g�� ¼ �

2
sin2�;

(19)

where 2 ¼ r2 þ a2cos2�, � ¼ r2fþ a2, f ¼ 1� 2M=r
and � ¼ ðr2 þ a2Þ2 � a2�sin2�. The polar angle � is not
to be confused with the CS scalar field #. Technically, the
expressions in Eq. (19) are valid only up to second order in
a=M and � , but we have here chosen to resum the GR
sector, by adding the appropriate high-order uncontrolled
remainders. In addition, the expression for the CS scalar
field (using the same approximations) is

�# ¼ 5

8

�

�

a

M

cosð�Þ
r2

�
1þ 2M

r
þ 18M2

5r2

�
: (20)

The metric in Eq. (19) is stationary and axisymmetric, and
the CS scalar field has the same symmetries. Notice that

this CS scalar decays as r�2 in the far field and thus it
possesses a finite energy.
One could in principle attempt to calculate the

O½ða=MÞ3; �� corrections to the metric. These corrections,
however, are difficult to find because they involve modifi-
cations to all metric components, since the modified field
equations must include the scalar stress-energy tensor to
this order. We shall not consider these corrections here and
work only to leading order with the metric of Eq. (19).
Needless to say, if the equivalent metric for rapidly rotating
MBHs were found, one could repeat the analysis of this
paper for that background spacetime.
The non-Kerrness of Eq. (19) allows us to study

DCSMG modifications to the multipolar structure of a
spinning black hole, as this may illustrate generic correc-
tions of higher-order curvature extensions of GR. The
multipolar structure of Kerr is fully determined by only
two multipole moments: the mass monopole and the cur-
rent dipole. All others are related to these via the simple
relation [77]: M‘ þ iS‘ ¼ MðiaÞ‘, where fM‘g‘¼0;...;1 and

fS‘g‘¼0;...;1 are the mass and current multipole moments,

respectively. In DCSMG, the leading-order modification to
this relation occurs for the S4 multipole, as one can see by
employing the multipolar formalism of [54] (see also [78]),
and noting that the only metric component that is CS
modified scales as r�4 for M=r � 1.
DCSMG, therefore, preserves the idea of the no-hair (or

two-hair) conjecture that spinning black holes are deter-
mined by the mass and spin parameters, but it introduces a
4-pole (or hexadecapole) correction. The reason why
DCSMG does not violate the conjecture is because, apart
from mass and spin, the other parameters appearing in the
MBH metric are introduced through the parameter �,
which consists of fundamental coupling constants of the
theory that are fixed and nontunable (i.e. these constants
are analogous to the Newtonian gravitational constant G).
Instead, the modifications introduced by DCSMG are such
that the standard GR formulas to relate mass and angular
momentum to all multipole moments of the solution do not
hold.
The high ‘ number of the modification suggests that a

GW test of the MBH spacetime geometry (or test of the GR
Kerr solution) would require a high accuracy, challenging
the abilities of present and future planned detectors. For
example, LISA observations are expected to be able to
produce accurate measurements of the first 3–5 multipole
moments of the MBH (see [79–81] for discussions regard-
ing this problem), which is at the boundary of DCSMG
detectability.

B. Motion of massive particles

Let us now consider the equations of motion for massive
test particles in DCSMG. The starting point is the action of
such a particle moving along a worldline x� ¼ z�ð�Þ,
where � parameterizes the trajectory. This action is given

2After the publication of this work, other researchers [76] have
arrived at the same solution as that presented first in paper I,
suggesting a certain robustness and uniqueness of Eq. (19).
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by (see e.g. [82])

Smat ¼ �m
Z
�
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g��ðzÞ _z� _z�

q
; (21)

where m is the particle mass and _z� ¼ dz�=d� is the
tangent to the worldline �. The contribution to the matter
stress-energy tensor can be obtained by variation of Smat

with respect to the metric and yields

T��
matðx�Þ ¼ m

Z d�ffiffiffiffiffiffiffi�g
p u�u��ð4Þ½x� zð�Þ�; (22)

where � denotes proper time [which is related to � via

d� ¼ d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g��ðzÞ _z� _z�

q
], u� ¼ dz�=d� is the particle

four-velocity (g��u
�u� ¼ �1), g denotes the metric de-

terminant, and �ð4Þ is the four-dimensional Dirac density

[
R
d4x

ffiffiffiffiffiffiffi�g
p

�ð4ÞðxÞ ¼ 1].

The divergence of T��
mat is

r�T
��
mat ¼ m

Z d�ffiffiffiffiffiffiffi�g
p d2z�

d�2
�ð4Þ½x� zð�Þ�; (23)

and, substituting this into the divergence of the field equa-
tions [Eq. (4)], we obtain

�ðr�#Þ
�
�h#þ�

4
�RR

�
¼m

Z d�ffiffiffiffiffiffiffi�g
p d2z�

d�2
�ð4Þ½x� zð�Þ�:

(24)

Since the left-hand side of this equation vanishes by virtue
of the evolution equation [Eq. (5)], all pointlike particles
must follow geodesics:

d2z�

d�2
¼ 0: (25)

Notice that this result is completely generic and does not
rely on any approximation scheme.

Let us now consider the structure of the timelike geo-
desics of the spacetime described by the metric in Eq. (19).
Since this metric is a small deformation of the Kerr solu-
tion, we can follow the same steps that lead to the deriva-
tion of the Kerr geodesic equations in GR (see e.g. [83]) in
a form suitable for numerical implementation. The new
metric is still stationary and axisymmetric, which means it
possesses a timelike Killing vector with components t� ¼
½1; 0; 0; 0� and a spacelike Killing vector with components
c � ¼ ½0; 0; 0; 1�, respectively. These two Killing vectors
commute as in the Kerr case, and we can use them to define
two conserved quantities: the energy E ¼ �t�u� and the
angular momentum L ¼ ��u�. In Boyer-Lindquist coor-

dinates, the particle four-velocity has components u� ¼
½ _t; _r; _�; _��, where the overdots now stand for differentiation
with respect to proper time �. We shall work here in
reduced variables, where E and L are the energy and
angular momentum per unit mass m, respectively.

We can now use the energy and angular momentum

definitions to solve for _t and _�. To second order in the
slow-rotation approximation, we have

_t ¼ _tK þ L	gCS� ; _� ¼ _�K � E	gCS� ; (26)

where _tK and _�K denote the corresponding expressions for
Kerr:

2 _tK ¼
�
�aðaEsin2�� LÞ þ ðr2 þ a2Þ P

�

�
; (27)

2 _�K ¼
�
�
�
aE� L

sin2�

�
þ aP

�

�
; (28)

and where P ¼ Eðr2 þ a2Þ � aL, while 	gCS� denotes the

CS correction:

	gCS� ¼ �2

��

a

112r8f
ð70r2 þ 120rMþ 189M2Þ: (29)

As before, we have here resummed the Kerr part of the
equations, so that when we take � ! 0 we recover the
exact equations for the Kerr spacetime for all a, although
the expressions presented in this paper are only formally
valid up to second order in a=M and � .
Following closely the Kerr case, we look for a Killing

tensor to construct an additional constant of motion: the
Carter constant. We find that such a tensor can be written in
the same form as in the Kerr case, namely,

��� ¼ �kð�l�Þ þ r2 �g��; (30)

where k� and l� are two null vectors given by

k� ¼
�
r2 þ a2

�
;�1; 0;

a

�
� 	gCS�

�
;

l� ¼
�
r2 þ a2

�
; 1; 0;

a

�
� 	gCS�

�
;

(31)

that is, they are modifications of the Kerr principal null
directions. We have checked that they are also principal
directions of the new metric up to the order considered
here. One can show by direct evaluation that this tensor
satisfies the tensor Killing equations rð���Þ ¼ 0 on the

CS modified Kerr background if and only if 	gCS� is given

by Eq. (29). In fact, the tensor Killing equations allow us to
add a term of the form C=r2 to Eq. (29), but the orthogo-
nality relation k�l� ¼ 0 forces C ¼ 0.
We can now define the Carter constant in the same way

as in the Kerr case:

Q ¼ ���u
�u� � ðL� aEÞ2: (32)

Using this relation, together with Eqs. (27) and (28) and the
normalization condition for timelike geodesics
g��u

�u� ¼ �1, we can solve for _r and _�. We find that

the result can be written as

CARLOS F. SOPUERTA AND NICOLÁS YUNES PHYSICAL REVIEW D 80, 064006 (2009)

064006-8



_r 2 ¼ _r2K þ 2ELf	gCS� ; _�2 ¼ _�2K; (33)

where the part that corresponds to Kerr (without expanding
in a=M) is

4 _r2K ¼ ½ðr2 þ a2ÞE� aL�2 ��½Qþ ðaE� LÞ2 þ r2�;
(34)

4 _�2K ¼ Q� cot2�L2 � a2cos2�ð1� E2Þ: (35)

To summarize, Eqs. (26) and (33) provide a set of four
first-order (in derivatives of �) decoupled geodesic equa-
tions for the CS modified Kerr background. We note that
these geodesic equations contain CS corrections except for
the _� equation, and that these corrections have essentially
the same structure, in the sense that all of them are pro-
portional to 	gCS� [Eq. (29)]. We remind the reader once

more that the polar angle � and its evolution equation _� are
not to be confused with the CS scalar field # and its time

derivative _#.
One can easily show that the location of the innermost

stable circular orbit (ISCO) for equatorial orbits in the CS
modified metric is given by [25]

RISCO ¼ 6M� 4
ffiffiffi
6

p
a

3
� 7a2

18M
	 77

ffiffiffi
6

p
a

5184

�2

��M4
; (36)

where the upper (lower) signs correspond to corotating
(counterrotating) geodesics. Then, it appears that the CS
correction works against the spin effects, which suggests
that similar behavior will be present in the solution of the
CS modified geodesic equations.

C. Frequencies of the orbital motion

The Kerr metric allows bound and stable geodesic tra-
jectories (orbits) to be associated or decomposed in terms
of three fundamental frequencies (see e.g. [84,85]): �r

characterizes the radial motion (from periapsis to apoapsis
and back); �� characterizes the motion in the polar direc-
tion; and �� characterizes azimuthal motion. These fre-

quencies are important because precessional orbital effects
are due to mismatches among them and because they can
be used to decompose, among other things, the gravita-
tional waveform in a Fourier expansion.

Expressions for these frequencies in terms of quadra-
tures have been obtained for Kerr in [84], and recently also
in [85], where a new time coordinate is employed (see
[47]): 2d=d� ¼ d=d�. In terms of the time �, the modi-
fied geodesic equations become

dt

d�
¼ TKðr; �Þ þ TCSðrÞ;

�
dr

d�

�
2 ¼ RKðrÞ þ RCSðrÞ;

d�

d�
¼ �Kðr; �Þ þ�CSðrÞ;

�
d�

d�

�
2 ¼ �Kð�Þ; (37)

where ðTK; RK;�K;�KÞ are given by the right-hand sides
of Eqs. (27), (28), (34), and (35), respectively, while

ðTCS; RCS;�CSÞ are quantities proportional to 	gCS� . Note

that the CS corrections only depend on r, which is a
consequence of the linearization in a=M.
The fundamental frequencies of the radial and polar

motions associated with the � time are

Y r ¼ 2�

�r


 2�

�K
r

�
1��CS

r

�K
r

�
; Y� ¼ 2�

��

¼ 2�

�K
�

;

(38)

where the periods, denoted by �, are given by

�K
r ¼ 2

Z rapo

rperi

drffiffiffiffiffiffiffi
RK

p ; �CS
r ¼ �

Z rapo

rperi

dr
RCS

R3=2
K

; (39)

�K
� ¼ 2

Z ���min

�min

d�ffiffiffiffiffiffiffiffi
�K

p ¼ 4
Z �=2

�min

d�ffiffiffiffiffiffiffiffi
�K

p ; (40)

where rapo and rperi are the apocenter and pericenter values

of r, respectively, and �min determines the interval in which
� oscillates, i.e. ð�min; �� �minÞ. The frequency associated
with the azimuthal motion is given by [85]

Y � ¼ 1

ð2�Þ2
Z 2�

0
dwr

Z 2�

0
dw��½rðwrÞ; �ðw�Þ�; (41)

where wr;� ¼ Yr;�� are the associated angle variables.

Therefore, only Yr and Y� change with respect to GR.

The expressions for the fundamental frequencies with
respect to the coordinate time t, �r;�;� are more involved

since they are given by �r;�;� ¼ Yr;�;�=�, and � is [85]

� ¼ 1

ð2�Þ2
Z 2�

0
dwr

Z 2�

0
dw�T½rðwrÞ; �ðw�Þ�: (42)

Inverting this relation cannot be easily done in close form,
without previously solving the integrals numerically (see
e.g. [84] for an analytical inversion in terms of incomplete
elliptical integrals). We immediately see, however, that
since T is CS corrected, so will be �, leading to CS
corrections in all the frequencies associated with the coor-
dinate time t.
Since the three physical fundamental frequencies of the

Kerr spacetime are modified in CS modified gravity, given
a detection of quasinormal modes from a Kerr-like object,
the inference of system parameter could lead to a system-
atic error due to the bias of assuming GR is the correct
underlying theory [86]. Conversely, the detection of such
modes with LISA may yield an interesting constraint on
dynamical CS modified gravity.

IV. GRAVITATIONAL-WAVE GENERATION AND
THE SEMIRELATIVISTIC APPROXIMATION

In this section we look at the structure of the modified
field equations of DCSMG to study how gravitational-
wave generation formulas change with respect to the GR
ones. We also describe the semirelativistic approximation
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for the description of IMRI/EMRI systems and the details
of the implementation that we use in this paper.

A. GW generation in DCSMG

Taking into account the extreme-mass ratios involved,
the systems under consideration can be well described
using perturbation theory around the background quanti-
ties given in Sec. III A. In that section, we showed that
these background quantities contain a GR contribution plus
perturbations in the CS coupling parameter � and in the
black hole rotation parameter a=M. Similarly, here we
shall expand the perturbations generated by the SCO
(treated here as a particle) orbiting the MBH also in powers
of a third parameter: the mass ratio of the system � ¼
m=M.

Neglecting the slow-rotation approximation for the time
being, the metric and the CS scalar field can be expanded
as follows:

g�� ¼ �g�� þ
X

n¼1;m¼0

�n�mhðn;mÞ
��

¼ �g�� þ�hð1;0Þ�� þ��hð1;1Þ�� þ � � � ; (43)

# ¼ �# þ X
n¼1;m¼0

�n�m#ðn;mÞ

¼ �# þ�#ð1;0Þ þ��#ð1;1Þ þ � � � ; (44)

where ð�g��; �#Þ are given in Eqs. (19) and (20) and hðn;mÞ
��

and #ðn;mÞ now stand for the perturbations of Oð�n; �mÞ
(alternatively, one can think of� as playing the role of 
 in
Sec. II D).

The equation for the metric perturbation hð1;0Þ�� , in the
Lorenz gauge [Eq. (9)], is

�f �hhð1;0Þ�� þ 2 �R
�
�
�h

ð1;0Þ
� g ¼ � 1

�
Tmat
�� ; (45)

where there are no contributions from the CS scalar field at
this order of approximation, and thus, this is a purely GR

GW generation equation. Similarly, the equation for #ð1;0Þ
is

�h#ð1;0Þ ¼ hð1;0Þ�� �r�
�r�

�# þ �g��ð1Þ�
��

�r
�#

� �

4�
ð1Þð�RRÞ; (46)

where ð1Þ�
�� and ð1Þð�RRÞ denote the first-order perturba-

tions of the Christoffel symbols and the Pontryagin density,

respectively, about �g�� and evaluated at hð1;0Þ�� . That is,

#ð1;0Þ is generated by the metric perturbations hð1;0Þ�� which,
in turn, are generated by the motion of the SCO around the
MBH. The first two terms on the right-hand side of Eq. (46)
are proportional to the spin parameter a=M. This is not the
case for the third term, since this is nonzero for a

Schwarzschild BH [23], which implies that #ð1;0Þ will

contain terms proportional to a but also terms that are
a-independent.
The next correction to the metric perturbations in the

small-coupling approximation is hð1;1Þ�� , which satisfies an
equation with the following structure:

�f �hhð1;1Þ�� þ 2 �R
�
�
�h

ð1;1Þ
� g

¼ 2�

�
fC��½#ð1;0Þ; �g�� þ ð1ÞC��½ �#; hð1;0Þ�� �g

� 2
�

�

�
�rð� �# �r�Þ#ð1;0Þ � 1

2
�g��

�r� �# �r�#
ð1;0Þ

� 1

4
hð1;0Þ��

�r� �# �r�
�#

�
; (47)

where ð1ÞC�� is the first-order perturbation of the C tensor

when only the metric is perturbed [see Appendix B 1 for
explicit formulas of these quantities]. Note that the terms
on the right-hand side of Eq. (47) depend only on the
background (overbarred) quantities and the ð1; 0Þ perturba-
tions, which are determined by Eqs. (45) and (46).
The leading-order CS correction to the GW generation

formalism is then determined by Eq. (47), so let us now
analyze its structure. The first term in this equation is

ð2�=�ÞC��½#ð1;0Þ; �g��, and it contains two pieces:

ð2�=�Þð �r�#
ð1;0ÞÞ �
�	�ð� �r�

�R�Þ
	; (48)

ð2�=�Þð �r�
�r	#

ð1;0ÞÞ� �R	ð��Þ�: (49)

Since the background is Kerr plus terms of order � ,
Eq. (48) is actually at least of Oð�2�a=MÞ, and we can

then ignore it to compute hð1;1Þ�� . The second piece [Eq. (49)]
is actually the only one in Eq. (47) that is not proportional
to the spin parameter, making it ofOð��Þ, since the dual to
the Riemann of the Schwarzschild metric is nonvanishing.
The last term in Eq. (47) is at least quadratic in a=M,

making it of Oð��a2=M2Þ, since �# is linear in the spin
parameter. All remaining terms are at least linear in the
spin parameter and of Oð��a=MÞ, since they are all pro-

portional to derivatives of �#, which in turn is proportional
to a=M [see Eq. (20)].
The structure of Eq. (47) thus reveals that if one were to

employ the slow-rotation approximation, as in the compu-
tation of the MBH metric [25] (see Sec. III A), the leading-
order evolution equation for the metric perturbation be-
comes

�f �hhð1;1Þ�� þ 2 �R
�
�
�h

ð1;1Þ
� g ¼ 2�

�
ð �r�

�r	#
ð1;0ÞÞ� �R	ð��Þ�:

(50)

Once this equation is solved for hð1;1Þ�� , one could use it to

solve the evolution equation for #ð1;1Þ, which we have not
presented here. In this way, one could proceed with the
bootstrapping method described in [25] and in Sec. II B to
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build higher-order perturbations in the metric and the CS
scalar field.

In summary, GW emission in DCSMG is determined by
the following equations. To first order, the metric pertur-
bation is generated by the SCO through the GR relation in

Eq. (45), leading to hð1;0Þ�� ¼ Oð�Þ. To second order, the
metric perturbation contains two contributions: a term

hð2;0Þ�� ¼ Oð�2Þ and a CS modification to the first-order

term hð1;1Þ�� ¼ Oð��Þ. The latter can be obtained by solving
Eq. (50), which requires knowledge of the leading-order

perturbation to the CS scalar due to the SCO, #ð1;0Þ, which
in turn is determined by Eq. (46) once one has solved for

hð1;0Þ�� through Eq. (45). In this paper we shall only employ

the first-order terms hð1;0Þ�� to model GWs, and thus mod-
ifications to the waveforms arise exclusively due to cor-
rections to the trajectories.

A proper treatment of the EMRI problem would also
require the use of the first-order perturbations to estimate
backreaction, self-force effects on the SCO trajectory (see
e.g. [82]), which involves calculations that have not been
carried out in full generality even in pure GR. Only through
the adiabatic approximation have there been studies of
such backreaction for spinning MBHs [43–52], where
one assumes that only GW dissipation is important. The
purpose of this paper, however, is to elucidate the main
differences between GR and DCSMG dynamics for IMRI/
EMRI systems, and thus, calculations with backreaction
are far too complex. Instead, we will resort to the so-called
semirelativistic approximation, which we describe in the
next subsection.

B. The semirelativistic approximation

First introduced by Ruffini and Sasaki [53], this approxi-
mation makes two critical assumptions to simply the mod-
eling of GW generation: (i) the SCO moves along
geodesics of the MBH background geometry; (ii) the
SCO emits GWs as if it were moving in flat space.
Assumption (i) is justified on the basis that for EMRIs
the more extreme the mass ratio, the closer one is to the
point-particle limit, and hence the closer the motion is to
geodesic. Assumption (ii) is useful because it allows us to
neglect the curvature of the background in the generation
and propagation of GWs from the SCO to the observer in
the radiation zone. Such usefulness, however, is not a
justification; a justification for assumption (ii) arises only
after one compares GWs computed in the semirelativistic
approximation versus GWs generated in more exact
prescriptions.

Recently, the assumptions the semirelativistic approxi-
mation is based upon have been shown to be justified in
that they provide an accurate approximation to GWs gen-
erated by more precise methods. Babak et al. [58] have
shown that semirelativisticlike calculations can lead to
waveforms with high overlaps with Teukolsky-based

waveforms, where for the latter the GW fluxes for the
adiabatic approximation are calculated from solutions to
the Teukolsky equation for perturbations of a Kerr back-
ground. Babak et al.[58] also describe how to incorporate
radiation reaction in the calculations by using certain post-
Newtonian prescriptions, and compare fluxes of energy and
angular momentum with Teukolsky-based estimations.
Such comparisons suggest that post-Newtonian prescrip-
tion of radiation reaction also seem to lead to waveforms
that capture most of the essential features of the Teukolsky-
based simulations.
Following the work of Ruffini and Sasaki [53], the

implementation of the semirelativistic approximation is
as follows. Once the geodesic equations have been solved
for the orbital trajectories, the metric perturbation is ob-
tained from Eq. (45), but assuming that the background
metric �g�� is the flat spacetime metric. In this way, the

solution to the perturbative equation is given by the gravi-
tational Lienard-Wiechert potentials (see e.g. [87,88] for
the derivation of the electromagnetic version of these
potentials), which contain all the information necessary
to reconstruct the gravitational field generated by the SCO.
In this paper, we shall employ a formulation of the

semirelativistic approximation in which the first assump-
tion (geodesic motion with respect to theMBH background
geometry) is still employed, but the second one is slightly
modified. More precisely, we shall still assume that GWs
are emitted as if in flat space but, following [58,89], we
solve the perturbative equations using a multipolar expan-
sion, which is determined by the source multipole mo-
ments and which is valid for objects with arbitrarily
strong internal gravity (see [54] for a detailed discussion
of these expansions).
The multipolar treatment of gravitational radiation is

truly a slow-motion approximation as the series is trun-
cated at a finite multipole order. For a compact-body binary
system, the error scales with a high power of the orbital
velocity, which for EMRIs can typically be larger than half
the speed of light, and may lead to the loss of certain
relativistic features in the waveforms (see e.g. [90] in the
context of post-Newtonian theory and EMRIs). In spite of
these drawbacks, the semirelativistic approximation has
been shown to capture the correct qualitative behavior of
EMRI orbits and waveforms, and thus, it will suffice to
present the main features of the CS modifications to GW
generation.
Another possibility to estimate the GW emission is to

use the weak-gravity/fast-motion formula derived by Press
[91], whose implementation requires the same information
as the multipolar formula truncated after the mass octopole
and current quadrupole. This formula has been used in
[58], where it has been shown to provide accurate results
as compared to Teukolsky-based waveforms. We shall not
employ this formalism here, however, choosing to work
instead with the standard multipolar decomposition.
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We have shown that up to order Oð��Þ the perturbative
GW generation equations for IMRI/EMRI systems have
the same form as in GR. Any difference in the waveforms
will then arise due to differences in the geodesic equations
due to the modified Kerr background. In the transverse-
traceless (TT) gauge, defined by Eqs. (9) and (10) and in
which the dynamical degrees of freedom have been iso-
lated, the metric perturbations describing the GWs emitted
by an isolated system are given by [54]

hTTij ¼
�X1
‘¼2

4

‘!r
Ið‘ÞijA‘�2

ðtretÞNA‘�2

þ X1
‘¼2

8‘

ð‘þ 1Þ!r "klðiJ
ð‘Þ
jÞkA‘�2

ðtretÞnlNpA‘�2

�
TT
; (51)

where we have adopted the multi-index notation of [54]: A‘

is a multi-index (sequence of ‘ indices: a1 . . . a‘) so that
NA‘

¼ na1 . . . na‘ is the product of ‘ unit vectors n
i ¼ xi=r

that point in the direction from the source toward the

observer, with r ¼ ð	ijx
ixjÞ1=2 the flat-space distance

from the source to the observer; there is summation over
repeated indices independently of their location; "ijk is the

three-dimensional flat-space Levi-Civita tensor.
The mass and current multipole moments of the source,

IA‘
and JA‘

, respectively, are given by [54]

IA‘
¼

�Z
d3xxA‘

�
STF

;

JA‘
¼

�Z
d3xð"a‘jkxivkÞxA‘�1

�
STF

;

(52)

where xA‘
¼ xa1 . . . xa‘ and  is the mass density of the

source, which in our case corresponds to the mass density
of the SCO, given by

ðt; xiÞ ¼ m�ð3Þ½xi � ziðtÞ�; (53)

where �ð3Þ denotes the Dirac-delta distribution, ziðtÞ is the
spatial trajectory of the SCO, and vi ¼ dzi=dt is its spatial
velocity with respect to the coordinate time t. In Eq. (51)
the mass and current multipole moments have to be eval-
uated at the retarded time tret ¼ t� r and the superscript
(‘) denotes their ‘th time derivative.

The projectors STF in Eqs. (52) and TT in Eq. (51) are
symmetric/trace-free and transverse/traceless operators,
respectively. The latter is obtained by means of the projec-
tor orthogonal to ni, namely, Pi

j ¼ 	i
j � ninj, in the fol-

lowing way:

½Aij�TT ¼ Pk
i P

l
jAkl � 1

2PijP
klAkl: (54)

An orthonormal triad fni; pi; qig, with respect to the spatial
flat-space metric and associated with ni, can always be
constructed to build the polarization tensors via "þij ¼
pipj � qiqj and "�ij ¼ 2pðiqjÞ.

With these tensor projectors and Eq. (51) we can obtain
the two independent GW polarizations as follows:

hþ ¼ 1
2"

þijhTTij ; h� ¼ 1
2"

�ijhTTij ; (55)

or equivalently

hTTij ¼ hþ"þij þ h�"�ij : (56)

In this paper we use this multipolar decomposition to
compute the GW emission including terms up to the
mass octopole and current quadrupole moment.
Another important question for the implementation of

this version of the semirelativistic approximation is the
choice of coordinates. More specifically, the equations of
motion (geodesics) are written in Boyer-Lindquist coordi-
nates (see Sec. III B), whereas the formulas given in this
section require Cartesian coordinates. Thus, one must de-
cide how to construct Cartesian coordinates that cover the
motion of the SCO and at the same time the observer in the
radiation zone. One possibility would be to rewrite the
background MBH metric and the equations of motion in
Cartesian-like coordinates such that at infinity the metric
becomes the flat spacetime metric in Cartesian coordinates.
This choice was made in [89] for the study of extreme-
mass-ratio gravitational-wave bursts. A different choice is
to identify Boyer-Lindquist coordinates ðr; �; �Þ with flat-
space spherical coordinates and then introduce Cartesian
coordinates through the familiar relations

x ¼ r sin� cos�; y ¼ r sin� sin�; z ¼ r cos�:

(57)

This was the choice made in [58] for the construction of
EMRI kludge waveforms. Numerical experiments [92]
show that indeed different choices of Cartesian coordinates
produce different waveforms. However, differences are
significant only for relativistic orbits, and for those, these
differences appear dominantly in the amplitudes but not in
the phase. In this paper we shall employ the second choice
of Cartesian coordinates for the computation of the gravi-
tational waveforms.

V. GRAVITATIONALWAVES FROM IMRI/EMRI
SYSTEMS IN DCSMG

In this section we study numerically the evolution of
IMRI/EMRIs and their GWemission in the semirelativistic
approximation and in the context of the DCSMG theory.
We describe the numerical implementation and apply it to
a number of test systems, presenting the trajectories and
the waveforms associated with them.

A. Numerical evolution and test systems

In the semirelativistic approximation the numerical cal-
culations can be divided into two stages: first, the compu-
tation of the SCO trajectory around the MBH and, second,
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the computation of the gravitational waveforms given the
trajectory. The starting point for the computation of the
trajectory, namely, ½tð�Þ; rð�Þ; �ð�Þ; �ð�Þ� are the geodesic
equations [Eqs. (26) and (33)]. Clearly, when the CS
parameter � is small the dynamics will be close to GR.
Since there are already bounds on this parameter from
binary pulsar tests [25], albeit weak, we shall be here
interested only in small CS deformation of GR EMRI/
IMRI waveforms.

As in GR, for bound orbits the equations for rð�Þ and
�ð�Þ present turning points which are difficult to treat
numerically. This can be avoided by introducing the fol-
lowing alternative variables (see e.g. [85] for details):

r ¼ pM

1þ e cosc
; cos2� ¼ cos2ð�minÞcos2ð�Þ; (58)

where p is the semilatus rectum, e is the eccentricity, and as
we mentioned before � 2 ð�min; �� �minÞ. The geodesic
equations then become evolution equations for the varia-
bles ðc ; �;�Þ with respect to Boyer-Lindquist time t,
where one uses the dt=d� equation [Eq. (26)] to transform
from proper to coordinate time. The form of the ordinary
differential equations (ODEs) for ½c ðtÞ; �ðtÞ; �ðtÞ� in GR
can be found from the developments presented, for in-
stance, in [85].

From a numerical standpoint, ODE solvers for
½c ðtÞ; �ðtÞ; �ðtÞ� require knowledge of the turning points,
which will be here CS modified. In particular, the radial
turning points are modified, since the ODE for c ðtÞ is
corrected by new CS terms that arise in the dr=d� equa-
tion. In contrast, the polar turning points are not modified,
since these arise from the d�=d� equation, which is not CS
corrected. All of this suggests that prescribing a set of
initial constants of motion ðE; L;QÞ leads to three orbital
parameters ðp; e; �Þ, which are not identical to the ones that
one would obtain in GR.

Let us define these orbital parameters more carefully,
since they play an important role in our calculations. The
semilatus rectum and the eccentricity parameter, p and e,
respectively, are defined such that the apocenter rapo and

pericenter rperi (two of the turning points of the equation

for dr=d�) have the familiar Newtonian expression

rapo ¼ pM

1� e
; rperi ¼ pM

1þ e
: (59)

The third orbital parameter, the orbital inclination with
respect to the equatorial plane �, is defined as tan� ¼
Q=L, but it is sometimes more convenient to describe it
in terms of the angle �inc ¼ �=2� sgnðLÞ�min, which is
directly related to the turning points of �ð�Þ. Clearly, the
functional form of ðp; e; �incÞ in terms of ðE; L;QÞ differs
in GR and in DCSMG, and thus, if one prescribes a set of
constants of motion ðE0; L0; Q0Þ in GR, the resultant orbit
will not possess the same orbital parameter as its DCSMG
counterpart. In the results presented below, we compare

trajectories that have the same orbital parameters,
ðp; e; �incÞ, instead of comparing trajectories with the
same constants of motion ðE; L;QÞ.
Regarding the numerical integration of the ODEs for

½c ðtÞ; �ðtÞ; �ðtÞ�, we use the Bulirsch-Stoer extrapolation
method [93] as the evolution algorithm (details on this
method and its implementation can be found in [94,95]).
Our numerical code is complemented with a number of
routines to construct Boyer-Lindquist and Cartesian-like
coordinates and their associated time derivatives.
Waveforms are computed with the multipolar expansion

of Sec. IVB, up to the mass octupole and current quadru-
pole, which requires as input the trajectory xiðtÞ, the spatial
velocity viðtÞ, the spatial acceleration aiðtÞ, and its time
derivative, the jerk, jiðtÞ ¼ daiðtÞ=dt. These time deriva-
tives are computed using a finite differences differentiation
rule with nine points. The error in the computation of the
jerk scales with the time step �t as ð�tÞ8, well within the
accuracy range that we need for our calculations.
We have here evolved the geodesic equations for a total

time of T ¼ 5� 105M, obtaining on the order of 103–104

cycles. The type of geodesic is prescribed in terms of the
following orbital parameters: the pericenter distance rperi,

the eccentricity e, and the inclination angle �inc. We im-
plemented a double-bisection algorithm to guarantee that
the turning points in both the GR evolutions and the
DCSMG ones correspond to orbits with the same orbital
parameters ðp; e; �incÞ, up to an accuracy of one part in
1014.
The MBH background metric of Eq. (19) is fully deter-

mined by the choice of the massM and spin parameter a ¼
J=M, where J is the spin angular momentum, plus the ratio
�. The SCO is characterized by its massm, which then also
defines the mass ratio � ¼ m=M. As we have mentioned,
the type of orbit is fully determined by the choice of orbital
parameters ðrperi; e; �incÞ, while we still need to fully de-

termine the initial conditions of the motion by prescribing
ðc o; �o; �oÞ ¼ ðc ðtoÞ; �ðtoÞ; �ðtoÞÞ, where to is the initial
time for the numerical evolution of our system of ODEs.
We shall here always set � ¼ �, M ¼ M�, where M� ¼
4:5� 106M� is approximately the mass of the presumable
MBH at the center of the Milky Way [96]. For the mass of
the SCO we choosem ¼ 35M�, which leads to the follow-
ing mass ratio: �
 7:8� 10�6.
The particular test systems that we consider in this paper

are defined as follows:
(A) a ¼ 0:1M and � ¼ 0:1M4, with orbital parameters

ðrperi; e; �incÞ ¼ ð12M; 0:2; 0:1Þ,
(B) a ¼ 0:2M and � ¼ 0:2M4, with orbital parameters

ðrperi; e; �incÞ ¼ ð8M; 0:4; 0:2Þ,
(C) a ¼ 0:4M and � ¼ 0:4M4, with orbital parameters

ðrperi; e; �incÞ ¼ ð6M; 0:6; 0:3Þ,

while the waveforms are measured by observers located on
the z axis at a distance of approximately 8 kpc (roughly the
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distance from the Solar System to the center of our
Galaxy). Clearly, the test systems have been ordered
from the least relativistic to the most relativistic. We are
forced to choose a and � such that the slow-rotation
approximation a=M � 1 and the small-coupling approxi-
mation � � 1 used for constructing the MBH background
[25] are satisfied. In this sense, the error in the MBH
background metric scales as �ða3=M3Þ, which for systems
(A), (B), and (C) implies errors in the MBH background of
Oð10�4Þ, Oð10�3Þ, and Oð10�2Þ, respectively, relative to
the true DCSMG waveforms for an exact, spinning MBH
background. One might worry that the coefficient in front
of these order symbols might be large, but as one can see in
Eqs. (29) and (36), the coefficient in front of the correction
to the location of the ISCO is ofOð10�3Þ, while the largest
coefficient of the modification to the geodesic equation is
Oð10�5Þ at pericenter for system (C).

B. Orbital trajectories

The test systems described above present rather similar
orbital behavior. Generically, there is a stage of zoom-
whirl, where the particle spends several cycles close to
the pericenter radius rperi followed by a stage where it

orbits at a larger radius r, close to rapo. Moreover, there

is generically both in-plane and out-of-the-plane preces-
sion. The orbit produced by test system (B) in GR is shown
in Fig. 2, where we have plotted only the last time interval
of duration 17 500M of the geodesic evolution. From this
figure we can observe the generic Lense-Thirring preces-
sion as well as the two stages described above.

The CS correction to the background has a clear effect
on the trajectories of the bodies. Figure 3 plots the projec-
tion of the orbital trajectories for system (C) onto the x-y
plane for the CS background (black line) and the Kerr
background (light gray line) and the last 17 500M of the
geodesic evolution. Notice that the orbital trajectories have
dephased significantly by the end of the evolution.

From this figure one cannot discern whether the CS
trajectories trail or anticipate the GR ones, but this can
be assessed by plotting the difference between the GR and
CS evolved angles ðc ; �;�Þ that determine completely the
geodesic evolution. These angles are the Boyer-Lindquist
azimuthal angle � plus the two angles c and � associated
with the other Boyer-Lindquist coordinates r and � through
the relations in Eq. (58). Figure 4 plots the dephasing in c ,
where we observe that, in all panels, the difference 	c :¼
c CS � c GR is initially close to zero and then it decreases
linearly on average (over a number of cycles). Also we
observe that, as expected, system (C) presents the biggest
dephasing, followed by system (B) and then by system (A)
(note the change of scale in the y axis). Similar linear
dephasing trends are observed in 	� and 	�.
For weakly gravitating systems, we find that 	c is

dominant and negative, while 	�
�	�, with the latter
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positive. This implies that the CS orbits of systems (A) and
(B) are overall trailing the GR solution. This scenario is a
bit more complicated for system (C), where 	c � 0 is
still dominant, but both 	� and 	� are positive, implying
that the CS orbits still trail the GR one in radius, but
anticipate it in angles � and �.

C. Gravitational waveform

Orbital trajectories can give us a sense of the CS effect
on geodesics, but the true observables are gravitational
waveforms. Figure 5 plots the difference in the waveforms
computed with CS trajectories and GR trajectories. For
reference, the maximum magnitude of the GR GW polar-
ization hþ is approximately jhþj< 8� 10�17 [system
(A)], jhþj< 1:25� 10�16 [system (B)], and jhþj<
2:25� 10�16 [system (C)]. At the end of the simulation
(
 128 days of data using M ¼ M�), we observe that
system (A) has dephased by as much as 0.3%, while system
(B) has dephased by 16%, and system (C) by 90% relative
to the maximum amplitude of the respective GR wave-
forms. Similar behavior is observed for the other
polarization.

Another measure one can construct to observe this de-
phasing is the time-dependent overlapðGR;CSÞ, defined
as

 ðA; BÞ :¼ hAþhBþ þ hA�hB�; (60)

which we can normalize by using the quantity

N ðGR;CSÞ :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGR;GRÞ  ðCS;CSÞp
: (61)

This measure is related to the integrand of the overlap
commonly used in gravitational-wave data analysis.
Figure 6 plots ðGR;CSÞ=N as a function of time.
Observe that after only three weeks of data (roughly
105M of evolution), systems (A) and (B) will probably
not be able to distinguish between GR and CS geodesics.

On the other hand, system (C) will probably be able to
distinguish this difference, because it experiences a deeper
gravitational potential. This plot shows how robust LISA
gravitational-wave astronomy can be when considering
geodesic motion about a spinning MBH, since even a
rather strong curvature correction to the action leads to
gravitational waves that are virtually indistinguishable
from GR ones, unless the SCO is close to the light ring
or the coupling constant of the curvature correction is quite
large.
By considering system (C), the most relativistic one, one

can ask how small can � or, more precisely, � be in order to
cause a loss in the normalized dephasing measure of about
5% after 105M of evolution [Eqs. (60) and (61)]. The
answer can be found in Fig. 7, which shows the average
of the normalized dephasing measure as a function of time
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time. The top panel corresponds to system (A), the middle one to
system (B) and the bottom one to system (C).

0
t/M

-1

-0.5

0

0.5
1

O
(G

R
,C

S)
/O

N

0.96

0.97

0.98

0.99

1

O
(G

R
,C

S)
/O

N

0.999985

0.99999

0.999995

1

O
(G

R
,C

S)
/O

N

1×10 +5 2×10 +5
3×10 +5 4×10 +5 5×10 +5

FIG. 6. Running average of the normalized dephasing measure
ðGR;CSÞ over 20 consecutive time steps as a function of time.
The top panel corresponds to system (A), the middle one to
system (B) and the bottom one to system (C).

0

t/M

0.95

0.96

0.97

0.98

0.99

1

O
(G

R
,C

S)
/O

N

1×10 +5 2×10 +5
3×10 +5 4×10 +5 5×10 +5

FIG. 7 (color online). Normalized dephasing measure
OðGR;CSÞ as a function of time for system (C) using: � ¼
0:4M4 (solid black), � ¼ 0:2M4 (dotted blue), � ¼ 0:1M4

(dashed red), � ¼ 0:05M4 (dotted-dashed green), and � ¼
0:025M4 (dotted-dotted-dashed violet).

EXTREME- AND INTERMEDIATE-MASS RATIO . . . PHYSICAL REVIEW D 80, 064006 (2009)

064006-15



for system (C), but for the following values of the CS
parameter: � ¼ 0:4M4 (solid black), � ¼ 0:2M4 (dotted
blue), � ¼ 0:1M4 (dashed red), � ¼ 0:05M4 (dotted-
dashed green), and � ¼ 0:025M4 (dotted-dotted-dashed
violet). Observe that over 4 months of data, the CS correc-
tion could lead to a significant dephasing even for a CS
parameter of Oð10�2Þ. On the other hand, if one integrates
incoherently over three-week segments of the data, then
the CS correction would lead to a dephasing only if the CS
parameter is of Oð10�1Þ. In this case, however, one would
have trouble connecting three-week segments together if
the CS correction is not taken into account.

Another important question is how this bound compares
with bounds obtained from binary pulsar tests. The pre-
cession of the perigee in binary pulsars can be used to

argue that �1=4 & 104 km, as was done in paper I. For
inspirals, a GW test of DCSMG can be expressed as

�1=4 & 6� 106	1=4ðM=M�Þ km; (62)

where 	 here represents the accuracy to which we can
measure �. This accuracy depends not only on the integra-
tion time, the signal-to-noise ratio and the type of orbit
considered, but it should also be enhanced if one accounts
for radiation-reaction effects, since they are also CS cor-
rected (see Sec. VI). Based on the results of this section, it
is not ludicrous to expect that 	
 10�6 or better depend-
ing on the system, while one also sees that IMRIs are
favored over EMRIs due to the M�1 dependence. Thus,
if one considers an IMRI with total massM ¼ 103M�, and
if one assumes 	 ¼ 10�6, then the constraint can be better
than the binary pulsar one by at least 2 orders of magni-
tude. Moreover, as we shall see in Sec. VI, radiation-
reaction effects depend on the oscillatory sector of the
CS scalar, which in turn affects GWs directly. Such an
oscillatory sector of the theory is simply untestable by
binary pulsar experiments.

The results and arguments presented above suggest that
GW observations with LISA could allow for interesting
tests of DCSMG, but of course, these arguments should be
backed up by a deeper and more thorough data analysis
study. In this sense, the figures presented in this section
should only be taken as an indication of the possible
dephasing and loss of overlap that one could experience
if CS theory is in play. A detailed study of the dependence
of such a test on the spectral noise density curve, the
location of the detector in the sky via the beam pattern
functions, and the distance to the source is thus of key
importance, but postponed to future work.

VI. GRAVITATIONAL-WAVE PROPAGATION AND
RADIATION REACTION

The semirelativistic approximation provides a sensible
approximation to the emission of GWs generated by the
motion of SCOs around MBHs, but so far radiation reac-

tion has been completely neglected. These effects can be
incorporated via the adiabatic approximation [47,48,50–
52], that is, the assumption that the changes in the con-
stants of motion ðE; L;QÞ evolve in a time scale much
larger than the orbital ones. In this scheme, one then argues
that the system can be evolved using a geodesic evolution
for a certain number of orbital cycles, after which the
constants of motion are corrected by estimates that use
balance laws (e.g. the GR energy balance law provides a
prescription of how to modify the orbital energy due to GW
energy emission out to infinity and into the horizon).
In order to obtain the balance laws one must understand

the propagation of GWs in the underlaying theory and their
associated, effective stress-energy tensor. This can be done
in the framework of the shortwave approximation, where
one decomposes the geometry into a background and an
oscillatory part corresponding to GWs. Such a decompo-
sition holds when the GWwavelength is much smaller than
the typical length scale associated with the background
curvature.
In this section, we develop the shortwave approximation

for DCSMG and compute the effective stress-energy tensor
of GWs in this theory. Based on this, and using the sym-
metries of the background geometry (timelike and axial
Killing vectors), we can establish balance laws that can
allow us to introduce radiation-reaction effects, in the
adiabatic approximation, in the energy and angular mo-
mentum. For the case of the Carter constant the situation is
more difficult as it is not associated with a Killing vector
symmetry, but perhaps a two-time-scale expansion could
be performed, similar to that introduced in [97].

A. The short-wavelength approximation

The short-wavelength approximation (SWA) was first
introduced by Isaacson [98,99] (see also [63] and referen-
ces therein) to study the propagation of GWs beyond the
linear approximation. In the SWA one assumes that the
typical GW wavelength �GW is much smaller than the
curvature length scale R such that �GW � R, where
R�2 is the typical scale of the components of the
Riemann tensor. In this way, we can split the spacetime
metric into a background metric �g��, with associated

curvature scale R, plus an oscillating metric perturbation
describing the GWs h��, with an associated length scale

�GW [see e.g. Eq. (8)] and an associated amplitude hGW. In
this way, @� �g�� 
 1=R and @�h�� 
 hGW=�GW.

In practice, applying the SWA to any tensor implies
separating its background part from its oscillatory part,
which can be done by averaging over several wavelengths
(�GW). Such separation can be accomplished via the Brill-
Hartle averaging procedure [98,99], which applies to con-
vex regions of the background spacetime (regions where
any two points can be joined by a unique geodesic). Then,
the average of the components of a given tensor Ta1���

b1��� is
defined as
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hTa1...
b1...

iðxÞ :¼
Z
W

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��gðx0Þ

q
fðx0; xÞĝa1

a0
1
ðx; x0Þ . . .

� ĝ
b0
1

b1
ðx; x0Þ . . .Ta0

1
...

b0
1
...
ðx0Þ; (63)

where the integration takes place over a small region W
containing several GW wavelengths; ĝa1a0

1
is the bitensor

of parallel displacement in the background spacetime; and
fðx0; xÞ is a weighting function that smoothly decays to
zero as x and x0 are separated by many wavelengths. The
main properties of this averaging rule (for details see [63])
are as follows:

(i) Background covariant derivatives commute [frac-
tional errors are of Oð�GW=RÞ2].

(ii) Total divergences average out to zero [fractional
errors are of Oð�GW=RÞ].

(iii) As a corollary of (i) and (ii), one can freely inte-
grate by parts.

These rules shall be used heavily in the next section to
obtain an expressions for the GW stress-energy tensor in
CS modified gravity.

B. Effective stress-energy tensor for GWs

In DCSMG, not only does the metric tensor oscillate, but
also the CS scalar field, sourced exclusively by the space-
time curvature [see Eq. (5)]. When GWs are present, these
will then generically induce oscillations in the CS scalar
field, which forces us to also decompose # into a back-

ground part �# and an oscillatory part ~#, the latter induced
by GWs.

Let us now study the field equations in the SWA, which
requires expansions up to second order in the oscillatory
parts (see Appendix B 1 for the basic formulas used for
these expansions). The structure of the resulting equations
consists of oscillatory terms, linear in the amplitude, and
coarse-grained terms that describe how the background is
modified by GWs. This modification is produced by the
averaged second-order term in the oscillatory part, which
reflects the nonlinear character of this effect.

Then we set to zero the linear part in the wave amplitude,
hGW, obtaining in this way the equations that describe the
propagation of the waves in the background. In GR, these
equations are simply

ð1ÞR�� ¼ � 1

2
h
��j

 þO
�
hGW
R2

�

¼ 1

2�

�
ð1ÞTmat

�� � 1

2
h��T

mat � 1

2
�g��

ð1ÞTmat

�
; (64)

where we have used the Lorenz gauge [Eq. (9)] and where,
here and in the rest of this section, the superscript preced-
ing a given quantity denotes the perturbative order of this
quantity with respect to metric perturbations (see
Appendix B for more details).

In DCSMG the propagation equations have the follow-
ing form:

ð1ÞR�� þ �

�
ðð1ÞC��½ �#; h� þ C��½ ~#; �g�Þ

¼ 1

2�

�
ð1ÞTmat

�� þ ð1ÞTð#Þ
�� ½ �#� þ 	Tð#Þ

�� ½ �#; ~#�

� 1

2
h��ðTmat þ Tð#Þ½ �#�Þ � 1

2
�g��ðð1ÞTmat þ ð1ÞTð#Þ½ �#�

þ 	Tð#Þ½ �#; ~#�Þ
�
; (65)

�f �h ~#��g��ð1ÞS��� �#j� � h�� �#j��g

¼ ��

2

�
� �Rð1ÞR½h� þ 1

4
h� �R �R

�
: (66)

The detailed structure of Eq. (65) as well the form of

	Tð#Þ
�� ½ �#; ~#� can be found in Appendix B 2 [Eq. (B31)].

The object ð1ÞS��� in Eq. (66) denotes the perturbation

of the Christoffel symbols and its expression is given in
Eq. (B9).
Using the averaging procedure described above, the field

equations tell us how the nonlinear contribution of the
waves shapes the background. This contribution can be
written as an effective stress-energy tensor of the GWs
TGW
�� (the Isaacson tensor), allowing us to write

�G�� þ �

�
�C�� ¼ 1

2�
ðTmat

�� þ Tð#Þ
�� ½ �#� þ Tð#Þ

�� ½ ~#� þ TGW
�� Þ:
(67)

In GR, the Isaacson tensor is given by (see e.g. [63])

TGW
�� ¼ �2�fhð2ÞR��½h�i � 1

2
�g��hð2ÞR½h�ig; (68)

which, using the expressions in Appendix B and working
in the Lorenz gauge [Eq. (9)] supplemented with the trace-
less condition [Eq. (10)], reduces to

TGW
�� ¼ �

2
hh��j�h��j�i: (69)

One can see, using the first-order equations and the average
rule, that this tensor is traceless and divergence-free within
the errors produced by the approximations made using the
SWA scheme:

�g ��TGW
�� ¼ 0; TGWj�

�� ¼ 0: (70)

In DCSMG, the effective stress-energy tensor of GWs is
given by

TGW
�� ¼ �2�

�
hð2ÞR��½h�i � 1

2
�g��hð2ÞR½h�i þ �

�

�ðhð2ÞC��½ �#; h�i þ hð1ÞC��½ ~#; h�iÞ
�
: (71)

Again, using the formulas in Appendix B, restricted to the
TT gauge of Eqs. (9) and (10), and the properties of the
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averaging (in particular, the integration by parts), we find
that the terms corresponding to the CS correction vanish
exactly, yielding the same expression as in GR (for a
guided explanation of this fact, see Appendix B). That is,
the effective stress-energy tensor of GWs in DCSMG
[which enters in Eq. (67)] is simply given by Eq. (68) or
(69), which implies that the backreaction in the orbital
motion due to GW emission is essentially as in GR.

We can now look at the equation for # with the second-
order corrections. This is a linear equation in # and hence
all the modifications come from second-order terms in the
GW. One the finds that

� �h �# ¼ ��

4

�
1� 1

4
hh��h��i

�
� �R �R

� �

4
�
����hð1ÞR���ð1ÞR�

��i: (72)

As we can see there are two second-order corrections to the
background value of the CS scalar field: one that renorm-
alizes the value of �, hh��h��i 
 h2GW, and another that

scales as �h2GW=�
4
GW.

C. Balance laws and radiation-reaction effects

By means of the SWA we have studied the propagation
of GWs and of oscillations induced in the CS scalar field.
We have also seen how these oscillations affect the back-
ground values of the metric tensor [Eq. (67)] and of the CS
scalar field [Eq. (72)]. Of particular importance is the
equation for the modification of the background geometry,
which contains the effective stress-energy tensor of the
GWs, which we have found has the same form as in GR.
From the previous development it is clear that from
Eq. (67) we have the following conservation equation:

�r ���� ¼ 0; ��� ¼ Tmat
�� þ Tð#Þ

�� ½ ~#� þ TGW
�� ; (73)

where we have used that the background Einstein tensor is
divergence-free and the equations of motion for the back-

ground scalar field �# are satisfied. The new ingredient with
respect to GR is the appearance of the stress-energy tensor
associated with the oscillations induced in the CS scalar
field.

Here, the background clearly corresponds to the MBH
geometry and the CS background scalar field is given in
Eqs. (19) and (20). Using the Killing symmetries of the
background, described by the vector fields t� and c � [see
Sec. III B], the vector fields

E � ¼ ����t
�; J � ¼ ���c

�; (74)

describe the total fluxes of energy and angular momentum
and are, by virtue of Eq. (73) and the Killing equations,
divergence-free vector fields. Therefore, we can obtain
balance laws for the energy and angular momentum by
considering a spacetime region V with boundary @V and

integrating over it the divergence-free conditions: E�
j� ¼

0 and J �
j� ¼ 0.

For the study of IMRI/EMRIs one can take V ¼
fðt; r;�;�Þ; such that to < t< tf and rH < r<rIg, where

the inner radius rH can be taken to be close to the horizon
location and the outer radius rI can be taken to be effec-
tively close to infinity (or at least far away from the SCO).
In this way @V is composed of two cylinders (one at r ¼
rH and the other one at r ¼ rI) of finite size, limited by two
slices, one at an initial time t ¼ to and the other one at a
final time t ¼ tf.

The balance laws for energy and angular momentum tell
us that the change in the constants of motion ðE;LÞ is given
by the amount of energy/angular momentum, of the GWs
and of the CS scalar field, flowing away fromV to infinity
(r ¼ rI) and into the MBH horizon (r ¼ rH). In this way,
one can account for the radiation-reaction effects in the
adiabatic approximation. Note that this only takes care of
the changes in the energy and in the angular momentum of
the SCO, while the question of how to correct the third
constant of motion, the Carter constantQ, in a general way
remains still open (see [48–52] for recent advances on that
question).
The flux of energy (or energy luminosity) in GWs going

towards infinity is given by

dEGW

dt
¼ � lim

r!1r
2
Z
S21

d�TGW
ti ni; (75)

where ni ¼ xi=r is the unit normal to the surfaces r ¼
const near spatial infinity, where the background geometry
is essentially flat. Although the expression for the energy
luminosity [Eq. (75)] is formally the same as in GR, the
luminosities are actually different because the geodesic
equations are indeed CS corrected by the modified Kerr
background given in Eq. (19).
To illustrate this difference, let us consider the expres-

sion

dEGW

dt
¼ �ð _h2þ þ _h2�Þ; (76)

where hþ and h� are the GW plus and cross polarizations,
respectively, which one can obtain from Eqs. (69) and (75).
Figure 8 plots the difference between the energy flux
computed from the GW emission of a SCO moving in
geodesics of Kerr and a SCO moving in geodesics of the
CS modified Kerr metric [Eq. (19)], for systems (A) (top
panel), (B) (middle panel) and (C) (bottom panel) as a
function of time. For reference, the maximum magnitude
of the energy flux computed from geodesic waveforms
about Kerr are 3� 10�37M�2 for system (A), 3�
10�36M�2 for system (B) and 2� 10�35M�2 for system
(C). Observe that, after approximately four months of
evolution, the fractional correction to the luminosities by
the CS correction is about 1% for system (A), 10% for
system (B) and about 50% for system (C). As expected, the
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more relativistic the system, the larger the CS correction to
the waveforms, and therefore, the larger the effect on
radiation reaction. Such corrections could have a signifi-
cant impact on kludge-type waveforms, when one takes
into account that the GW energy lost must also be supple-
mented by the energy emitted by the CS scalar field [see
the conservation equation, Eq. (73)]. To include this con-
tribution, one would need to solve the evolution equation
for the CS scalar field [Eq. (46)], using as input the
gravitational waveform computed without radiation
reaction.

The machinery developed in this paper allows, for the
first time, the inclusion of these radiation-reaction effects
in the orbital evolution of EMRIs and IMRIs in a realistic,
alternative theory of gravity. With these developments, one
can now properly construct alternative-theory, kludge
waveforms.

VII. CONCLUSIONS

We have studied the effects of dynamical CS modified
gravity on the orbit and GWs generated by IMRIs and
EMRIs. The semirelativistic approximation was employed,
through which we modeled the SCO trajectory via the
geodesic equations, while we treated GWs through a multi-
polar generation formalism.

We began by showing that test particles follow geodesics
in DCSMG. We then proceeded to explicitly calculate the
modified geodesic equations for a test particle in a generic
orbit around a CS modified Kerr MBH [25]. We showed
that the fundamental frequencies of the modified back-
ground are CS modified, as well as the relations between
the MBH multipole moments and its mass and spin,
although the latter incurs corrections at ‘ ¼ 4 multipolar
order, which might be small to be detected by future GW
observations with LISA.

We then continued with the study of GW generation in
the modified theory. We saw that the GW generation
formula based on the multipolar expansion is corrected to
leading order by second-order terms of Oð��Þ, which we
neglect here. This GW generation formalism is also modi-
fied by GR radiation-reaction effects, which scale as the
square of the mass ratio and which we also neglect here.
We then evolved geodesics in this modified background

and compared their associated GWs to those generated by
geodesics on a pure Kerr background. Generically, we find
that these waves dephase after a certain number of cycles
that depends on the strength of the CS coupling parameter,
as well as on how relativistic the geodesic under consid-
eration is and the signal-to-noise ratio of the event. For
small CS parameters, such a dephasing is small, leading to
mismatches that will not affect GW detection. These mis-
matches, however, might affect GW characterization, lead-
ing to erroneous conclusions about the orbital parameters
of the system.
EMRIs and IMRIs can thus be used to probe DCSMG,

both by constraining the CS coupling strength to unprece-
dented levels, as well as to sample the oscillatory dynamic
sector of the CS scalar field. Moreover, the study presented
can be viewed as an explicit example of the effect a non-
Kerr background could have on GWs, where in this case
the non-Kerrness arises from a well-defined and physically
well-motivated alternative theory. Since this modified the-
ory introduces a higher-order curvature correction, mod-
ifications to the Kerr metric are only dominant in the strong
field and cannot be sampled by the waveform’s first
multipoles.
The analysis presented here employs some approxima-

tions that lead to certain inaccuracies, which we list here:
(i) neglecting radiation reaction in the dynamics, which
scales with the square of the mass ratio; (ii) neglecting the
curvature of the background for the propagation of the
gravitational waves from the source to infinity;
(iii) neglecting CS modifications to the GW emission,
which scale with the product of the mass ratio and the
CS coupling constants; (iv) neglecting CS modifications to
the MBH background metric that are of third order in the
spin parameter and the small-coupling approximation.
Whether one effect is dominant over the others depends
on the strength of the CS coupling constants, which is at
present unknown and essentially unconstrained. In particu-
lar, except for the obvious scaling with the mass ratio, it is
difficult to estimate the magnitude of effect (ii), which is
one of the main ingredients of the semirelativistic approx-
imations. Comparisons made in [58], however, indicate
that inaccuracies arising from the semirelativistic approxi-
mation are acceptable for certain data analysis purposes,
suggesting that perhaps inaccuracies associated with
effects (i) and (iv) are dominant here. We do not expect
these inaccuracies to affect the main conclusions derived in
this paper, i.e. that DCSMG leads to a strong-field modi-

0
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FIG. 8. Energy flux difference (in units of M�2) between the
flux computed with gravitational waves produced by geodesics
about Kerr and about the CS modified Kerr background for
systems (A) (top panel), (B) (middle panel) and (C) (bottom
panel) as a function of time.
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fication to GW generation that could be used to constrain
the theory with future LISA observations of EMRIs.

Future work could concentrate on the inclusion of ra-
diation reaction in an adiabatic fashion to the waveforms
presented here. Such a task in the modified theory is rather
straightforward since these dissipative effects are CS cor-
rected only through the emission of a CS scalar field. One
could then supplement the standard GR expressions for the
rate of change of the geodesic constants of motion by these
CS corrections to allow for a true, kludgelike, inspiral.
Although the CS correction does not modify radiation
reaction through changes in the Isaacson tensor, dissipative
effects will accentuate the observed dephasing.

Once such radiation-reaction effects are included, a
thorough data analysis study should be carried out to
confirm or not the expectations presented in this paper.
Of particular importance will be the inclusion of the beam
pattern functions and the motion of the detector in the sky,
which have been shown to be relevant for parameter esti-
mation [100–103]. Moreover, the computation of the
proper overlap and Fisher matrix would include the spec-
tral noise density curve of the detector, as well as details of
the sensitivity of the modified waveforms on the parame-
ters of the alternative theory.

Another avenue for future research is the inclusion of the
leading-order CS correction to the GW emission frame-
work. We have provided here a map, albeit involved, to
construct such a correction which is based on black hole
perturbation theory. Another possibility would be to study
GW generation in the context of a post-Newtonian/post-
Minkowskian expansion and asymptotic matching [104–
108]. Although this formalism is formally valid in the
slow-motion approximation, so is the truncated multipolar
decomposition used here.

Last but not least, an exact metric that describes spin-
ning MBHs with arbitrary spin angular momentum in
DCSMG is still lacking. The results presented here are in
principle valid only in the slow-rotation approximation.
Generalizing such results to higher order in a perturbative
fashion could be dramatically difficult, since to next order
the scalar stress-energy tensor will also contribute to the
modified field equations. Perhaps, a full numerical study of
the collapse of a scalar field with angular momentum
would be appropriate to disentangle the effects of
DCSMG on rapidly rotating MBH backgrounds.
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APPENDIX A: PLANE WAVES IN DCSMG

Here we present a brief study of the main properties of a
class of exact solutions describing plane-fronted gravita-
tional waves (pp waves) in DCSMG (see [24] for ppwaves
in the nondynamical formalism). This study illustrate the
results found in Sec. II C regarding the polarization prop-
erties of GWs in DCSMG. The line element for pp waves
can be written as (see e.g. [109])

ds2 ¼ �2dudv�Hðu; x; yÞdu2 þ dx2 þ dy2; (A1)

where u ¼ t� z and v ¼ tþ z are retarded and advance
null coordinates, respectively (the waves propagate along
the z axis), the wave fronts are given by the null planes u ¼
const, and all physical information is encoded in the scalar
H. Indeed, using a Newman-Penrose null basis [109,110]

adapted to pp waves [k ¼ @v, ‘ ¼ @u � ðH=2Þ@v, m ¼
ð@x þ i@yÞ=

ffiffiffi
2

p
] one finds that the only two nonvanishing

Newman-Penrose complex curvature scalars are

	4 ¼ 1
4ð@2x � @2y þ 2i@2xyÞH; �22 ¼ 1

4ð@2x þ @2yÞH:

(A2)

Considering an arbitrary CS scalar field, # ¼ #ðu; v; x; yÞ
and the metric in Eq. (A1), the modified field equations
[Eqs. (4) and (5)] force us to

# ¼ #ðuÞ; ð@2x þ @2yÞH ¼ �

�
_#2; (A3)

where #ðuÞ is an arbitrary function and _# ¼ d#=du. From
Eqs. (A2) and (A3) we see that in GR (� ¼ 0) the only
nonvanishing Weyl complex scalar is 	4, which encodes
the two GRGW polarizations. In DCSMG, there is an extra
degree of freedom due to the real Ricci scalar �22, which
describes a transverse GW whose effect on a ring of test
particles is to either expand or contract it maintaining a
circular shape (a so-called breathing mode) [67]. The non-
vanishing of 	4 and �22 suggests naively that DCSMG is
of type N3 (like the Dicke-Brans-Jordan theory [111]), but
on closer inspection �22 is of Oð _�2Þ, and thus the theory
reduces to typeN2 (the same as GR) in the weak-amplitude
approximation that is required in the Eð2Þ classification.
This new polarization state can be studied more cleanly

by considering plane waves [112], a special class of pp
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waves characterized by a scalarH that is quadratic in x and
y (	4 and �22 are independent of x and y and the metric
has a five-dimensional Lie group of Killing symmetries
[109]). Terms linear in x and y can be removed by coor-
dinate transformations that leave invariant the line element
in Eq. (A1). The solution to Eq. (A3) can then be written as

Hðu; x; yÞ ¼ AðuÞðx2 � y2Þ þ 2BðuÞxyþ CðuÞðx2 þ y2Þ;
(A4)

where AðuÞ and BðuÞ are arbitrary functions and CðuÞ ¼
ð�=ð4�ÞÞ _#2. From (A2) one finds that 	4 ¼ Aþ iB and
�22 ¼ C, clearly showing that the extra non-GR polariza-
tion corresponds to a breathing mode. In the weak-
amplitude regime, however, #2 ’ 0, and the effect of this
extra polarization is negligible, thus establishing the result
that DCSMG only dominantly excites the same two GW
polarization states excited in GR.

APPENDIX B: FORMULAS FOR THE SHORT-
WAVELENGTH APPROXIMATION

In this appendix we provide some of the formulas that
we have computed and used to derive the form of the
effective stress-energy tensor of GWs for DCSMG, using
the SWA. However, these are generic perturbative expan-
sions (induced only by perturbations of the metric tensors)
of geometric quantities which can be used in other pertur-
bative schemes, although the interpretation of the different
terms would be different.

1. Second-order expansion

Given the splitting of the spacetime metric given in
Eq. (8), we need to perform an expansion in h�� to second

order of the different geometric quantities involved in the
CS modified gravitational field equations. The inverse of
the metric is

g�� ¼ �g�� � h�� þ h�h
� þOðh3Þ; (B1)

where

h�� ¼ �g�h�; h�
� ¼ �g�h�;

h�� ¼ �g� �g��h�:
(B2)

The expansion of the metric determinant g ¼ detðg��Þ is
then given by

g ¼ �gf1þ hþ 1
2ðh2 � h��h��Þ þOðh3Þg: (B3)

From here we can expand the completely antisymmetric
Levi-Civita volume four-form:


��� ¼ ffiffiffiffiffiffiffi�g
p

	0123
���; (B4)

to get


��� ¼ �
���f1þ 1
2hþ 1

8ðh2 � 2h��h��Þ þOðh3Þg:
(B5)

The Christoffel symbols can be written exactly as follows:

�
�
� ¼ ��

�
� þ S

�
�; (B6)

where S
�
� is

S
�
� ¼ 1

2g
��ðh��j þ h�j� � h�j�Þ: (B7)

This tensor can be expanded in h�� yielding

S�� ¼ ð1ÞS�� þ ð2ÞS�� þOðh3Þ; (B8)

where

ð1ÞS�� ¼ 1
2
�g��ðh��j þ h�j� � h�j�Þ; (B9)

ð2ÞS�� ¼ �1
2h

��ðh��j þ h�j� � h�j�Þ: (B10)

The introduction of the tensor S
�
� is convenient since it

can be used to simplify the expressions for the expansions
of the Riemann tensor and derived geometric quantities.
An exact expression relating the Riemann tensor of the
spacetime to the background one through the tensor S�� is

R�
��� ¼ �R�

��� � 2S�
�½�j�� þ 2S�½�S


���: (B11)

Therefore, an exact expression for the Ricci tensor is

R�� ¼ �R�� þ S�
��j� � S�

��j� þ S��S

�� � S��S


��:

(B12)

From these expressions of the Riemann and Ricci tensors
we can immediately write down their first- and second-
order terms in the perturbative expansion in h��. For the

Riemann tensor they are

ð1ÞR�
��� ¼ �2ð1ÞS�

�½�j��; (B13)

ð2ÞR�
��� ¼ �2ð2ÞS�

�½�j�� þ 2ð1ÞS�½�
ð1ÞS���; (B14)

and for the Ricci tensor

ð1ÞR�� ¼ ð1ÞS�
��j� � ð1ÞS�

��j�; (B15)

ð2ÞR�� ¼ ð2ÞS�
��j� � ð2ÞS�

��j� þ ð1ÞS��ð1ÞS

��

� ð1ÞS��ð1ÞS

��: (B16)

The Einstein and Cotton tensors have more complicated
expressions. The first- and second-order expansion of the
Einstein tensor are

ð1ÞG�� ¼ ð1ÞR�� � 1
2
�g��ð�g�ð1ÞR� � h� �R�Þ � 1

2h��
�R;

(B17)

ð2ÞG�� ¼ ð2ÞR�� � 1
2
�g��ð�g�ð2ÞR� � h�ð1ÞR�

þ h�h
�� �R�Þ � 1

2h��ð�g�ð1ÞR� � h� �R�Þ:
(B18)

The expansion of the first piece of the Cotton tensor C1
�� is
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determined by the following expressions [we remark that
these are expansions only in the metric tensor; the CS
scalar field is assumed here to be fixed]:

ð1ÞC1
�� ¼ #j� �
ð�

���fð1ÞR
�Þ�j� � ð1ÞS�Þ� �R�g

þ #j�ð1Þ
ð�
��� �R�Þ�j�; (B19)

ð2ÞC1
�� ¼ #j� �
ð�

���fð2ÞR
�Þ�j� � ð1ÞS�Þ�

ð1ÞR�

� ð2ÞS�Þ� �R�g þ #j�ð1Þ
ð�
���fð1ÞR

�Þ�j�

� ð1ÞS�Þ� �R�g þ #j�ð2Þ
ð�
��� �R�Þ�j�; (B20)

where ð1Þ
��
�� and ð2Þ
��

�� are the first- and second-

order expansion terms of 
��
��, respectively. In particular,

the first-order term is given by

ð1Þ
���� ¼ �h�� �
�
��� þ 2 �
�

�
�
½�h��� þ 1

2h �
�
���:

(B21)

The expansion of the second piece of the Cotton tensorC2
��

is given by

ð1ÞC2
�� ¼ 1

2#j��½ �
ð����ð1ÞR�
�Þ�� þ ð1Þ
ð�

��� �R�
�Þ���

� 1
2#jð1ÞS


��
ð�

��� �R�
�Þ��; (B22)

ð2ÞC2
�� ¼ 1

2#j��½ �
ð����ð2ÞR�
�Þ�� þ ð1Þ
ð�

���ð1ÞR�
�Þ��

þ ð2Þ
ð�
��� �R�

�Þ���
� 1

2#jð1ÞS

��½ �
ð����ð1ÞR�

�Þ��

þ ð1Þ
ð�
��� �R�

�Þ��� � 1
2#jð1ÞS


�� �
ð�

��� �R�
�Þ��:

(B23)

2. Propagation equations in the SWA

The propagation of oscillations in DCSMG using the
SWA approximation is described by the first-order equa-
tions given in Eq. (65). Here, we analyze the different
terms that appear in this equation adopting the TT gauge
defined by Eqs. (9) and (10). We also make use of the SWA
to simplify the form of some of the terms. Then, taking into
account that

ð1ÞS��� ¼ 0; �g��ð1ÞS��� ¼ 0; (B24)

the first term in (65) can be written as

ð1ÞR�� ¼ ð1ÞS�
��j� ¼ � 1

2
h
��j

 þO
�
hGW
R2

�
: (B25)

From Eq. (7) we have

C1
��½ ~#; �g� ¼ ~#j� �
���ð� �R

�Þ�j� ¼ O
� ~#GW

�GWR3

�
; (B26)

C2
��½ ~#; �g� ¼ ~#j�	� �R	

ð��Þ
� ¼ O

� ~#GW

�2
GWR

2

�
; (B27)

where ~#GW denotes the amplitude of the oscillations in the
CS scalar field. From Eqs. (B19) and (B22) we can write

ð1ÞC1
��½ �#; h� ¼ ½ �#j� �
ð�

���ð1ÞS
�Þ�j�j� þO

�
hGW �#b

�GWR3

�
;

(B28)

ð1ÞC2
��½ �#; h� ¼ �#j�� �
ð�

���ð1ÞS�
�Þ�j� þO

�
hGW �#b

�GWR3

�
;

(B29)

where �#b denotes the magnitude of the background value
of the CS scalar field. The last term in Eq. (65) that we have
to look at is the variation in the stress-energy tensor of the

CS scalar field, 	Tð#Þ
�� ½ �#; ~#�, which is given by

	Tð#Þ
�� ½ �#; ~#� ¼ 2�½ �#jð� ~# j�Þ � 1

2
�g��

�#j� ~#j��: (B30)

Then, the first-order propagation equations [Eqs. (65)],
assuming for simplicity that the waves travel in the absence
of matter fields, can be written as

�
ð1ÞS��� þ �

�
½ �# j� �
ð�

���ð1ÞS�Þ��j
�
j�

¼ �

�
�# jð� ~#j�Þ þO

�
hGW �#b

�GWR3
;

~#GW

�GWR3
;

~#GW

�2
GWR

2

�
:

(B31)

As it is clear, this propagation equation for h�� is coupled

to the propagation equation for ~# [Eq. (66)]. Notice that
the right-hand side of the equations can be written as a total
derivative, both in GR and in DCSMG. Also note that the
second term in the right-hand side is to leading order of

OðhGW �#b=ð�3
GWRÞÞ.

[1] R. Jackiw and S.Y. Pi, Phys. Rev. D 68, 104012 (2003).
[2] J. Polchinski, Superstring Theory and Beyond, String

Theory Vol. 2 (Cambridge University Press, Cambridge,

England, 1998).

[3] S. H. S. Alexander, J. Gates, and S. James, J. Cosmol.

Astropart. Phys. 06 (2006) 018.
[4] V. Taveras and N. Yunes, Phys. Rev. D 78, 064070

(2008).
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