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Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation
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It has long been known that null unstable geodesics are related to the characteristic modes of black
holes—the so-called quasinormal resonances. The basic idea is to interpret the free oscillations of a black
hole in the eikonal limit in terms of null particles trapped at the unstable circular orbit and slowly leaking
out. The real part of the complex quasinormal resonances is related to the angular velocity at the unstable
null geodesic. The imaginary part of the resonances is related to the instability time scale (or the inverse
Lyapunov exponent) of the orbit. While this geometric-optics description of the black-hole quasinormal
resonances in terms of perturbed null rays is very appealing and intuitive, it is still highly important to
verify the validity of this approach by directly analyzing the Teukolsky wave equation which governs the
dynamics of perturbation waves in the black-hole spacetime. This is the main goal of the present paper.
We first use the geometric-optics technique of perturbing a bundle of unstable null rays to calculate the
resonances of near-extremal Kerr black holes in the eikonal approximation. We then directly solve the
Teukolsky wave equation (supplemented by the appropriate physical boundary conditions) and show that
the resultant quasinormal spectrum obtained directly from the wave analysis is in accord with the

spectrum obtained from the geometric-optics approximation of perturbed null rays.
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The no-hair conjecture [1] asserts that the external field
of a perturbed black hole relaxes to a Kerr-Newman space-
time, characterized solely by three parameters: the black-
hole mass, charge, and angular momentum. This implies
that perturbation fields left outside the black hole would
either be radiated away to infinity, or be swallowed by the
black hole.

The relaxation phase in the dynamics of perturbed black
holes is characterized by ‘“‘quasinormal ringing,” damped
oscillations with a discrete spectrum (see e.g. [2] for re-
views). At late times, all perturbations are radiated away in
a manner reminiscent of the last pure dying tones of a
ringing bell [3-6]. Quasinormal resonances are expected to
play a prominent role in gravitational radiation emitted by
a variety of astrophysical scenarios involving black holes.
Being the characteristic ““sound” of the black hole itself,
these free oscillations are of great importance from the
astrophysical point of view. They allow a direct way of
identifying the spacetime parameters, especially the mass
and angular momentum of the black hole.

The dynamics of black-hole perturbations is governed
by the Regge-Wheeler equation [7] in the case of a spheri-
cally symmetric Schwarzschild black hole, and by the
Teukolsky equation [8] for rotating Kerr-Newman space-
times. The black hole quasinormal modes (QNMs) corre-
spond to solutions of the wave equations with the physical
boundary conditions of purely outgoing waves at spatial
infinity and purely ingoing waves crossing the event hori-
zon [9]. Such boundary conditions single out a discrete set
of black-hole resonances {w,} (assuming a time depen-
dence of the form e~“?). In analogy with standard scatter-
ing theory, the QNMs can be regarded as the scattering
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resonances of the black-hole spacetime. Thus they corre-
spond to poles of the transmission and reflection ampli-
tudes of a standard scattering problem in a black-hole
spacetime.

In accord with the spirit of the no-hair conjecture [1], the
external perturbation fields would either fall into the black
hole or radiate to infinity. This implies that the perturbation
decays with time and the corresponding QNM frequencies
are therefore complex. It turns out that there exists an
infinite number of quasinormal modes, characterizing os-
cillations with decreasing relaxation times (increasing
imaginary part); see [10-13] and references therein. The
mode with the smallest imaginary part (known as the
fundamental mode) determines the characteristic dynami-
cal time scale for generic perturbations to decay [14-19].

In most cases of physical interest [20], the black-hole
QNMs must be computed numerically by solving the
Teukolsky equation supplemented by the appropriate
physical boundary conditions. However, Mashhoon [21]
has suggested an analytical technique of calculating the
QNMs in the geometric-optics (eikonal) limit. The basic
idea is to interpret the black-hole free oscillations in terms
of null particles trapped at the unstable circular orbit and
slowly leaking out [21-23]. The real part of the complex
quasinormal resonances is related to the angular velocity at
the unstable null geodesic, while the imaginary part of the
resonances is related to the instability time scale of the
orbit (or the inverse Lyapunov exponent of the geodesic
[23D.

It should be emphasized that, Mashhoon’s approach of
computing black-hole quasinormal frequencies in the ei-
konal limit is somewhat indirect: instead of explicitly
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solving the Teukolsky wave equation which describes the
dynamics of perturbation waves in the black-hole space-
time, Mashhoon analyzed perturbations of test null rays in
the unstable circular orbit of the black hole. While this
geometric-optics description of black-hole quasinormal
resonances in terms of perturbed null rays is very appealing
and intuitive, it is still important to verify the validity of
this approach by directly solving the Teukolsky master
equation which governs the dynamics of perturbation
waves in the Kerr black-hole spacetime. Filling this gap
is the main goal of the present paper. We shall first use the
geometric-optics technique of perturbing a bundle of un-
stable null geodesics to calculate the resonances of near-
extremal Kerr black holes in the eikonal limit. We shall
then directly solve the Teukolsky wave equation (supple-
mented by the appropriate physical boundary conditions)
and show that the resultant resonances of the wave equa-
tion agree with those obtained from Mashhoon’s indirect
approach of perturbing null rays in the appropriate eikonal
approximation.

We start with Mashhoon’s approach of calculating the
black-hole QNM resonances in the eikonal limit [ = m >
1, where [ is the angular momentum of the perturbed null
rays, and m is the azimuthal harmonic index of the rays.
According to Mashhoon’s analysis of perturbed null geo-
desics, the Kerr QNM frequencies in the / = m >> 1 limit
are given by [21] (we use natural units in which G = ¢ =
h=1)

a)n=ma)+—i(n+%),8w+; n=012..., (1)
where

M1/2
rs)}/lz + aM'/?

2

(CFS

is the Kepler frequency for null rays in the unstable equa-
torial circular orbit of the black hole, and

ron = 2M{1 + cos[2cos ! (—a/M)]} 3)

is the limiting circular photon orbit. The function B is
given by
_(12M) 2y = ) = )

o (rgn = M) ’

“

see Ref. [21] for details. Here M and a are the mass and
angular momentum per unit mass of the black hole,
respectively.

We now focus on the near-extremal limit Tgy — O,
where

(Mz _ a2)1/2
 4xM[M + (M2 — a?)'?]

&)

TB H

is the Bekenstein-Hawking temperature of the black hole.
Letr. = M * e withe/M < 1, where r» = M + (M? —

PHYSICAL REVIEW D 80, 064004 (2009)

a®)'/? are the black-hole event and inner horizons. The
Bekenstein-Hawking temperature of the black hole now
reads Ty = €/47mM? + O(€?/M?). After some algebra,
we find from Eq. (3)
2€
ron =M + ==+ 0(€?/M). (6)

V3

This, in turn, implies

1 e
= — + 2 3
O+ = T IR O(e*/M?), @)

and

B=1+0(&/M). ®)

Substituting Egs. (7) and (8) into Eq. (1), one finds that the
black-hole quasinormal resonances in the eikonal approxi-
mation / = m >> | are given by

3 1
w, = m{) + 27TTBH<1 - \g)m - i27TTBH(n + 5)

+ O(MT3y), )
where
_ a1 »

is the angular velocity of the black-hole event horizon.

We shall now study directly the Teukolsky wave equa-
tion in order to determine the fundamental (least-damped)
resonant frequencies of the Kerr black hole. The Teukolsky
equation is amenable to an analytical treatment in the near-
extremal limit (M2 — a?)'/?2 < a < M.

In order to determine the black-hole resonances, we
shall analyze the scattering of massless waves in the Kerr
spacetime. The dynamics of a perturbation field W in the
rotating Kerr spacetime is governed by the Teukolsky
equation [8]. One may decompose the field as

\Pslm(ty 7, 0: ¢) = eim¢S.vl)n(0; aw)wslm(r)e_iwt: (1 1)

where (¢, r, 6, ¢) are the Boyer-Lindquist coordinates, w is
the (conserved) frequency of the mode, [ is the spheroidal
harmonic index, and m is the azimuthal harmonic index
with —/ = m = [. The parameter s is called the spin
weight of the field and is given by s = *£2 for gravitational
perturbations, s = *1 for electromagnetic perturbations,
s==x % for massless neutrino perturbations, and s = 0 for
scalar perturbations. (We shall henceforth omit the indices
s, I, m for brevity.) With the decomposition (11), ¢ and S
obey radial and angular equations, both of the confluent
Heun type [24,25], coupled by a separation constant
Alaw).

The angular functions S(6; aw) are the spin-weighted
spheroidal harmonics which are solutions of the angular
equation [8,25]
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sin
The angular functions are required to be regular at the
poles # = 0 and # = 7. These boundary conditions pick
out a discrete set of eigenvalues A; labeled by an integer /.
[In the aw < 1 limit, these angular functions become the
familiar spin-weighted spherical harmonics with the cor-
responding angular eigenvalues A = [(I + 1) — s(s + 1) +
O(aw).] The angular Eq. (12) can be solved analytically in
the [ = m > 1 limit to yield

A =m?+ O(m); (13)

see Ref. [26].
The radial Teukolsky equation is given by

2 il —
A—si<As+l d_l,b) N [K 2is(r — M)K 2

dr dr A
+2maw — A + 4iswr]¢ =0, (14)

where A =72 —2Mr+ a*> and K = (* + a®)w — am.
For the scattering problem, one should impose physical
boundary conditions of purely ingoing waves at the black-
hole horizon and a mixture of both ingoing and outgoing
waves at infinity (these correspond to incident and scat-

|

TQid)T(1 + 2i)[(1/2 + s — 2id> — i)[(1/2 — s — 2id — id)
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tered waves, respectively). That is,

as r — ooy — oo);
as 7 — 1 (y = —co),

v~ {ei“’y + R(w)e'y (15)

T(w)e—i(w—mﬂ)y

where the “‘tortoise’ radial coordinate y is defined by dy =
[(r> + a?)/A]dr. The coefficients T (w) and R (w) are the
transmission and reflection amplitudes for a wave incident
from infinity. They satisfy the usual probability conserva-
tion equation |7 (w)|* + |R(w)]* = 1.

The discrete quasinormal frequencies are the scattering
resonances of the black-hole spacetime. Thus they corre-
spond to poles of the transmission and reflection ampli-
tudes. (The pole structure reflects the fact that the QNMs
correspond to purely outgoing waves at spatial infinity.)
These resonances determine the ringdown response of a
black hole to external perturbations. Teukolsky and Press
[27] and also Starobinsky and Churilov [28] have analyzed
the black-hole scattering problem in the double limit a —
M and w — m{). Detweiler [29] then used that solution to
obtain a resonance condition for near-extremal Kerr black
holes. Define

ry —r_

o 5

ry

7= Mw— m); o= wry.
(16)
Then the resonance condition obtained in [29] for o0 << 1

and 7 < 1 1s

I'(1/2 +2i&d + ié — 4it/o)

T(=2i8)[(1 — 2i8)L(1/2 + s — 2i@ + i0)L'(1/2 — s — 2id + id)

where 62 =4@&% - 1/4 — A — a’>w? + 2maw. Taking
cognizance of Eq. (13), one finds

0= \/7§m + 0(1), (18)

for near-extremal Kerr black holes in the [ = m >> 1 limit.

The left-hand side of Eq. (17) has a well defined limit as
a— M and @ — m ). We denote that limit by L. Since
8=+3m/2> 1, one has (—i) 2% = ¢ iV3mh(=i) —
e—iﬁmlne_i”/z _ e—iﬁm(—iw/Z) — e—\/gﬂ'm/Z <1, which
implies A = (—2i®0) % < 1. Thus, a consistent solu-
tion of the resonance condition, Eq. (17), may be obtained
if 1/T(1/2 4+ 2i® — id — 4it/o) = O(X). Suppose

1/2 +2i@d — id6 — 4it/o = —n + nA + O(A?), (19)

where n = 0 is a non-negative integer, and 7 is an un-
known constant to be determined below. Then one has

(A )2i0
(2O 2 216 — 16 — 4ir) o)
(17)
I'1/2+2iéd —id — 4it/o)
~T(=n+ nA) =(—n)"'T'(—n + 1 + ne)
== [(=1)"!]7'T(nA), (20)

where we have used the relation I'(z + 1) = zI'(z) [30].
Next, using the series expansion 1/T'(z) = Y% | ¢;z* with
c; = 1 (see Eq. (6.1.34) of [30]), one obtains
1/T(1/2 4+ 2id — i8 — 4it/o) = (—1)"'n!nA + O(A?).
(21)
finds = =

Substituting this into Eq. (17), one

L/[(=1)"n'T'(—n + 2i8)].

Finally,  substituting 47/0 = (0 — mQ)/27Tgy,
2i® = im + O(mMTgy) for w = mQ + O(mTgy), and
5 =+3m/2 + 0(1) into Eq. (19), one obtains the reso-
nance condition

(@ — mQ) /27Ty — i[—n A —1/2+ im(? - 1)]

(22)
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The black-hole quasinormal resonances in the [ = m > 1
limit are therefore given by the formula

3 1

+ O(MT2,), (23)

where n = 0, 1, 2, - - - . We emphasize that this result, ob-
tained from the direct wave analysis, coincides with the
previously derived spectrum Eq. (9) of the ray analysis (the
geometric-optics approximation).

In summary, we have studied analytically the quasinor-
mal spectrum of rapidly-rotating Kerr black holes. We first
used the technique of perturbing a bundle of unstable
equatorial null geodesics to calculate the quasinormal
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resonances of Kerr black holes in the eikonal limit [ =
m >> 1. We then used the alternative (and the more direct)
approach of solving the Teukolsky wave equation which
governs the dynamics of perturbation waves in the Kerr
black-hole spacetime. We have shown that the resonance
spectrum (23) obtained directly from the wave analysis is
in accord with the spectrum (9) which was obtained from
the geometric-optics approximation of perturbed null rays.
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