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A ‘‘compensated’’ isocurvature perturbation consists of an overdensity (or underdensity) in the cold

dark matter which is completely cancelled out by a corresponding underdensity (or overdensity) in the

baryons. Such a configuration may be generated by a curvaton model of inflation if the cold dark matter is

created before curvaton decay and the baryon number is created by the curvaton decay (or vice versa).

Compensated isocurvature perturbations, at the level producible by the curvaton model, have no

observable effect on cosmic microwave background anisotropies or on galaxy surveys. They can be

detected through their effect on the distribution of neutral hydrogen between redshifts 30–300 using 21 cm

absorption observations. However, to obtain a good signal to noise ratio, very large observing arrays are

needed. We estimate that a fast Fourier transform telescope would need a total collecting area of about

20 square kilometers to detect a curvaton generated compensated isocurvature perturbation at more than

5 sigma significance.

DOI: 10.1103/PhysRevD.80.063535 PACS numbers: 98.80.�k

I. INTRODUCTION

Current observations can be fit by a simple 6 parameter
model of a flat �CDM universe with a nearly scale invari-
ant, adiabatic, and Gaussian primordial perturbation spec-
trum (see for example [1,2]). The primordial perturbations
may have been generated by a period of accelerated ex-
pansion in the early Universe, known as inflation (see for
example [3]). Inflation can be driven by a potential domi-
nated scalar field (the inflaton). The current Universe con-
tains cold dark matter (CDM), baryons (b), neutrinos (�)
and photons (�). They can arise from the decay products of
the inflaton. We assume the recent accelerated expansion
of the Universe is driven by a cosmological constant which
is unperturbed. Density perturbations in the other compo-
nents can be inherited from the density perturbations in the
inflaton which arise from vacuum fluctuations that are
amplified to scales larger than the Hubble horizon during
inflation. The perturbations are known as adiabatic if

�
��i

_�i

� ��j

_�j

�
¼ 0; (1)

where �� is the perturbation in the density, a dot indicates
a derivative with respect to time and i and j are each one of
(CDM, b, �, and �). Nonadiabatic (also known as isocur-
vature or entropy) perturbations cannot arise if all the
constituents of the Universe are the result of the decay of
a single inflaton (see for example [4,5]). In order to gen-
erate isocurvature perturbations there has to be more than
one light degree of freedom present during inflation. In the
curvaton model [6,7], the perturbations generated by the
inflaton are negligibly small. But, there is a second light
field (known as the curvaton) which also acquires pertur-

bations, from vacuum fluctuations, during inflation. At the
end of inflation, the inflaton decays into radiation whose
density decreases like a�4, where a ¼ 1=ð1þ zÞ is the
scale factor and z is the redshift. After inflation, when
the Hubble parameter drops below the curvaton mass, the
curvaton oscillates in the well of its potential and its
density decreases like a�3 and so its energy density relative
to the radiation increases as a. When the Hubble parameter
drops below the curvaton decay rate, the curvaton decays
and its decay products are responsible for the observed
density perturbations. If all of the constituents of the
current Universe originate from the curvaton, then the
resulting perturbations will be adiabatic. However, if
some of the constituents originate from before the curvaton
has non-negligible energy density and some from the
curvaton, or its decay products, then isocurvature modes
are possible [8]. The magnitude of the adiabatic mode can
be given in terms of the curvature perturbation in the
constant density gauge � (see for example [3,9,10]). In
the cases we consider it is virtually equivalent to the
curvature perturbation (or its negative, depending on the
sign convention) in the comoving gauge R. The isocurva-
ture term between constituents i and j can be quantified by

Si;j ¼ �3H

�
��i

_�i

� ��j

_�j

�
¼ ��i

ð1þ wiÞ�i

� ��j

ð1þ wjÞ�j

;

(2)

where H is the Hubble parameter, the second equality
follows from the continuity equation, and w is zero for
baryons and CDM and a third for photons and neutrinos. If
the CDM is created just after inflation, before the curvaton
has non-negligible energy density (as in the case of wimp-
zillas [11–13]), then [8]
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SCDM;� ¼ �3�: (3)

Such a large negatively correlated isocurvature perturba-
tion on its own is ruled out by current data [14]. However, it
may be offset by a positively correlated isocurvature per-
turbation between the baryons and the photons. If the
curvaton decay generates the baryon number (e.g. baryon
number from the decay of a right-handed sneutrino curva-
ton [15]), then [8]

Sb;� ¼ 3
1� r

r
�; (4)

where r � �curvaton=�total at the time of curvaton decay.
Observations of the anisotropy in the cosmic microwave
background (CMB) are unable to distinguish between a
Sb;� and a SCDM;� isocurvature perturbation [14]. Also, as

discussed in Sec. II, they cannot be distinguished with
galaxy redshift surveys either. However, the effect of a
CDM isocurvature mode is �CDM=�b times larger than
that of a baryon isocurvature mode with the same ampli-
tude, where�i is the density of component i divided by the
critical density. It follows that there is a, currently uncon-
strained, compensated mode where

SCDM;� ¼ I�; (5)

Sb;� ¼ ��CDM

�b

I�: (6)

The case where the CDM is created before curvaton decay
and the baryon number by curvaton decay corresponds to
I ¼ �3.

As pointed out in [16,17], high redshift 21 cm observa-
tions can distinguish between SCDM;� and Sb;�. In this

article we estimate how large an array would be needed
to detect a curvaton generated compensated isocurvature
mode. The layout of the article is as follows. In Secs. II, III,
and IV the effect of compensated isocurvature perturba-
tions is discussed. In Sec. V forecasts for how well the
compensated isocurvature perturbations can be constrained
are made for possible future 21 cm experiments. The
conclusions and discussion are given in Sec. VI.

II. EFFECT OF COMPENSATED ISOCURVATURE
ON THE CMB

In [14] it was shown that the compensated mode is not
observable in the CMB anisotropy. Here we go through the
argument in a bit more detail and highlight the effect of
baryon pressure. The temperature perturbation in the CMB
is given by the sum of the temperature perturbation from
the adiabatic mode and that from the compensated mode:

�T ¼ �TjI¼0 þ �Tj�¼0: (7)

The compensated isocurvature mode has all perturbations
set to zero except the baryon and CDM densities which
have ��CDM ¼ ���b and so the total density is unper-

turbed. In the compensated mode, the divergence of the
baryon fluid velocity is sourced by the baryon density (see
for example [18]). But, the sourcing term is of the form
c2sk

2��b=�b where the baryon sound speed is given by [18]

c2s ¼ kBTb

�

�
1� 1

3

d lnTb

d lna

�
(8)

Tb is the baryon temperature (which is equal to the photon
temperature until z� 300) and � is the mean molecular
weight (including free electrons and all ions in H and He).
Only wave numbers for which k2c2s >H 2 (where H is
the comoving Hubble parameter) are affected by the
baryon sound speed. At last scattering, this corresponds
to k > 200h Mpc�1 which corresponds to angular scales of
the observed CMB of ‘ > 2� 106 which is many orders of
magnitude greater than the observable CMB intrinsic an-
isotropy which due to a combination of Silk damping and
foregrounds is unobservable for ‘ > 3000. Note that c2s is
not the square of the photon/baryon fluid sound speed
which is of order 1=3 during tight coupling, where we
are using units with the speed of light set to unity. Before
last scattering, the divergence of the photon fluid velocity
is sourced by the divergence of the baryon velocity. The
photon’s density and velocity perturbations are not sourced
by the baryon density perturbations. Hence, except on
negligibly small scales, the compensated isocurvature
mode has all perturbations remaining zero except for ��b

and ��CDM which are initially nonzero but do not grow as
overall there is no perturbation to the metric. It follows that
the observed CMB fluctuations are unaffected by the pres-
ence of a curvaton generated compensated isocurvature
mode.

III. EFFECT OF COMPENSATED ISOCURVATURE
ON GALAXY SURVEYS

The dimensionless power spectra is given by

P � ðk3=2�2Þh��ðkÞ2i=�2: (9)

It is plotted for the baryon and CDM perturbations in Fig. 1
for scales smaller than the Hubble horizon. The power
spectra for this and the other figures in this article were
evaluated using the CAMB SOURCES [19] program which
solves the Boltzmann equation for the photon distribution
function numerically [17]. Our fiducial adiabatic model
has WMAP5 maximum likelihood parameters [20]:
�bh

2 ¼ 0:0227, �CDMh
2 ¼ 0:108, n ¼ 0:961, � ¼

0:089, P � jk¼ð1=500ÞhMpc�1 ¼ 2:41� 10�9, h ¼ 0:724,

where Hjz¼0 ¼ 100h km � s�1 �Mpc�1, n is the spectral
index, and � is the optical depth. The compensated mode
for the curvaton model is taken to be I ¼ �3 which
corresponds to the case of the CDM being created before
curvaton decay and the baryon number being created by
curvaton decay. The compensated mode where the baryon
number is created before curvaton decay and CDM by
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curvaton decay corresponds to I ¼ 3�b=�c ¼ 0:63 and is
harder to detect.

The compensated mode density perturbations are deter-
mined by the isocurvature perturbation [Eqs. (5) and (6)],
which in the curvaton model has the same primordial
spectral index as the curvature perturbation (P / kn�1).
The compensated mode density perturbations do not
change with time except on scales smaller than the baryon
pressure scale corresponding to k� 200h Mpc�1 at the
redshifts probed in Fig. 1. For scales larger than the
Hubble horizon at radiation/matter equality (k <
0:01h Mpc�1) the adiabatic mode density perturbations
are determined by the curvature perturbation and from
Poisson’s equation have the form P / knþ3=ð1þ zÞ2. For

larger k, there is a reduction in the slope due to the
radiation pressure suppressed growth of subhorizon scales
during the radiation era. During the matter era all scales
grow as ð1þ zÞ�1 in the adiabatic mode density perturba-
tion. It follows that the contribution of the compensated
mode to the square root of the normalized power spectrum
decreases with scale and redshift as k�2ð1þ zÞ for k <
0:01h Mpc�1 and similarly but with slightly less negative
slope in k for k < 0:01h Mpc�1. The total density pertur-
bation is the sum of the compensated mode and the adia-
batic mode density perturbations. The CDM compensated
mode density perturbation is completely negatively corre-
lated with the adiabatic mode CDM density perturbation

on large scales. The downward spike seen in the
ffiffiffiffiffi
P

p
between k ¼ 10�3 and 10�2h Mpc�1 is where the adia-
batic and compensated mode CDM density perturbations
completely cancel each other.
The number of gravitationally collapsed halos of

massM is determined by the variance of the nonrelativistic
matter field (evaluated using linear theory) smoothed with

a top hat filter on a scale R� h�1 MpcðM=1012M�Þ1=3
[21]. The number of objects is exponentially suppressed
when the corresponding smoothed variance is less than
about 1:6862 [21]. The variance of the smoothed matter
field can be approximately read off from the dimensionless
power spectrum at scale k� 1=R. The first stars form in
halos of mass 106M�. This corresponds to k�
102h�1 Mpc. On the other end of the scale, clusters of
galaxies can have masses up to about 1015M� which
correspond to k� 10h�1 Mpc and tend to form about z�
0–2. As can be seen from Fig. 1, the effect of the compen-
sated mode is negligible for k > 0:1h�1 Mpc for z � 100.
It follows that a curvaton generated compensated isocur-
vature mode will have a negligible effect on collapsed
gravitational structures and so is not detectable by galaxy
surveys either.

IV. EFFECT OF COMPENSATED ISOCURVATURE
ON 21 CM OBSERVATIONS

Absorptions in the observed CMB at wavelengths

	 ¼ 21:1ð1þ zÞ cm (10)

can be used to probe the distribution of neutral hydrogen in
the early Universe (see for example [22] for a review). The
amount of absorption of the CMB is maximized at z� 70
where there is the biggest difference between the CMB
temperature and the spin temperature of the neutral hydro-
gen. If there is an overdensity of baryons, and hence neutral
hydrogen, then there will be more absorption. The amount
of neutral hydrogen also affects how the spin temperature
evolves with time. There are many other subtle effects,
such as distortions due to the peculiar velocities of the
neutral hydrogen, but these will be subdominant at the
bandwidths, redshifts and length scales we look at here
[17,23]. To a first approximation, the 21 cm observations
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FIG. 1 (color online). The evolution of the dimensionless
power spectrum of the baryons (red curve) and the CDM (blue
curve). The adiabatic (solid curve) and adiabaticþ curvaton
compensated isocurvature mode (dashed curve) are also plotted.
The baryon and CDM power spectrum have been scaled by
�b=�m and �CDM=�m, respectively, where �m ¼
�CDM þ�b.

FORECASTED 21 CM CONSTRAINTS ON COMPENSATED . . . PHYSICAL REVIEW D 80, 063535 (2009)

063535-3



can be thought of as mapping the density of neutral hydro-
gen (or effectively baryons) for redshifts in the range 30 �
z � 300. For lower redshifts, 21 cm can be used for prob-
ing reionization (see for example [24]) and as a means of
doing galaxy surveys (see for example [25]). Also, for z <
30, the neutral hydrogen can still be mapped to constrain
the matter power spectrum, provided one marginalizes
over the reionization model (see for example [26–28]).
These are the goals of current (e.g. Murchison Widefield
Array [29], Low Frequency Array for radio astronomy
[30]) and the next generation (e.g. Square Kilometer
Array [31]) surveys. But next þ1 generation surveys may
probe the dark ages for z > 30. As the neutral hydrogen
follows the baryon distribution at high redshifts it will have
a signal for a compensated isocurvature mode [16,17]. In

Fig. 2 the 21 cm signal is plotted at different redshifts for
the adiabatic and the adiabatic plus compensated isocurva-
ture mode. The error bars are for those scales measurable
after foregrounds have been removed and will be discussed
in Sec. V. For ‘�r=r 	 1 (corresponding to ‘ 	 20 in
Fig. 2), the angular power spectrum can be approximated
by [32]

‘ð‘þ 1ÞC‘=2� / 1

‘
P bjk¼‘=r; (11)

where r is the comoving distance to the center of the
survey, �r is the comoving width of the survey, and P b

is the dimensionless power spectrum of the baryons. The
extra factor of 1=‘ accounts for the smoothing effect of the
survey window. For the redshifts in Fig. 2, r �
104h Mpc�1. Figure 2 shows that the signal to noise is
greatest where ‘� 300, which corresponds to k�
0:03h Mpc�1. As can be seen in Fig. 1, the baryons in
the compensated mode add non-negligible power at these
scales and this can be seen in the corresponding compen-
sated isocurvature plus adiabatic mode curves in Fig. 2.

V. FORECASTS

The fast-Fourier-transform (FFT) telescope [33] is well
suited for measuring high redshift 21 cm. It has antennas
arranged in a regular grid allowing an FFT to be used when
calculating the correlations between antennas. This greatly
reduces the associated computational cost, which other-
wise becomes prohibitive for large arrays with many an-
tennas. Additionally, its large field of view means it can be
used in drift mode allowing a quarter of the sky to be
surveyed. As seen in Fig. 8 of [33], for the large collecting
area needed to survey a redshift of z ¼ 50, the FFT tele-
scope is the cheapest option. The noise power spectrum is
[33]

Cnoise
‘ ¼ Cnoise

0 B�2
‘ ; (12)

where the beam function is taken to be Gaussian

B�2
‘ ¼ e


2‘2 (13)

with the resolution given by [33]


 ¼ 	=
ffiffiffiffi
A

p
; (14)

where A is the FFT telescope area. Also [33],

Cnoise
0 ¼ 4�

�

	3fskyT
2
sys

fcoverA�c�
: (15)

Here fsky � �map=4� is the fraction of the sky covered by

the map, � is the field of view, we have introduced the
dimensionless parameter � � ��=� ¼ ��c=	 to denote
the relative frequency bandwidth, and c is the speed of
light. In CAMB SOURCES the averaging over frequency is
donewith a Gaussian of standard deviation��=ð2 ffiffiffiffi

�
p Þ [34]

specified by ‘‘redshift_sigma_Mhz’’ in the CAMB SOURCES
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FIG. 2 (color online). The 21 cm angular power spectrum for
the adiabatic mode is plotted (black, solid curve) with 1 sigma
error bars, using �‘ ¼ 1. The signal from the adiabatic plus the
curvaton compensated isocurvature mode is also plotted (dashed,
red curve). The error bars are for a 20 km2 FFT telescope and a
bandwidth of 8 MHz. They start at the minimum value of ‘
which is detectable once foregrounds have been taken into
account.
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initialization file. The observation time is denoted by �, the
system temperature by Tsys, and f

cover is the fraction of the

area covered by the array antennas.
The 1 sigma error bars for the angular power spectrum

are [33]

�C‘ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð2‘þ 1Þ�‘fsky

s
ðC‘ þ Cnoise

‘ Þ: (16)

Removing foregrounds at these high redshifts will be ex-
traordinarily challenging but, if the foregrounds are suffi-
ciently smooth in frequency, it may well be possible. We
will assume that foregrounds can only be removed for ‘ 

‘min, where ‘min ¼ kminr with the minimum wave number
corresponding to the bandwidth and given by [35]

kmin ¼ 2�=�r: (17)

The Fisher information matrix is given by [36]

Fij ¼
X

‘
‘min

Fij;‘; (18)

where

Fij;‘ ¼ 1

�C2
‘

@C‘

@pi

@C‘

@pj

(19)

and pi is parameter i.
We set the observation time to � ¼ 365� 24 h and

following [37], Tsys ¼ 200 K� ½ð1þ zÞ=10�2:6, the field

of view to be � ¼ �map ¼ �, and fcover ¼ 1. We set the

bandwidth to be �� ¼ 8 MHz. The Fisher information for
the compensated isocurvature parameter is plotted as a
function of ‘ in Fig. 3. As can be seen, at low ‘, redshift 40
measurements are more sensitive while at higher ‘ red-
shift 30 measurements are more sensitive.

In order to remove degeneracies with the other parame-
ters, we include PLANCK [38] CMB forecasts. These do

not constrain the compensated isocurvature parameter (I),
but they do help to constrain the other parameters which
may be degenerate with I . We use the forecasted tempera-
ture and polarization measurements from the 70, 100, 143
and 217 GHz bands of PLANCK; see Sec. III of [39]
for more details. The combined Fisher matrix
(F21 cmþPLANCKÞ) is obtained by adding the 21 cm and

PLANCK Fisher matrices. The forecasted covariance ma-
trix for the parameters is given by inverting the combined
Fisher matrix. The number of ‘‘sigma’’ for which a curva-
ton compensated isocurvature mode could be detected is

given by 3=ðF�1
21 cmþPLANCKÞÞ1=2II , where subscript II de-

notes the element in the row and column corresponding to
the compensated isocurvature parameter. A contour plot of
the number of sigma detection, as a function of the area of
the FFT telescope and the redshift probed, is plotted in
Fig. 4. As can be seen, in order to obtain a 5 sigma
detection, a redshift around 40 is optimal and a FFT tele-
scope with an area of at about 20 km2 would be needed.
According to [33], that area FFT telescope would cost of
order several billion U.S. dollars. However the need to
place such an array beyond the Earth’s ionosphere, for
example, on the moon [40], would raise this cost
significantly.
The parameter with the most degeneracy with the com-

pensated isocurvature mode is the baryon density. As can
be seen from Fig. 5, there is a difference in the slope of the
degeneracy for redshift 30 compared to higher redshifts.
This may indicate that combining redshifts will improve
the constraints but the results will probably not be signifi-
cantly improved as the effective area of the telescope can
only be optimized for a particular redshift and will then
degrade for other redshifts.
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FIG. 3 (color online). The Fisher information of the compen-
sated isocurvature parameter as a function of ‘ is plotted for a
FFT telescope with an area of 20 km2. Redshift 30 (solid, blue
curve), 40 (dashed green curve), and 50 (dotted red curve) are
shown.
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FIG. 4 (color online). The number of sigmas that the curvaton
compensated CDM isocurvature mode would be detected is
plotted. Each point in the plot is for a 8 MHz bandwidth
experiment.
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VI. CONCLUSIONS

We have shown that it is in principle possible to use
21 cm measurements to detect compensated isocurvature
perturbations produced by the curvaton. At redshifts of
about 40 the baryon perturbations are sufficiently different
from the adiabatic case to give a detectable 21 cm signal, at
the 5 sigma level, provided a FFT telescope of about
20 km2 or larger is used.

The curvaton model can also produce non-Gaussianity
of magnitude fnl ¼ 5=4r. So for the compensated isocur-
vature value of r � 0:17 a fnl � 7:35 will be generated.
This may be detectable by the PLANCK satellite [41] and
potentially even 21 cm observations [42].

In this article we have looked at a curvaton generated
compensated isocurvature mode which from using ��� ¼
0 in Eq. (2) and substituting into Eq. (6) gives

��b

�b

� 3�ð�CDM=�bÞ � 10�3

on large scales. If compensated modes which have
��b=�b � 10�1 are considered, then it becomes possible
to use many more observational constraints such as the
scatter in light element abundances due to inhomogeneous
big bang nuclear synthesis, galaxy cluster gas fraction
measurements, B-mode polarization induced from inho-
mogeneous reionization, and possibly even very large gal-
axy surveys or high redshift quasar counts [43]. It would be
interesting to try and find early Universe models that could
induce such a large compensated isocurvature mode.
In the case of the curvaton generated compensated iso-

curvature mode, there is also likely to be some residual
correlated CDM (or equivalently) baryon isocurvature
modes unless there is some specific reason for the baryon
and CDM isocurvature modes to exactly cancel each other
out as in the condition specified in Eqs. (5) and (6). The
WMAP3 data 95% confidence constraint was [44]
�0:42 
 Sb;�=� � 0:25. Curvaton model constraints

have also been evaluated in WMAP5 [2,45], but they
have effectively assumed Sb;� 
 0 and so we cannot di-

rectly use them. If the compensation in Eq. (6) is not exact,
there will be a residual

Sb;�
�

¼ �3
�CDM

�b

þ 3
1� r

r
: (20)

Using the WMAP3 constraints in the above formula we
find that r would need to be within about 4% of the
compensated value of r ¼ �b=�CDM � 0:17. The updated
constraints fromWMAP5 are likely to be even stronger. So
the fine-tuning will probably be more severe than 4%.
However, it is intriguing that the baryon density is so
similar to the CDM density. This may be a hint that baryo-
genesis and CDM creation are in some way related and
some models have been proposed to account for this (see
for example [46,47]). It would be interesting to investigate
if there were some variant of these models that could
naturally produce a sufficiently compensated isocurvature
perturbation to be consistent with current constraints.

ACKNOWLEDGMENTS

We thank Antony Lewis for helpful discussions. C. G. is
supported by the Beecroft Institute for Particle
Astrophysics and Cosmology. J. R. P. is supported by
NASA through Hubble Grant No. HST-HF-01211.01-A
awarded by the Space Telescope Science Institute, which
is operated by the Association of Universities for Research
in Astronomy, Inc., for NASA, under Contract No. NAS 5-
26555.

0.0224 0.0225 0.0226 0.0227 0.0228 0.0229 0.0230

2

1

0

1

2

b h2

FIG. 5 (color online). The contours containing 95% of the
probability distribution for a 20 km2 FFT telescope combined
with a PLANCK CMB experiment. The axes are for the CDM
compensated isocurvature mode and the baryon density. All
other parameters are marginalized. Redshifts 30 (solid blue
curve), 40 (dashed green curve), and 50 (dotted red curve) are
plotted. The baryon density has the greatest degeneracy with the
compensated isocurvature mode.
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