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CONTEXT: In this work we propose a modified gravity action fðRÞ ¼ ðRn � Rn
0Þ1=n with two free

parameters of n and R0 and derive the dynamics of a universe for this action in the Palatini formalism.

AIM: We do a cosmological comparison of this model with observed data to find the best parameters of a

model in a flat universe.METHOD: To constrain the free parameters of model we use SNIa type Ia data in

two sets of gold and union samples, CMB-shift parameter, baryon acoustic oscillation, gas mass fraction

in cluster of galaxies, and large-scale structure data. RESULT: The best fit from the observational data

results in the parameters of model in the range of n ¼ 0:98þ0:08
�0:08 and �M ¼ 0:25�0:1

þ0:1 with one sigma level

of confidence where a standard �CDM universe resides in this range of solution.

DOI: 10.1103/PhysRevD.80.064003 PACS numbers: 04.50.�h, 95.36.+x, 98.80.�k

I. INTRODUCTION

Recent observation of CMBþ SNIa reveals that the
Universe is under positive acceleration, in contrast to our
expectations from the behavior of ordinary matter. One of
the possible solutions is assuming a cosmological constant
to provide a late time acceleration to the universe [1].
Although �CDM is the easiest model that fits well with
the current observational data, it suffers from the fine-
tuning and coincidence problems, which motivates to in-
troduce alternative theories such as dark energy models.
The other possibility is the modification of gravity law in
such a way that behaves as standard general relativity
in a strong gravitational regime, but repulses particles in
the cosmological scales [2]. Each proposed model
must challenge two different observational criteria of
(a) cosmological tests and (b) local gravity tests in solar
system scales.

In this work we examine a fðRÞ ¼ ðRn � Rn
0Þ1=n gravity

model with the cosmological observational data to fix the
two parameters of the model, R0 and n. We use Supernova
Type Ia, CMB shift parameter, baryonic acoustic oscilla-
tion, gas mass fraction in cluster of galaxies, and large
scale structures to find the best parameter of the model. The
organization of paper is as follows: In Sec. II we introduce
the field equation in a fðRÞ modified gravity model in
Palatini formalism. Using the Friedman-Robertson-
Walker (FRW) metric we derive a modified Friedman
equation. In Sec. III we apply our proposed action to derive
the field equations. In Sec. IV we study geometrical and
dynamical behavior of a universe in this model. In Sec. V,
using the geometrical observations as SNIa, CMB-shift
parameter, baryon acoustic oscillation, gas mass fraction
of clusters of galaxies, we put constraints on the parame-
ters of the model. Finally, we do a comparison of the model
with the large scale structures’ data in Sec. V. The con-
clusions are given in Sec. VI. We show that the best

parameter of this model is the privilege of a �CDM
universe.

II. MODIFIED GRAVITY IN PALATINI
FORMALISM

For an arbitrary action of the gravity as a function of
Ricci scalar fðRÞ, there are two main approaches to extract
the field equations. The first one is the so-called metric
formalism, which is obtained by the variation of action
with respect to the metric. In this formalism, in contrast to
the Einstein-Hilbert action, the field equation is a fourth
order nonlinear differential equation. In the second ap-
proach, the so-called Palatini formalism, the connection
and metric are considered independent fields and variation
of action with respect to these fields results in a set of
second order differential equations. In what follows we
will work in the Palatini formalism. Let us take the general
form of action in the Palatini formalism as

S½f; g; �̂;�m� ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ Sm½g��;�m�;
(1)

where � ¼ 8�G and Sm½g��;�m� is the matter action that

depends on metric g�� and the matter fields �m. R ¼
Rðg; �̂Þ ¼ g��R��ð�̂Þ is the generalized Ricci scalar and

R�� is the Ricci tensor, made of affine connection. Varying

action with respect to the metric results in

f0ðRÞR��ð�̂Þ � 1
2fðRÞg�� ¼ �T��; (2)

where prime is the differential with respect to the Ricci
scalar and T�� is the energy-momentum tensor

T�� ¼ �2ffiffiffiffiffiffiffi�g
p �Sm

�g�� : (3)

On the other hand, varying the action with respect to the
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connection results in

r̂ �½f0ðRÞ ffiffiffiffiffiffiffi�g
p

g��� ¼ 0; (4)

where r̂ is the covariant derivative defined from parallel
transformation and depends on affine connection. From
Eq. (4), we can define a new metric of h�� ¼ f0ðRÞg��

conformally related to the physical metric where the con-
nection is the Christoffel symbol of this new metric. We
take a flat FRW metric (namely K ¼ 0) for the universe

ds2 ¼ �dt2 þ aðtÞ2�ijdx
idxj; (5)

and assume that universe is filled with a perfect fluid with
the energy-momentum tensor of T�

� ¼ diagð��; p; p; pÞ.
Using the metric and energy-momentum tensor in Eq. (2)
we obtain the generalized FRW equations. It should be
noted that the conservation law of energy-momentum ten-
sor, T��

;� ¼ 0 is defined according to the covariant de-

rivative with respect to the metric to guarantee the motion
of particles on geodesics [3]. A combination of G0

0 and Gi
i

results in

�
H þ 1

2

_f0

f0

�
2 ¼ 1

6

�ð�þ 3pÞ
f0

þ 1

6

f

f0
: (6)

On the other hand, the trace of Eq. (2) gives

Rf0ðRÞ � 2fðRÞ ¼ �T; (7)

where T ¼ g��T�� ¼ ��þ 3p. The time derivative of

this equation results in _R in terms of the time derivative
of density and pressure. Using the equation of state of
cosmic fluid p ¼ pð�Þ and continuity equation, the time
derivative of Ricci is obtained as

_R ¼ 3�H
ð1� 3dp=d�Þð�þ pÞ

Rf00 � f0ðRÞ : (8)

To obtain a generalized first FRW equation, we start with
Eq. (7) and obtain the density of matter in terms of the
Ricci scalar as

�� ¼ 2f� Rf0

1� 3!
; (9)

where w ¼ p=�. Substituting Eq. (9) in (6) and using
Eq. (8) to change d=dt ¼ _Rd=dR, we obtain the dynamics
of the universe in terms of the Ricci scalar as

H2 ¼ 1

6ð1� 3!Þf0
3ð1þ!Þf� ð1þ 3!ÞRf0
½1þ 3

2 ð1þ!Þ f00ð2f�Rf0Þ
f0ðRf00�f0Þ�2

: (10)

On the other hand, using Eq. (7) and the continuity equa-
tion, the scale factor can be obtained in terms of the Ricci
scalar

a ¼
�

1

��0ð1� 3!Þ ð2f� Rf0Þ
��ð1=3ð1þ!ÞÞ

; (11)

where �0 is the energy density at the present time and a0,

the scale factor at the present time, is set to 1. Now for a
generic modified action, eliminating the Ricci scalar in
favor of the scale factor between Eqs. (10) and (11) we
can obtain the dynamics of the universe [i.e. H ¼ HðaÞ].
For the simple case of matter dominant epoch! ¼ 0, these
equations reduce to

H2 ¼ 1

6f0
3f� Rf0

½1þ 3
2
f00ð2f�Rf0Þ
f0ðRf00�f0Þ�2

; (12)

and

a ¼
�

1

��0

ð2f� Rf0Þ
��ð1=3Þ

: (13)

III. FðRÞ ¼ ðRN � RN
0 Þ1=N GRAVITY

Here in this section we propose a modified gravity action

of fðRÞ ¼ ðRn � R0
nÞ1=n with the two free parameters

where R0 > 0 and n > 0. This action is a generalized
form of n ¼ 2 that has been discussed in [4,5]. This action
has a minimum vacuum in an empty universe and a flat
Minkowski space is not achievable in this action. This
behavior causes an accelerating expansion of the universe
for a low density universe. The minimum curvature from
the vacuum solution in Eq. (7) is

Rv ¼ 21=nR0: (14)

On the other hand, for the strong gravitational regimes, the
action reduces to the Einstein-Hilbert action. To have the
asymptotic behavior of action for these two extreme cases
we do a Taylor expansion of action around Rv in an almost
empty universe and Rv=R ! 0 at strong gravitational re-
gimes. For the weak field, the expansion of action results in

fðRÞ ¼ Rv

�
1

2

�
1=n þ

�
1

2

�ð1=nÞ�1ðR� RvÞ

þ
�
1

2

�
1=n nþ 1

Rv

ðR� RvÞ2 þ . . . (15)

where ignoring higher order terms, we can rewrite this
equation as

fðRÞ ¼ R��ðRv; nÞ: (16)

Here �ðRv; nÞ is an effective cosmological constant de-
pends on the curvature in a vacuum and the exponent of
action. On the other hand, we expand the action in a strong
gravitational regime (e.g. R � Rv). In this case the action
can be written as follows:

fðRÞ ¼ Rþ X1
m¼1

1

m!

Ym�1

k¼0

�
1

n
� k

�
ð�1Þm

�
R0

R

�
mn
R: (17)

Ignoring the higher orders in a strong gravitational field,
this action reduce to the Einstein-Hilbert action. So our
chosen actions in these two extreme regimes vary from the
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Einstein-Hilbert to the Einstein-Hilbert plus cosmological
constant.

Let us study the solutions of modified gravity in three
common cases of a pointlike source in vacuum space, a
universe in radiation, and matter-dominant epochs. For a
pointlike source in an empty space, letting T�� ¼ 0 outside
the star, we will have a constant Ricci scalar. This means
that we will have constant Rv, fðRvÞ and f0ðRvÞ for all the
space. With this condition we write the field equation as
follows:

G�� ¼ � 1

2

�
Rv � fðRvÞ

f0ðRvÞ
�
g��; (18)

where the coefficient of metric at the right-hand side of
the equation plays the role of effective cosmological
constant. Substituting the corresponding value for the vac-
uum from Eq. (14), the effective cosmological constant

obtains �eff ¼ 2ð1=nÞ�2R0. So the solution of the field
equation in the spherically symmetric space results in a
Schwarzschild–de Sitter space. The value of R0 will be
fixed in the next section from the cosmological
observations.

In the radiation dominated era we have p ¼ �=3. With
this equation of state, the trace of the energy-momentum
tensor is zero and it resembles a vacuum solution where the

Ricci scalar is constant and equal to 21=nR0. We substitute
fðRÞ and its derivatives in Eq. (6) to have the dynamics of
the Hubble parameter as a function of density of the uni-
verse

H2 ¼ 2ð1=nÞ�2

3
ð2��þ R0Þ: (19)

Analysis for n ¼ 2 shows that R0 is in the order of H2
0

[4,5]. So for the radiation-dominant epoch, we neglect R0

in comparison with the density of the universe. Using the
continuity equation provides � / a�4, then the scale factor

changes with time as a / t1=2. This result shows no dy-
namical deviation from the standard cosmology at the early
universe.

For the matter-dominant epoch, we calculate the dynam-
ics of the universe for simplicity in terms of a new variable,
X � R=H2

0 . The action can be written in this new form as

fðRÞ ¼ H0
2FðXÞ (20)

FðXÞ ¼ ðXn � X0
nÞ1=n (21)

where X0 � R0=H
2
0 and H0 ¼ 100 hKm=s=Mpc. The re-

lation between the derivatives with respect to R and new
variable X is related as

f0ðRÞ ¼ F0ðXÞ; (22)

f00ðRÞ ¼ F00ðXÞ
H2

0

; (23)

where the derivatives in the left-hand side of equations are
with respect to the Ricci scalar, but in the right-hand side
they are in terms of X, (i.e. 0 ¼ d

dX ).

We rewrite Eq. (12) with the new dimensionless parame-
ter X:

H 2ðXÞ ¼ 1

6F0
3F� XF0

ð1þ 3
2
F00ð2F�XF0Þ
F0ðXF00�F0Þ Þ2

; (24)

where H ðXÞ ¼ H=H0 is the normalized Hubble parame-
ter to its current value. Using the conventional definition of

�m at the present time as�m ¼ ��ð0Þ
m =3H2

0 and Eq. (9) we

obtain

�mðXÞ ¼ 2F� XF0

3
; (25)

where �mðXÞ ¼ �ma
�3. We obtain the relation between

the scale factor and dimensionless parameter X as

a ¼
�
2F� XF0

3�m

��1=3
: (26)

In order to have positive scale factor, X should change in

the range of X � 21=nX0, where the minimum value for X0

is in agreement with the vacuum solution of the Ricci
scalar.
An important point worth mentioning here is that the

two free parameters X0 and n, appeared in the dynamics of
the universe can be replaced with more relevant ones. One
of them is�m presented in Eq. (25), which relates directly
to n, X0 and Xp (p stands for the present time). Xp can be

eliminated using Eq. (24), letting H ðXpÞ ¼ 1 results in a

relation between XP and X0 and n. The second parameter
we will use instead of X0 is Xp.

IV. GEOMETRICAL PARAMETERS IN fðRÞ
GRAVITY

The cosmological observations are mainly dependent on
background spatial curvature and four dimensional space-
time curvature of the universe. In this section we introduce
the geometrical parameters in modified gravity to use in
observational tests of the model.

A. Comoving distance

The radial comoving distance is one of the basic pa-
rameters in cosmology. For an object with a redshift of z,
using the null geodesics in the FRW metric, the comoving
distance in terms of X is obtained by

rðz; n; X0Þ ¼ c
Z z

0

dz0

Hðz0Þ ; (27)

¼ cH�1
0

34=3ð�mÞ1=3
Z X

Xp

F0 � XF00

ð2F� XF0Þ2=3
dX

H ðXÞ ; (28)

where the dimensionless parameter X relates to the redshift
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from Eq. (11) as

z ¼
�

1

3�m

ðXn � Xn
0 Þð1=nÞ�1ðXn � 2Xn

0 Þ
�
1=3 � 1 (29)

Knowing the parameters of the action n and X0, we can
calculate the Hubble parameter at a given X by Eq. (24);
substituting it in (28) we obtain a comoving distance by
numerical integration. Figures 1 and 2 show comoving
distance as a function of redshift in the unit of cH�1

0 for

various values of parameters of the model. In Fig. 1 we fix
n ¼ 1 which is equivalent to the �CDM universe and let
X0 vary. It seems that X0 plays the role of effective cos-

mological constant. Increasing this term makes a larger
comoving distance for a given redshift. In Fig. 2 we keep
X0 ¼ 4:2 and let n change. Increasing the exponent results
in a smaller comoving distance for a given redshift.

B. Angular diameter distance and Alcock-Paczynski
test

The apparent angular size of an object located at the
cosmological distance is another important parameter that
can be affected by the cosmological model. An object at
the redshift of z and the perpendicular size ofD? is seen by
the angular size of

�� ¼ D?
dA

; (30)

where dA ¼ rðz;n; X0Þ=ð1þ zÞ is the angular diameter
distance. Now imagine this structure has the size of Dk
along our line of sight. Then the light arriving at us from
the back and front of this structure will not have the same
redshift. The difference in the redshifts of the two sides of
the structure can be obtained by the delay in received light
to the observer with �tðzÞ ¼ Dk=c. Writing �t in terms of

�a as �t ¼ H�1ðzÞ�a=a we again change �a in terms of
�z as �z=ð1þ zÞ ¼ ��a=a. The result is writing the
width of the structure in redshift space along our line of
sight in terms of physical size as

�z ¼ 1

c
DkHðzÞð1þ zÞ: (31)

Now the width of the structure in the redshift space to the
apparent angular size of structure is obtained as

�z

��
¼ ð1þ zÞHðzÞdA

c

�
Dk
D?

�
: (32)

For the spherical structures, for instance taking into ac-
count the neutral hydrogen clouds at z < 6 with the spheri-
cal symmetric shape, Eq. (32) is written as

�z

��
¼ Hðz;n; X0Þrðz; n; X0Þ

c
: (33)

This relation is the so-called Alcock-Paczynski test. The
advantage of the Alcock-Paczynski test is that this relation
is independent of the Hubble parameter at the present time
and of the existence of the dust in the intergalactic medium.
In this method, instead of using a standard candle, we
will use a standard ruler such as the baryonic acoustic
oscillation.
Figures 3 and 4 show a dependence of �z=�� as a

function of redshift normalized to the corresponding value
in a �CDM universe. In Fig. 3 the relative size of the
structure in redshift space to the observed angular size is
compared to that in a �CDM universe for a fixed value of
n ¼ 1. In Fig. 4 we fixed X0 ¼ 4:2 and change the expo-
nent n.

z

r
(z

)/
cH

0-1

10-1 100 101 102

0.5

1

1.5

2

2.5

3 X0 = 3.2
X0 = 4.2
X0 = 5.2

FIG. 1 (color online). The dependence of comoving distance
as a function of redshift for the case of n ¼ 1 and various X0.
Increasing X0 makes larger comoving distance for a given
redshift.

z

r
(

z
)

/c
H

0-1

10-1 100 101 102

0.5

1

1.5

2

2.5

3 n = 0.8
n = 1.0
n = 1.4
n = 1.6
n = 2.0
n = 4.0

FIG. 2 (color online). The dependence of comoving distance
as a function of redshift for the case of X0 ¼ 4:2 and various n.
Increasing the exponent results in smaller comoving distance for
a given redshift.
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C. Comoving volume element

The comoving volume element is another geometrical
parameter that is used in number-count tests such as lensed
quasars, galaxies, or clusters of galaxies. The comoving
volume element in terms of comoving distance and Hubble
parameter is given by

fðz; n; X0Þ � dV

dzd�
¼ r2ðz; n; X0Þ

Hðz; n; X0Þ : (34)

Figures 5 and 6 show the dependence of comoving volume
element as a function of redshift. Figure 5 represents the

z

H
(z

;n
,X

0)
r

(z
;n

,X
0)

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

n = 0.8
n = 1.0
n = 1.4
n = 1.6
n = 2.0
n = 4.0

FIG. 4 (color online). The dependence of �z=�� as a function
of redshift for the case of X0 ¼ 4:2 and various n. Increasing the
exponent results in a decrease in the apparent cosmological size
of objects.

z

H
(z

;n
,X

0)
r

(z
;n

,X
0)

0 1 2 3 4 5

0.8

0.9

1

1.1

1.2

X0 = 3.2
X0 = 4.2
X0 = 5.2

FIG. 3 (color online). The dependence of �z=�� as a function
of redshift for the case of n ¼ 1 and various X0. Increasing X0

causes an increase in the apparent size of cosmological objects.

TABLE I. Different priors on the parameter space, used in the
likelihood analysis.

Parameter Prior

K 0.00 Fixed

�bh
2 0:020� 0:005 Top hat (BBN) [36]

h - Free [37,38]

w 0 Fixed

z

d V
/d

Ω
dz

0 1 2 3 4 5

10-2

10-1

100

X0 = 3.2
X0 = 4.2
X0 = 5.2

FIG. 5 (color online). The dependence of comoving element as
a function of redshift for the case of n ¼ 1 and various X0.
Increasing X0 increases the comoving volume element.

z

dV
/d

Ω
dz

0 1 2 3 4 5

10-2

10-1

100

n = 0.8
n = 1.0
n = 1.4
n = 1.6
n = 2.0
n = 4.0

FIG. 6 (color online). The dependence of comoving element as
a function of redshift for the case of X0 ¼ 4:2 and various n.
Increasing the exponent decreases the comoving volume ele-
ment.
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dependence of comoving volume for a fixed n ¼ 1 and
various X0. IncreasingX0 causes a larger comoving volume
element. In Fig. 6 we plot the volume for fixed X0 ¼ 4:2
changing n. Increasing the exponent index makes the
comoving volume element smaller.

V. OBSERVATIONAL CONSTRAINTS:
BACKGROUND EVOLUTION

In this section we compare the observed data with that
from the dynamics of the background from the model. We
use Supernova Type Ia data, CMB-shift parameter, bar-
yonic acoustic oscillation (BAO), and the gas mass fraction
of a cluster of galaxies to constrain the parameters of the
model.

A. Supernova type Ia

The Supernova Type Ia experiments provided the main
evidence for the existence of dark energy. Since 1995, two
teams of High-Z Supernova Search and the Supernova
Cosmology Project have discovered several type Ia super-
novas at the high redshifts [6,7]. They showed that to
interpret the faintness of high redshift supernovas in a
flat universe, one has to consider an accelerating universe
at the present time.

In this work we take two sets of SNIa data. The first one
is the gold sample which has a 157 supernova [8] and the
second set is a combined data set of a 192 supernova [9].
The distance modulus for supernovas is calculated by

� ¼ m�M ¼ 5 logDLðz;X0; nÞ þ 5 log

�
c=H0

1 Mpc

�
þ 25;

(35)

where

DLðz;X0; nÞ ¼ ð1þ zÞH0

Z z

0

dz0

Hðz0Þ ; (36)

and DL can be written in terms of new parameter X, which
appeared in the redefinition of the modified gravity action
as

DL ¼ 1

3

ð2F� XF0Þ1=3
ð3�mÞ2=3

Z X

Xp

F0 � XF00

ð2F� XF0Þ2=3
dX

H ðXÞ : (37)

For simplicity in calculation, we define

�M ¼ 5 log

�
c=H0

Mpc

�
þ 25; (38)

which is a function of the Hubble constant at the present
time. We write the distance modulus

� ¼ 5 logDLðz;X0; nÞ þ �M: (39)

In the next step we use X2 fitting to constrain the parame-
ters of the model.

X 2ð �M;X0; nÞ ¼
X
i

½�obsðziÞ ��thðzi; �M;X0; nÞ�2
	2

i

;

(40)

where 	i is the uncertainty in the distance modulus. To
constrain the parameters of the model, we use the like-
lihood statistical analysis:

L ð �M;X0Þ ¼ N e�X2ð �M;X0=2Þ; (41)

where N is a normalization factor. The parameter �M is a
nuisance parameter and should be marginalized (integrated

out) leading to a new �X2 defined as

�X 2 ¼ �2 ln
Z þ1

�1
e�X2=2d �M: (42)

Using Eqs. (40) and (42), we find

�X 2ðX0Þ ¼ X2ð �M ¼ 0; X0Þ � BðX0Þ2
C

þ lnðC=2�Þ; (43)

where

BðX0Þ ¼
X
i

½�obsðziÞ ��thðzi;X0; �M ¼ 0Þ�
	2

i

; (44)

and

C ¼ X
i

1

	2
i

: (45)

Equivalent to marginalization is the minimization of �X2

with respect to �M. One can show that �X2 can be expanded
in terms of �M:

X 2
SNIaðX0Þ ¼ X2ð �M ¼ 0; X0Þ � 2 �MBþ �M2C; (46)

which has a minimum value for �M ¼ B=C and results in

z

m
-M

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

36

38

40

42

44

46

New Gold Sample
Theoretical prediction

FIG. 7 (color online). The best fit of distance modulus as a
function of redshift to the Supernova Type Ia new gold sample.
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X 2
SNIaðX0Þ ¼ X2ð �M ¼ 0; X0Þ � BðX0Þ2

C
: (47)

Using Eq. (47) we can find the best fit values of model
parameters, minimizingX2

SNIaðX0Þ, with the priors given in
Table I. Figures 7 and 8 represent the best fit to the
Supernova Type Ia new gold sample and union sample,
respectively. The best fit values for the free parameter of
the model for two cases are n ¼ 2:01þ0:72

�0:67, X0 ¼ 6:45þ1:13
�1:51,

and �m ¼ 0:67þ0:64
�0:64 for the new gold sample and n ¼

1:63þ0:76
�0:92, X0 ¼ 6:09þ1:32

�2:86, and �m ¼ 0:47þ0:69
�0:47 for mixed

Gold-SNLS data. Figures 9 and 10 represent the likelihood
functions in terms of n and X0.

B. CMBR shift parameter

Another dynamical parameter that is used in recent
cosmological tests is the CMB shift parameter. Before
the last scattering epoch, the baryons and photons were
tightly coupled through the electromagnetic interaction.
This coupled fluid was under the influence of two major
forces of (a) the gravitational pull of matter, and (b) the
outleading pressure of photons. The fingerprint of this
competition leads to the familiar spectrum of peaks and
troughs on the CMB map. Here the main peak is the so-
called acoustic peak. The odd peaks of the CMB anisot-
ropy spectrum correspond to the maximum compression of
the fluid, the even ones to the rarefaction [10].
In an idealized model of the fluid, there is an analytic

relation for the location of themth peak: lm � mlA [11,12],
where lA is the acoustic scale which may be calculated
analytically and depends on both pre- and post-
recombination physics as well as the geometry of the
universe. The acoustic scale corresponds to the Jeans
length of photon-baryon structures at the last scattering
surface some �379 Kyr after the big bang [13]. The
apparent angular size of the acoustic peak can be obtained
by dividing the comoving size of the sound horizon at the
decoupling epoch rsðzdecÞ by the comoving distance of
observer to the last scattering surface rðzdecÞ:

�A ¼ �

lA
� rsðzdecÞ

rðzdecÞ : (48)

The numerator of Eq. (48) corresponds to the distance that
the perturbation of pressure can travel from the big bang to
up to the last scattering surface, which is defined as the
integral below:
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FIG. 8 (color online). The best fit of distance modulus as a
function of redshift to the Supernova Type Ia union sample.
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FIG. 9 (color online). Marginalized likelihood functions of
fðRÞ modified gravity model free parameter, n. The solid and
dash lines correspond to the likelihood function of fitting the
model with SNIa data new gold sample and union data set,
respectively. The intersections of the curves with the horizontal
solid and dashed lines give the bounds with 1	 and 2	 level of
confidence, respectively.
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rsðzdecÞ ¼
Z 1

zdec

vsðz0Þdz0
Hðz0Þ=H0

(49)

where vsðzÞ�2 ¼ 3þ 9=4	 �bðzÞ=�radðzÞ is the sound ve-
locity in the unit of speed of light from the big bang up to
the last scattering surface [11,14], zdec is the redshift of the
last scattering surface.

Changing the parameters of the model can change the
size of the apparent acoustic peak and subsequently the
position of lA � �=�A in the power spectrum of tempera-
ture fluctuations on CMB. The simple relation lm � mlA,
however, does not hold very well for the first peak,
although it is better for higher peaks [2]. Driving effects
from the decay of the gravitational potential as well as
contributions from the Doppler shift of the oscillating fluid
introduce a shift in the spectrum. A good parametrizations
for the location of the peaks and troughs is given by

lm ¼ lAðm�
mÞ (50)

where 
m is a phase shift determined predominantly by
prerecombination physics, and is independent of the ge-
ometry of the Universe. Instead of the peak locations of the
power spectrum of CMB, one can use another model-
independent parameter, which is the so-called shift pa-
rameter R, as

R ¼ !1=2
m

!1=2
k

sinnkð!krÞ (51)

where sinnkðxÞ ¼ sinðxÞ, x, sinhðxÞ for k ¼ �1, 0, 1. For
the case of a flat universe, which is our concern, the shift
parameter reduces to the simpler formula of

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mH

2
0

q Z zdec

0

dz

HðzÞ : (52)

Now we change the variable from the redshift to X and
rewrite the above expression in terms of dimensionless
parameter X and take the integral from the value of X at
the present time as the lower limit of the integral and the
value of X at the decoupling time as the upper limit:

R ¼ �1=6
m

34=3

Z Xdec

Xp

F0 � XF00

ð2F� XF0Þ2=3
dX

H ðXÞ : (53)

The observed result of the CMB experiment is R ¼
1:716� 0:062 [13]. It is worthwhile to mention that the
dimensionless parameter R is independent of the Hubble
constant. We compare the observed shift parameter with
that of the model using the likelihood analyzing, minimiz-
ing �2 defined as

�2
CMB ¼ ½Robs �Rthe�2

	2
CMB

: (54)

C. Baryon acoustic oscillations

Another geometrical cosmological probe which deter-
mines the distance-redshift relation is BAO. The physics
governing the production of BAO is well understood.
Acoustic peaks occurred because cosmological perturba-
tions excite sound waves in initial relativistic plasma in the
early epoch of the Universe. Dark matter perturbations
grow in place while the baryonic matter perturbations
were carried out in an expanding spherical wave because
of their interaction with photons. At the recombination
epoch, when the photons started to decouple from the
baryonic matter, the shell of the baryonic matter perturba-
tion sphere was nearly 150 Mpc in the comoving frame.
From the linear structure formation theories, this scale
should not be changed until the present time. The structure
formation theory predicts that this 150 Mpc imprint of
baryonic matter remains in the correlation function of the
density contrast and can be seen in the large-scale surveys.
By knowing the size of acoustic oscillation, one can

measure the angular distance to this structure. The large-
scale correlation function measured from 46 748 luminous
red galaxies spectroscopic sample of SDSS include a clear
peak at 100 Mpch�1 [15]. The corresponding comoving
scale of the sound horizon shell is about 150 Mpc in radius.
A dimensionless and H0 independent parameter for con-
straining the cosmological models has been proposed in
literatures [15] as follows:

A ¼ ffiffiffiffiffiffiffiffi
�m

p �
H0D

2
Lðzsdss;X0Þ

Hðzsdss;X0Þz2sdssð1þ zsdssÞ2
�
1=3

: (55)

or in simpler form

A ¼ ffiffiffiffiffiffiffiffi
�m

p
H ðXÞ�ð1=3Þ

�
1

zsdss

Z zsdss

0

dz

H ðXÞ
�
2=3

: (56)

We rewrite the above dimensionless quantity in terms of
modified gravity model parameters as

A¼ ffiffiffiffiffiffiffiffi
�m

p
H ðXÞ�ð1=3Þ

	
�ð3�mÞ�ð1=3Þ

3zsdss

Z Xsdss

Xp

ðF0 �XF00ÞdX
H ðXÞð2F�XF0Þ2=3

�
2=3

(57)

Now we can put a constraint on the fðRÞ modified gravity
model using the value of A ¼ 0:469� 0:017 from lumi-
nous red galaxies observation at zSDSS ¼ 0:35 [15]. It is
worthwhile to mention that the procedure above presented
in literature is well proposed for dark energy models in
which the �m has the same definition in standard cosmol-
ogy. In contrast to the dark energy models in gravity
theories in the Palatini formalism, �m is a conventional
dimensionless parameter and does not have the same role
as in dark Energy models, considering the well-known fact
that �m ¼ 1 does not correspond to a flat universe as in
standard FRW equations. Consequently, in order to not
include the weak model dependence of the dimensionless
parameter A, we will use another similar approach, pro-
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posed by Percival et al. [16]. This method constrains
general cosmological models by using BAO distance mea-
surement from galaxy samples covering different redshift
ranges. Measuring the distance redshift relation at two
redshifts of z ¼ 0:2 and z ¼ 0:35 for clustering of SDSS
luminous red galaxies enables us to define a new dimen-
sionless parameter as

B ¼ DVðz ¼ 0:35Þ
DVðz ¼ 0:20Þ (58)

where DV is given by

DV ¼
�ð1þ zÞ2d2Acz

HðzÞ
�
1=3

; (59)

and dA is the angular diameter distance. The observational
values for two different redshifts are reported in [16] with
1	 error:

rs
DVðz ¼ 0:20Þ ¼ 0:1980� 0:0058 (60)

rs
DVðz ¼ 0:35Þ ¼ 0:1094� 0:0033 (61)

where rs is the comoving sound horizon scale at the
recombination epoch. Considering that BAO measure-
ments have the same measured scale at all redshifts, then
we have a numerical value for B as

B ¼ DVðz ¼ 0:35Þ
DVðz ¼ 0:2Þ ¼ 1:812� 0:060: (62)

Nowwe convert the comoving angular diameter distance to
luminosity distance DL and calculate DL in terms of the
dimensionless Hubble parameter in modified gravity

B ¼
�
H ðz ¼ 0:20ÞDL

2ðz ¼ 0:35Þ0:35ð1þ 0:2Þ2
H ðz ¼ 0:35ÞDL

2ðz ¼ 0:20Þ0:2ð1þ 0:35Þ2
�
1=3

:

(63)

We use �2 as one more fitting parameter with the observed
value of B ¼ 1:812� 0:060. This observation permits us
to add one more term to �2 from that of SNIa and CMB-
shift parameter by minimizing

�2
BAO ¼ ðBobs �BthÞ2

	2
BAO

: (64)

This is the third geometrical parameter we will use to
constrain the model.

D. Gas mass fraction of cluster of galaxies

Measurement of the ratio of X-ray emitting gas to the
total mass in galaxy clusters (fgas) also is an indication of

the acceleration of the Universe. This method can be used
as another cosmological test to constraint the parameters of
the model. Galaxy clusters are the largest objects in the
Universe; the gas fraction in them is presumed to be

constant and nearly equal to the baryon fraction in the
Universe. Sasaki (1996) and Pen (1997) described how
measurements of the apparent dependence of the baryonic
mass fraction could also, in principle, be used to constrain
the geometry and matter content of a universe [17,18]. The
geometrical constraint arises from the dependence of the
measured baryonic mass fraction value on the assumed
angular diameter distance to the clusters [19]. The baryonic
mass content of galaxy clusters is dominated by the X-ray
emitting intercluster gas, the mass of which exceeds the
mass of optically luminous material by a factor of 6
[20,21]. Let us define fgas as

fgas ¼
Mgas

Mtot

(65)

In the second step wewant to replace the mass of gas by the
baryonic mass considering that

Mb ¼ ð1þ �ÞMgas; (66)

where from the observations we know � ¼ 0:19h1=2 [20].
On the other hand, we assume that we are observing rich
cluster of galaxies where the fraction of baryonic mass to
the total mass has the same fraction as in the universe with
a bias factor b. We substitute this assumption in Eq. (65) to
achieve

fgas ¼ b

1þ �

�b

�m

: (67)

Using the distribution of gas and matter in cluster, Sasaki
(1996) showed that the fraction of gas depends on angular

distance with fgas / D3=2
A [17]. On the other hand, the

fraction of gas obtained from the observation depends on
the model we are assuming for the dynamics of the uni-
verse. It is assumed that fgas should in reality be indepen-

dent of the redshift. To determine the constraints on the
proposed modified gravity action, we fit the fgas data with a

model that accounts for the expected apparent variation in
fgasðzÞ as the underlying cosmology is varied. We choose

both SCDM (a flat universe with�m ¼ 1 and h ¼ 0:5) and
�CDM as reference cosmology models. The ratio of gas
fraction for a given model to the reference model is:

fðrefÞgas =f
ðmodÞ
gas ¼ ½DðrefÞ

A =DðmodÞ
A �3=2. On the other hand, using

Eq. (67) for a given model, the gas fraction for a reference
model is obtained by

fðrefÞgas ¼ b�b

ð1þ 0:19
ffiffiffi
h

p Þ�m

�
Dref

A ðzÞ
Dmod

A ðzÞ
�
3=2

; (68)

where superscripts (ref) correspond once to SCDM and
then to the �CDM model [22]. We use �2 to compare gas
fractions of observational and theoretical models as fol-
lows:
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�gas ¼
ðfobsgas � fthegasÞ2

	2
gas

: (69)

This is the fourth geometrical constraint.

E. Combined analysis: SNIaþCMBþ BAOþGAS
FRACTION

In this section we combine SNIa data (from SNIa new
gold sample and mixed SNLS), CMB shift parameter from
the WMAP, recently observed baryonic peak from the
SDSS and 2dF, and the gas mass fraction in cluster of
galaxies to constrain the parameter of the modified gravity
model by minimizing the combined �2 ¼ �2

SNIa þ
�2
CMB þ �2

BAO þ �2
gas.

The best values of the parameters of the model from the
fitting with data, including SNIa new sample are n ¼
0:91þ0:08

�0:07, X0 ¼ 3:67þ0:44
�0:42, and �m ¼ 0:29þ0:10

�0:09 and data

with including SNIa union sample results in n ¼
0:98þ0:08

�0:08, X0 ¼ 4:39þ0:38
�0:42, and �m ¼ 0:25þ0:10

�0:010. Here we

marginalized overall Hubble parameter in likelihood
analysis. Figures 11 and 12 show the likelihood function
as function of exponent n. Also Figs. 13 and 14 represent
the likelihood function of X0 in two different supernova
data sets.

VI. CONSTRAINTS BY LARGE-SCALE
STRUCTURES: DYNAMICAL PARAMETER

So far we have only considered the observational results
related to the background evolution. In this section, using
the linear approximation of structure formation, we obtain
the growth index of structures and compare it with the
result of observations by the 2-degree Field Galaxy
Redshift Survey (2dFGRS). As we mentioned before, the
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FIG. 11 (color online). Marginalized likelihood functions of
fðRÞ modified gravity model free parameter, n. The solid line
corresponds to the joint analysis of SNIa data (new gold sample)
and CMB, the dashed line shows the joint analysis of SNIaþ
CMBþ SDSS data, the dash-dot line corresponds to SNIaþ
CMBþ SDSSþ LSS and the dash-dot-dot line indicates
SNIaþ CMBþ SDSSþ LSSþ LCDM. The intersections of
the curves with the horizontal solid and dashed lines give the
bounds with 1	 and 2	 level of confidence, respectively. The
results for two former analysis are very similar.
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FIG. 12 (color online). Marginalized likelihood functions of
fðRÞ modified gravity model free parameter, n. The solid line
corresponds to the joint analysis of SNIa data and CMB, the
dashed line shows the joint analysis of SNIaþ CMBþ SDSS
data, the dash-dot line corresponds to SNIaþ CMBþ SDSSþ
LSS and the dash-dot-dot line indicates SNIaþ CMBþ
SDSSþ LSSþ LCDM. The intersections of the curves with
the horizontal solid and dashed lines give the bounds with 1	
and 2	 level of confidence, respectively. The results for two
former analyses are very similar.
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FIG. 13 (color online). Marginalized likelihood functions of
fðRÞ modified gravity model as a function of X0. The solid line
corresponds to the joint analysis of SNIa data (new gold sample)
and CMB, the dashed line shows the joint analysis of SNIaþ
CMBþ SDSS data, the dash-dot line corresponds to SNIaþ
CMBþ SDSSþ LSS and the dash-dot-dot line indicates
SNIaþ CMBþ SDSSþ LSSþ LCDM. The intersections of
the curves with the horizontal solid and dashed lines give the
bounds with 1	 and 2	 level of confidence, respectively. The
results for two former analyses are very similar.
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evolution of the structures depends on both the dynamics of
the background and the gravity law that governs the dy-
namics of particles inside the structure.

Here the evolution of structures in the modified gravity
will be studied through the spherical collapse model.
Recently a procedure has been put forward by Lue,
Scoccimarro, and Starkman (2004) which relies on the
assumption that Birkhoffs theorem holds in a more general
setting of modified gravity theories. This procedure also is
applied in the Palatini formalism of fðRÞ gravity [23].
According to this procedure, it is assumed that the growth
of large-scale structures can be modeled in terms of a
uniform sphere of dust of constant mass. This structure
evolves as a FRW universe. Using Birkhoffs theorem, the
space-time at the empty exterior of this structure is then
taken to be a Schwarzschild-like metric. The components
of the exterior metric are then uniquely determined by
smoothly matching the interior and exterior regions. In
the Palatini formalism the metric outside the spherical
distribution of matter depends on the density of matter
which may modify the Newtonian limit of these theories;
however, here we assume Schwarzschild-like Newtonian
limit.

The continuity and Poisson equations for the density
contrast � ¼ ��= �� in the cosmic fluid provide the evolu-
tion of density contrast in the linear approximation (i.e.
� 
 1) as

€�þ 2
_a

a
_�� 4�G�� ¼ 0; (70)

where the dot denotes the time derivative and we assume
the size of structures to be larger than the Jeans length. The
effect of a modified gravity results from the modification to
the background dynamics, and we adopt the same Poisson
equation for the weak field regime. In order to use the
constraint from the large-scale structure, we rewrite the
above equation in terms of X. So we have

d2�

da2
þ d�

da

�
3

a
þH 0ðXÞ

H ðXÞ
dX

da

�
� 3�m

2H 2ðXÞa5 � ¼ 0: (71)

In the standard linear perturbation theory, the peculiar
velocity field v is determined by the density contrast as

v ðxÞ ¼ H0

f

4�

Z
�ðyÞ x� y

jx� yj3 d
3y; (72)

where the growth index f is defined by

f ¼ d ln�

d lna
; (73)

and it is proportional to the ratio of the second term of
Eq. (70) (friction) to the third term (Poisson).
We use the evolution of the density contrast � to com-

pute the growth index of structure f, which is an important
quantity for the interpretation of peculiar velocities of
galaxies. Replacing the density contrast with the growth
index in Eq. (72) results in the evolution of growth index as

df

d lna
¼ 3�m

2aH 2ðXÞ � f2 � f

�
2þ aH 0ðXÞ

H ðXÞ
dX

da

�
: (74)

To put constraint on the model using large structure data,
we rely on the observation of 220 000 galaxies with the
2dFGRS experiment, which provides a numerical value for
the growth index. By measurements of the two-point cor-
relation function, the 2dFGRS team reported the redshift
distortion parameter of � ¼ f=b ¼ 0:49� 0:09 at z ¼
0:15, where b is the bias parameter describing the differ-
ence in the distribution of galaxies and their masses. Verde
et al. (2003) used the bispectrum of 2dFGRS galaxies
[24,25] and obtained bverde ¼ 1:04� 0:11, which gave
f ¼ 0:51� 0:10. Now we fit the growth index at z ¼
0:15 derived from the Eq. (74) with the observed value.

�2
LSS ¼

½fobsðz ¼ 0:15Þ � fthðz ¼ 0:15;X0Þ�2
	2

fobs

: (75)

Finally, we do a likelihood analysis with considering all
the observations and obtain the 2D distribution of a like-
lihood function in terms of n and X0 in Fig. 17.

Perturbation theory

In the previous section we have seen the effect of
modified gravity on the structure formation in the weak
filed regime through the background effect. In this method,
changing the dynamics of universe (i.e. scale factor) alters
the formation of the large-scale structures.

X0

R
el

at
iv

e
L

ik
el

ih
oo

d

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SNIa + CMB
SNIa + CMB + SDSS
SNIa + CMB + SDSS + LSS
SNIa + CMB + SDSS + LSS + LCDM

FIG. 14 (color online). Marginalized likelihood functions of
the fðRÞ modified gravity model as a function of X0. The solid
line corresponds to the analysis of SNIa data and CMB, the
dashed line shows the joint analysis of SNIaþ CMBþ SDSS
data, the dash-dot line corresponds to SNIaþ CMBþ SDSSþ
LSS and the dash-dot-dot line indicates SNIaþ CMBþ
SDSSþ LSSþ LCDM. The intersections of the curves with
the horizontal solid and dashed lines give the bounds with 1	
and 2	 level of confidence, respectively. The results for two
former analyses are very similar.
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In this section we study the relativist structure formation
theory through the perturbation in the homogenous back-
ground metric and energy-momentum tensor. This ap-
proach may uncover whether modified gravity theories
driving late-time acceleration predict any testable features
on CMB or large-scale structures in linear or nonlinear
regimes.

Let us consider a flat universe dominated by pressureless
cold dark matter. We identify perturbation in conformally
flat FRW space-time by ten elements as follows:

ds2 ¼ a2ðÞf�ð1þ 2�Þd2 � 2ð�;i þbiÞddxi
þ½g3ij þ 2ðgð3Þij 
þ�;ij þ cði;jÞÞþhij�dxidxjg (76)

where  is the conformal time. �, �, �, and 
 are the
scalar perturbations to the metric. bi and ci are divergence-
less vectors where each one with 2 degrees of freedom and
hij is a traceless–divergenceless symmetric 3	 3 matrix

with 2� of freedom.
On the other hand, perturbation of conservation of

energy-momentum tensor results in the continuity and
Euler equations as follows:

_� ¼ �kvþ a�� 3H�; (77)

_v ¼ �Hvþ k�; (78)

where � ¼ 3a�1ðH�� _
Þ � a�2h� and � ¼ að�þ _�Þ.
Using conformal gauge, the field equation for the den-

sity contrast in the modified gravity framework are ob-
tained as [26]

�00 þ �H�0 � �

�
H00

H
� 2H0

�
� ¼ 0 (79)

where 0 is the derivative with respect to the conformal time

and H ¼ a0
a ¼ _a. � and � are defined as

� ¼ 1þ 2FF00H � 2F02H � 2FF0H0

FH2ð2FH þ F0Þ ; (80)

� ¼ 1þ H2 �H0

H00 � 2H0H
ð1� �Þ

� F0H
3ð2FH þ F0ÞðH00 � 2H0HÞ k

2; (81)

where k is the wave number of structures in the universe. In
the case of the Einstein-Hilbert action, F0 ¼ F00 ¼ 0,
which results in � ¼ 1 and subsequently � ¼ 1. The dif-
ferential equation governing the evolution of the density
contrast in this case reduces to

�00 þH�0 �
�
H00

H
� 2H0

�
� ¼ 0: (82)

For comparison of Eqs. (79) and (82), we obtain the
difference in the density contrast between the �CDM
model and the modified gravity as indicated in Fig. 15

for a structure with the size of k ¼ 0:01 Mpc�1. For the
larger scales, the third term in the Eq. (81) tends to zero and
we get a smaller difference between the density contrast in
these two solutions. In order to compare these results with
data, more detailed simulation in the nonlinear regime of
the structure formation is essential.

VII. AGE OF UNIVERSE

The age of the universe integrated from the big bang up
to now for a flat universe in terms of free parameters of
model n and X0 is given by

t0ðXpÞ ¼
Z t0

0
dt ¼

Z 1

0

dz

ð1þ zÞHðzÞ
¼ 1

3H0

Z 1

Xp

F0 � XF00

2F� XF0
dX

H ðXÞ : (83)

Figure 16 shows the dependence of H0t0 (Hubble pa-
rameter times the age of universe) on X0 for a flat universe.
In the lower panel we show the same function for �CDM
universe in terms of �� for comparison. As we expected,
X0 in modified gravity behaves as a dark energy and
increasing it makes a longer age for the universe, in the
same direction as increasing the cosmological constant.
The ‘‘age crisis’’ is one the main reasons for the accel-

eration phase of the universe. The problem is that the
universe’s age in the CDM universe is less than the age
of old stars in it. Studies on the old stars [27] suggest an age
of 13þ4�2 Gyr for the universe. Richer et al. [28] and Hasen

FIG. 15 (color online). Difference between the density contrast
in the �CDM model and the modified gravity model. For larger
redshifts the difference between these two solutions is negligible.
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et al. [29] also proposed an age of 12:7� 0:7 Gyr, using
the white dwarf cooling sequence method.

We use the age of universe in this model for the con-
sistency test and compare the age of universe with the age
of old stars and old high redshift galaxies (OHRG) in
various redshifts. Table II shows that the age of universe
from the combined analysis of SNIaþ CMBþ SDSSþ
LSS is 14:69þ0:29

�0:28 Gyr and 13:45þ0:30
�0:28 Gyr for the new gold

sample and union data sample, respectively. These values
are in agreement with the age of old stars [27]. Here we
take three OHRG for comparison with the modified gravity
model considering the best fit parameters, namely, the
LBDS 53W091, a 3.5-Gyr old radio galaxy at z ¼ 1:55
[30], the LBDS 53W069 a 4.0-Gyr old radio galaxy at z ¼

1:43 [31], and a quasar, APM 08279þ 5255 at z ¼ 3:91
with an age of t ¼ 2:1þ0:9

�0:1 Gyr [32]. To quantify the age-

consistency test we introduce the expression � as

� ¼ tðz;X0Þ
tobs

¼ tðz;X0ÞH0

tobsH0

; (84)

where tðzÞ is the age of universe, obtained from the Eq. (83)
and tobs is an estimation for the age of an old cosmological
object. In order to have a compatible age for the universe
we should have � > 1. Table III reports the value of � for
three mentioned OHRGs with various observations. We see
that fðRÞ modified gravity with the parameters from the
combined observations provides a compatible age for the

X0
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t 0
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FIG. 16 (color online). H0t0 (age of universe times the Hubble constant at the present time) as a function of X0 (upper panel). H0t0
for �CDM versus�� (lower panel). Increasing X0 gives a longer age for the universe. This behavior is the in the same direction as in
the �CDM universe.

FIG. 17 (color online). Joint likelihood function in terms of n and X0 considering all the observable data. In the upper panel the SNIa
data is taken from the gold sample and in the lower panel the data is the union sample.
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TABLE II. The best values for the parameters of modified gravity with the corresponding age for the universe from fitting with SNIa
from new Gold sample and Union data sample, SNIaþ CMB;SNIaþ CMBþ BAO, SNIaþ CMBþ BAOþ LSS and SNIaþ
CMBþ BAOþ LSSþ GASð�CDMÞ experiments at one and two 	 confidence level. The value of �m is determined according to
Eq. (25).

Observation n X0 �m Age (Gyr)

SNIa(new Gold) 2:01þ0:72
�0:67 6:45þ1:13

�1:51 0:67þ0:64
�0:65 12:99þ4:42

�6:24

2:01þ1:06
�0:95 6:45þ1:53

�2:36 0:67þ0:90
�1:01 12:99þ7:17�7:17

SNIaðnewGoldÞ þ CMB 0:91þ0:15
�0:11 3:58þ0:64

�0:58 0:31þ0:19
�0:14 14:55þ2:02

�1:68

0:91þ0:23
�0:16 3:58þ0:92

�0:72 0:31þ0:28
�0:20 14:55þ3:40

�2:53

SNIaðnewGoldÞ þ CMBþ BAO 0:93þ0:16
�0:12 3:76þ0:63

�0:59 0:30þ0:19
�0:15 14:72þ2:14�1:89

0:93þ0:24
�0:22 3:76þ0:91

�0:83 0:30þ0:29
�0:25 14:72þ3:29

�1:43

SNIaðnewGoldÞ þ CMBþ SDSSþ LSS 0:91þ0:08
�0:07 3:67þ0:44

�0:42 0:29þ0:10
�0:09 14:73þ1:31

�1:51

0:91þ0:11
�0:10 3:67þ0:61

�0:61 0:29þ0:15
�0:14 14:73þ1:87

�1:68

SNIaðnewGoldÞ þ CMBþ SDSSþ LSSþ GASð�CDMÞ 0:91þ0:08
�0:07 3:67þ0:44

�0:42 0:29þ0:10
�0:09 14:73þ1:31

�1:51

0:91þ0:11
�0:10 3:67þ0:61

�0:61 0:29þ0:15
�0:14 14:73þ1:87

�1:68

SNIa (UNION) 1:63þ0:76
�0:92 6:09þ1:32

�2:86 0:47þ0:69
�0:47 14:27þ7:31

�7:31

1:63þ1:09
�1:10 6:09þ1:75

�3:95 0:47þ0:90
�0:47 14:27þ8:34

�8:34

SNIaðUNIONÞ þ CMB 0:99þ0:15
�0:13 4:36þ0:57

�0:58 0:26þ0:17
�0:15 15:47þ2:40

�2:43

0:99þ0:22
�0:17 4:36þ0:83

�0:80 0:26þ0:25
�0:20 15:47þ3:77

�3:50

SNIaðUNIONÞ þ CMBþ BAO 1:00þ0:16
�0:12 4:45þ0:60

�0:54 0:26þ0:18
�0:14 15:59þ2:64

�2:28

1:00þ0:24
�0:17 4:45þ0:86

�0:77 0:26þ0:27
�0:20 15:59þ4:17

�3:59

SNIaðUNIONÞ þ CMBþ BAOþ LSS 0:98þ0:08
�0:08 4:39þ0:38

�0:42 0:25þ0:10
�0:10 15:67þ1:52

�1:57

0:98þ0:11
�0:11 4:39þ0:55

�0:60 0:25þ0:14
�0:14 15:67þ2:27

�2:25

SNIaðUNIONÞ þ CMBþ BAOþ LSSGASð�CDMÞ 0:98þ0:08
�0:08 4:39þ0:38

�0:42 0:25þ0:10
�0:10 15:67þ1:52

�1:57

0:98þ0:11
�0:11 4:39þ0:55

�0:60 0:25þ0:14
�0:14 15:67þ2:27

�2:25

TABLE III. The value of � for three high redshift objects, using the parameters of the model derived from fitting with the
observations at one and two 	 level of confidences.

Observation LBDS 53W069 z ¼ 1:43 LBDS 53W091 z ¼ 1:55 APM 08279þ 5255 z ¼ 3:91

SNIa (new Gold) 0:81þ0:48
�0:81 0:90þ0:52

�0:90 0:53þ0:36
�0:53

0:81þ0:81
�0:81 0:90þ0:90

�0:90 0:53þ0:53
�0:53

SNIaðnewGoldÞ þ CMB 1:18þ0:29
�0:25 1:26þ0:31

�0:28 0:81þ0:23
�0:41

1:18þ0:45
�0:39 1:26þ0:49

�0:43 0:81þ0:34
�0:49

SNIaðnewGoldÞ þ CMBþ BAO 1:20þ0:31
�0:29 1:28þ0:34

�0:31 0:82þ0:42
�0:24

1:20þ0:48
�0:46 1:28þ0:52

�0:48 0:82þ0:50
�0:28

SNIaðnewGoldÞ þ CMBþ BAOþ LSS 1:21þ0:19
�0:17 1:29þ0:20

�0:18 0:83þ0:38
�0:14

1:21þ0:27
�0:25 1:29þ0:29

�0:27 0:83þ0:43
�0:41

SNIaðnewGoldÞ þ CMBþ BAOþ LSSþ GAS 1:21þ0:19
�0:17 1:29þ0:20

�0:18 0:83þ0:38
�0:14

1:21þ0:27
�0:25 1:29þ0:29

�0:27 0:83þ0:43
�0:41

SNIa (UNION) 0:97þ1:06
�0:97 1:02þ1:13

�1:02 0:63þ0:73
�0:63

0:97þ1:15
�0:97 1:02þ1:49

�1:02 0:63þ0:83
�0:63

SNIaðUNIONÞ þ CMB 1:23þ0:34
�0:36 1:31þ0:37

�0:40 0:84þ0:44
�0:30

1:23þ0:55
�0:54 1:31þ0:60

�0:58 0:84þ0:55
�0:45

SNIaðUNIONÞ þ CMBþ BAO 1:24þ0:38
�0:34 1:33þ0:41

�0:37 0:84þ0:46
�0:28

1:24þ0:62
�0:55 1:33þ0:67

�0:60 0:84þ0:60
�0:47

SNIaðUNIONÞ þ CMBþ BAOþ LSS 1:26þ0:22
�0:23 1:34þ0:24

�0:25 0:86þ0:40
�0:19

1:26þ0:33
�0:33 1:34þ0:36

�0:36 0:86þ0:44
�0:27

SNIaðUNIONÞ þ CMBþ BAOþ LSSþ GAS 1:26þ0:22
�0:23 1:34þ0:24

�0:25 0:86þ0:40
�0:19

1:26þ0:33
�0:33 1:34þ0:36

�0:36 0:86þ0:44
�0:27
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universe, compared to the age of old objects, while the
SNLS data result in a shorter age for the universe. Once
again, APM 08279þ 5255 at z ¼ 3:91 has a longer age
than the universe but gives better results than some of the
modified gravity models [33].

VIII. CONCLUSION

In this work we proposed the action of fðRÞ ¼ ðRn �
Rn
0Þ1=n to obtain the dynamics of the universe. We used the

Palatini formalism to extract the field equation. The ad-
vantage of this formalism is that the field equation is a
second-order differential equation and in the solar system
scales we can recover a Schwarzschild–de Sitter space with
an effective cosmological constant compatible with the
observations. The other advantage of the Palatini formal-
ism is that it does not suffer from the curvature instability
as pointed out in [34].

We used cosmological tests based on background dy-
namics such as Supernova Type Ia, CMB-shift parameter,

baryonic acoustic oscillation, and gas mass fraction of the
cluster of galaxies. We also used data from the structure
formation to put constraints on the parameters of the
model. Table II represents constraints on the parameters
of model considering the observational data and their
combination. We also showed that this model provides an
age for the universe sufficiently longer than the age of old
astrophysical objects.
Comparing this model with the observations we put the

constraint of n ¼ 0:98þ0:08
�0:08 for the exponent of action and

X0 ¼ 4:39þ0:38
�0:38 or equivalently �m ¼ 0:25þ0:10

�0:10. The best

value for this model shows that a standard �CDM model
also resides in this range of solutions. Our result is in
agreement with the recent work by Kowalski et al.
(2008) where they also obtained almost a �CDM universe
with a nearly constant equation of state for a dark energy
model [35].
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