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We analyze a distinctive mechanism for inflation in which particle production slows down a scalar field

on a steep potential and show how it descends from angular moduli in string compactifications. The

analysis of density perturbations—taking into account the integrated effect of the produced particles and

their quantum fluctuations—requires somewhat new techniques that we develop. We then determine the

conditions for this effect to produce 60 e-foldings of inflation with the correct amplitude of density

perturbations at the Gaussian level and show that these requirements can be straightforwardly satisfied.

Finally, we estimate the amplitude of the non-Gaussianity in the power spectrum and find a significant

equilateral contribution.
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I. INTRODUCTION

Inflation [1] is a very general framework for addressing
the basic problems of primordial cosmology. It requires a
source of stress energy which generates an extended period
of accelerated expansion. This can arise in many different
ways even at the level of a single scalar inflaton, for which
the space of inflationary models has been usefully organ-
ized by an effective field theory treatment [2]. The various
mechanisms can be distinguished in many cases via their
distinct predictions for the CMB power spectrum and for
relics such as cosmic strings that may be produced after
inflation. As well as being observationally accessible, in-
flationary theory is also sensitive to the ultraviolet com-
pletion of gravity, for which string theory is a promising
candidate.

Traditional slow-roll inflation requires a flat potential,
which can be obtained naturally using approximate shift
symmetries or with modest fine-tuning. Inflation, however,
does not require a flat potential. Rather, in general in
single-field inflation [2,3] the inflaton may self-interact in
such a way as to slow itself down even on a steep potential
as in e.g. [4–7]. It is interesting to examine such mecha-
nisms further, to explore their novel dynamics and to better
assess the level of fine-tuning required to obtain them from
the point of view of both effective field theory and string
theory.

In this work, we analyze a simple mechanism for in-
flation in which the inflaton � rolls slowly down a steep
potential by dumping its kinetic energy into the production
of other particles �i (plus appropriate supersymmetric
partners) to which it couples via interactions of the form

1

2
g2
X
i

ð���iÞ2�2
i : (1.1)

As � rolls past each point �i, the corresponding �i parti-
cles become light and are produced with a number density

that grows with increasing field velocity _�. As it dumps
energy into the produced particles, � slows down; mean-
while the produced particles dilute because of the Hubble
expansion. With sufficiently closely spaced points �i we
will see that this yields inflation even on a potential that is
too steep for slow-roll inflation. This mechanism, trapped
inflation, was originally suggested in [8] based on the
preheating mechanism developed by [9].1 It can be usefully
viewed [5] as a weak-coupling analog of Dirac-Born-Infeld
inflation (or vice versa) in which the effects on �’s motion
from the production of the � fields dominate over their
loop corrections to its effective action.
From the low energy point of view, although couplings

of the general form (1.1) are generic, the prospect of many
closely spaced such points �i seems rather contrived.
However, we will see that just this structure descends
from string compactifications in a rather simple way. It
arises in the same type of angular directions in field space
that undergo monodromy from wrapped branes as studied
recently in [16,17].
In [16,17], a single wrapped brane was considered. A

scalar � rolls down the potential over a large distance
�� � MP corresponding to multiple circuits of an under-
lying circle around which the brane tension undergoes
monodromy. In this super-Planckian regime, the potential
satisfies slow-roll conditions as in chaotic inflation [18]
(though with a distinctive power law behavior depending
on the example). In the same direction, at sub-Planckian
field values� � MP, the potential is too steep for slow-roll
inflation. However, in variants of these setups, because of

1There are other interesting approaches using a gas of particles
to slow the field evolution on a steep potential in order to inflate
(see e.g. the recent review [10,11]) or to avoid the overshoot
problem in small-field inflationary models (see e.g. [12–14]).
The change in the CMB power spectrum from a single particle
production event was also studied in [15].
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the underlying small circle, the system periodically devel-
ops new light degrees of freedom as the inflaton rolls down
the steep part of the potential.

The analysis of the perturbation spectrum in this class of
models, including the integrated effects of the produced
particles, has interesting novelties. The number of pro-
duced particles fluctuates quantum mechanically, leading
to a source term in the equation of motion for the pertur-
bations of the inflaton. A constant solution to the homoge-
neous mode equation develops parametrically before the
mode stretches to the Hubble horizon, as in previous
examples of single-field inflation in the presence of a low
sound speed [3,6,19]. Finally, as with other mechanisms
such as [5,6] in which interactions slow the inflaton, a
simple estimate reveals a correspondingly large non-
Gaussian contribution to the perturbation spectrum in
trapped inflation, which will be within the range tested
by the upcoming Planck satellite [20] according to pre-
liminary estimates for its capacity to detect or constrain the

three-point amplitude f
equilateral
NL .

While this work was in completion we received the
interesting work [21], which has some overlap with the
present paper.

II. BACKGROUND SOLUTION

In this section we will find the background solutions and
the conditions for trapped inflation, without making use of
the perturbation spectrum. We will discuss perturbations in
the next section. Getting the power spectrum to match
observation will further constrain our parameters.

The idea of trapped inflation is that particle production
will slow the inflaton (�) enough to produce inflation on a
potential which would be too steep for slow-roll inflation.
For this to work, we will need a number of different fields
to become massless at regular intervals along the � direc-
tion. A Langrangian describing such a configuration can be
written as

L ¼ 1

2
@��@��� Vð�Þ þ 1

2

X
i

ð@��i@
��i

� g2ð���iÞ2�2
i Þ þ � � � ; (2.1)

where the � � � represent the supersymmetric completion of
these terms, applicable in appropriate cases. Softly broken
supersymmetry helps to suppress Coleman-Weinberg cor-
rections to the effective action arising from the loops of
light � particles. As discussed in [5,8], at weak coupling
particle production dominates over quantum corrections to
the effective action for colliding locally maximally super-
symmetric branes. Here the points �i are the points where
�i become massless. For simplicity, we take these to be
evenly spaced in � with spacing � � �iþ1 ��i. The
coupling g may be small. If � starts rolling down the
potential Vð�Þ, whenever it crosses a point�i, �i particles

are produced. The expectation value2 of the number den-
sity of the �i particles produced is given by [8,9]

n�ðtÞ ’ g3=2

ð2�Þ3 ð
_�ðtiÞÞ3=2 aðtiÞ

3

aðtÞ3 ; (2.2)

where ti is defined by �ðtiÞ ¼ �i and the powers a ¼
e
R

t
Hdt0 account for the dilution of particles due to the

expansion of the Universe. The energy density of the �
particles is then given by gj���ijn� following the par-

ticle production event, i.e. once the system has passed back
into the adiabatic regime where _!

!2 � 1. Because m� ¼
gj���ij, the � fields behave adiabatically when

g _� � g2j���ij2: (2.3)

Making the replacement j���ij ’ _��t, we can estimate
the time scale on which the particle production happens:

�t� ðg _�Þ�1=2. Requiring this time scale to be short com-
pared to Hubble �t � H�1 implies

H2 � g _�: (2.4)

The parametric dependence of Eq. (2.2) can be understood
by noticing that the particles are effectively massless at
production time and are produced during a time of order
�t. This explains why n� 1=�t3. On a longer time scale,
Hubble dilution becomes important, and n / aðtÞ�3.
The equations for motion for the homogeneous back-

ground solution (including the energy density in � parti-
cles) can be derived either from D�T

�
� ¼ 0 or by

approximating �� with h��i in the equations of motion
for � as explained in [9]. The � equation of motion is

€�þ 3H _�þ V 0ð�Þ þX
i

g5=2

ð2�Þ3 ð
_�ðtiÞÞ3=2 aðtiÞ

3

aðtÞ3 ¼ 0;

(2.5)

where V 0 � @V
@� . This sum over particle production events

will be difficult to deal with, so we would like to replace it
with an integral, giving us

€�þ 3H _�þV0ð�Þ þ
Z t g5=2

�ð2�Þ3 ð
_�ðt0ÞÞ5=2 aðt

0Þ3
aðtÞ3 dt

0 ¼ 0:

(2.6)

This is a good approximation to the sum when the variation
of the integrand is small between production events. This is

quantified by the two conditions H�
_�
� 1 and

€��
_�2 � 1.

Because of the exponential suppression and the slow varia-

2For the purposes of calculating the homogeneous background
inflationary solution, the expectation value of n� is all we will
need. In calculating the perturbation spectrum in the next sec-
tion, we will require its higher point correlation functions.
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tion of the integrand, we can replace the integral by

Z t g5=2

�ð2�Þ3 ð
_�ðt0ÞÞ5=2 aðt

0Þ3
aðtÞ3 dt

0 ’ g5=2

3H�ð2�Þ3 ð
_�ðtÞÞ5=2:

(2.7)

This is a reasonable approximation under the condition
€�

H _�
� 1. If we assume slow roll (j €�j � 3Hj _�j) and that

the particle production is the dominant mechanism for

damping [3Hj _�j � g5=2

3H�ð2�Þ3 ð _�ðtÞÞ5=2], then we can solve

(2.6) to get

_� ’ � ð3H�ð2�Þ3V0Þ2=5
g

: (2.8)

It is worth commenting on the limit H ! 0 of the above

expression. In this case _� goes to zero. This is due to the
fact that in the absence of dilution, the mass of the particles
increases as � moves after the time of particle production.
Therefore, � loses energy even after the particles stop
being produced. This explains why, in this H ! 0 limit,

the solution is different from the _� ¼ const that one would
naively expect in the case of a linear potential. In the
presence of a nonzero H, the growth in mass of the parti-
cles is compensated by their dilution, which allows for a

steady solution _� ’ const to exist.
Given the solution for � in Eq. (2.8), we can find H and

the slow-roll parameters. The usual Friedmann equation is

3M2
PH

2 ¼ �� þ �� ¼ 1

2
_�2 þ Vð�Þ þX

i

gj���ijn�

’ Vð�Þ: (2.9)

We are assuming that the energy density is dominated by
the potential energy. Using energy conservation _� ¼
�3Hð�þ pÞ we get

6M2
PH _H ¼ �3H

�
_�2 þX

i

gj���ijn�
�
; (2.10)

where we have used p� ’ 0. The generalized slow-roll

parameter � � � _H
H2 is then given by

� ¼
3ð _�2 þP

i
gj���ijn�Þ
2V

: (2.11)

As expected � � 1 is the statement that the energy density
is dominated by the potential.

We would like to use � to constrain our parameters. We

will assume that �� � _�2 so that � � 1 becomes

V � 3

2

Z t g5=2

�ð2�Þ3 j�ðtÞ ��ðt0Þj _�ðt0Þ5=2 aðt
0Þ3

aðtÞ3 dt
0:

(2.12)

In order to constrain our parameters, we will make some

estimates of this integral. Using j�ðtÞ ��ðt0Þj ’ _�ðt� t0Þ

(given j €�j � j _�jH), we can do the integral to get

V � 3

2

g5=2

9H2�ð2�Þ3
_�7=2: (2.13)

Using (2.8), V ¼ 3M2
PH

2 and dropping order one factors,3

we get

ð2�Þ6=5 V 07=5�2=5

gM2
PH

13=5
� 1: (2.14)

We are now in a position to massage some of our
previous inequalities to get conditions on individual pa-
rameters. Using (2.4), we can use our solution to get the
inequality

H8=5 � V 02=5�2=5ð2�Þ6=5: (2.15)

This provides a lower bound on �. The requirement that
the particle production events were frequent also gave us

the inequality � � j _�jH�1. Using (2.8), this gives us

�3=5 � V02=5

gH3=5
ð2�Þ6=5: (2.16)

These two inequalities imply

gH3 � ð2�Þ3V 0: (2.17)

We can also use our constraints on €� to get analogs of
the slow-roll condition 	 � 1. Recall that our solution

required €� � 3H _� � V0. Taking a derivative of (2.8)
we get

€� ¼ 2

5

�
��H _�þ _�2 V

00

V 0

�
: (2.18)

The first inequality, €� � 3H _� is trivially satisfied for the
first term, but the second gives us a new condition

ð2�Þ6=5 V 00�2=5

gV 03=5H3=5
� 1: (2.19)

The second inequality 3H _� � V0 also gives a nontrivial
condition

ð2�Þ6=5 H
7=5�2=5

gV03=5 � 1: (2.20)

There is another important requirement that we have
ignored. Inflation is required to last long enough to give
at least 60 e-folds. We will discuss this constraint in the
context of an m2�2 model, after we discuss perturbations.

3In general, we will not keep track of all order one factors, in
part because our analysis of the integro-differential equation
governing � and its perturbations will not be exact.
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III. PERTURBATIONS

A. Gaussian perturbations

Determining the form of the curvature perturbation is a
delicate task. Since the trapping is intrinsically a multifield
effect, we have not developed a Langrangian description of
our effective equation of motion for � that one can con-
sistently perturb. The strategy that we will use instead is to
study the perturbations using the equations of motion
directly.

There are at least two choices of gauge one could make:
constant � or constant curvature. In constant � (unitary)
gauge, particle production would happen everywhere at the
same time, and we perturb in the metric. Unfortunately,
this gauge obscures the main physical degrees of freedom
(cf. the Higgs mechanism in unitary gauge); furthermore,
solving the many constraint equations for the metric per-
turbation is a complicated task. We will therefore work in
constant curvature gauge, where the matter scalar degrees
of freedom appear explicitly.

As is usually the case in inflation [2], the matter scalar
degrees of freedom produce some scalar perturbations of
the metric. These are not independent scalar degrees of
freedom, but they are constrained variables. These pertur-
bations of the metric are less important than the matter
scalar excitations (the scalar field � and the � particles in
our case) for all the range of energies that we are interested
in: from deep inside the horizon to freeze-out. We will
therefore neglect these metric perturbations and work in an
unperturbed quasi–de Sitter universe. We will perturb our
equation of motion for �, taking into account the variance
in the number density of � particles created, which acts as
a source term for the � perturbations. After horizon exit,
these are converted to the curvature perturbation in the
standard way [22].

In general multifield models, entropy production by
additional light fields can introduce contributions to the
curvature at late times, and 
 is not constant outside the
horizon [23]. While it is true that there are many additional
fields �i present in our model, these become heavy before
they are able to generate isocurvature fluctuations. For
each species, the � particles are created only during the
very short amount of time during which they are massless,
so they initially have no long wavelength fluctuations, and
after the time of their creation, the time evolution of their
fluctuations is just the one dictated by dilution. Because of
the fast dilution, the fluctuation of each species affects �
only for a small amount of time. At this point, the ways in
which the fluctuations in � can affect the Universe are
either by altering the evolution of � or by creating metric
perturbations [and this we estimate in (3.40) to be a smaller
effect]. This is all the contribution the � particles can give
to the perturbation of the Universe: they do not affect in
any other way the time of reheating or the composition of
the plasma at that time. This means that there are no
isocurvature perturbations. Furthermore, when a � pertur-

bation has become very long, it sees so many independent
n� fluctuations within its wavelength that they quickly

average out and n� becomes effectively unperturbed. Our

equation of motion becomes that of the single-field �, and
so 
 does not evolve once outside the horizon.
The equation of motion for �ðx; tÞ takes the form

€�� @2�

aðtÞ2 þ 3H _�þ V 0ð�Þ þ
Z t g5=2

�ð2�Þ3 ð
_�ðt0ÞÞ5=2

� aðt0Þ3
aðtÞ3 dt

0 þ g2
X
j

ð�2
j � h�2

j iÞð���jÞ ¼ 0: (3.1)

We have assumed as before that we can make the sum of
sets of produced � particles into an integral (an approxi-
mation to be checked below), and we have included their
quantum fluctuations in the last term.
In the Gaussian approximation, the last term in (3.1) is

equivalent to the variance in the number of produced �
particles:

g2
X
j

ð�2
j � h�2

j iÞð���jÞ ’ g�nðx; tÞ: (3.2)

This behaves as a source term in the equation for the
inflaton perturbations. This is somewhat analogous to the
equation for perturbations discussed in [24], and we can
use some of the same techniques. We will now perturb the
� field around the background solution as

�ðx; tÞ ¼ �ðtÞ þ ’ðx; tÞ: (3.3)

When expanding our equation of motion in ’, we have
to be careful to keep all the contributing terms. In particu-
lar, fluctuations of the inflaton change the time when
particle production occurs at different spatial points. This
manifests itself as a fluctuation of t0, our variable of inte-
gration, when we use the continuum approximation to the
sum over particle production events. We define t0 by �i ¼
�ðx; t0Þ. Expanding in ’ and t0 ! t00 þ �t0, we find

�t0 ¼ �’
_�
: (3.4)

We should think of the integral as being over t00. This
implies that the upper limit of the integral is also subject
to the perturbation. In particular, we can think of the
integral as being over all time with a step function �ðt�
t00 � �t0Þ. This accounts for the fact that, on equal time

slices, at different spatial locations, a different number of �
fields could have become massless and therefore been
produced. In these regions, a different number of particles
contribute to the sum, leading to a different region of
integration.
Putting these pieces all together we get the equation of

motion for the fluctuation
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€’þ k2

a2
’þ 3H _’þ V0ð�þ ’Þ þ

Z t��t0 g5=2

�ð2�Þ3

� ð _�ðt0 þ �t0Þ þ _’ðt0 þ �t0ÞÞ5=2 aðt
0 þ �t0Þ3
aðtÞ3 dt0

¼ �g2
X
j

½ð�2
j � h�2

j iÞð�þ ’��jÞ	k; (3.5)

where we have done a Fourier transform in the spatial
direction with k

a being the physical momentum. For the

Gaussian fluctuations, we will expand to linear order in ’.
This gives an effective equation of motion

€’þ k2

a2
’þ 3H _’þ V00ð�Þ’þ ’ðtÞm̂2

þ
Z t

m̂2

�
5

2
_’ðt0Þ � 3H’ðt0Þ

�
aðt0Þ3
aðtÞ3 dt

0 ¼ �g�nðk; tÞ;
(3.6)

where we have defined m̂2 � g5=2

�ð2�Þ3
_�3=2 and used (3.2).

One can check that V00 � m̂2 is the	-like condition (2.19),
so we will drop the V 00 term. This condition, not V 00 � H2,
is necessary to ensure that spacetime is accelerating, and
we will see that the modes freeze out when the physical
momentum reaches p� m̂, not p�H: This is very differ-
ent from the standard slow-roll case.

There are two types of contributions to the power spec-
trum—those sourced by �n, and those which would arise
in the absence of the source. We will find that the former
dominates. To begin, in order to analyze both these con-
tributions, we require the homogeneous mode solutions to
the above integro-differential equation. This will allow us
to construct the Green’s function required to determine the
sourced perturbations.

To get some intuition for the behavior of the homoge-
nous solutions, we will start by solving the equation for
constant p � ka�1. This is a good approximation when
_pp�2 � 1 which holds until p ’ H. We will also approxi-

mate H and _� as constant, which holds to leading order in
our generalized slow-roll parameters. There are three
epochs of interest depending on the ratios p=m̂ and p=H:

(I) p � m̂: The modes are approximately
Minkowskian, with both Hubble friction and particle
production effects negligible in their equations of
motion; we start with the pure positive frequency
modes corresponding to the standard Bunch-Davies
vacuum.

(II) H � p � m̂: In this regime, a constant solution to
(3.6) appears. The mode solutions from region I,
evolved into region II, develop a term which is
approximately constant. This contribution begins
with a very small amplitude (which will be deter-
mined in our exact solution below) but ultimately
dominates over the other terms which become
damped exponentially in Ht.

(III) p <H: In this regime, the curvature perturbation

 ¼ H

_�
’ becomes constant, lying outside the Hubble

horizon.
In particular, we will find that the modes actually freeze

out well before reaching the Hubble horizon. This is some-
what analogous to the freeze-out of modes at the sound
horizon cs=H � 1=H in general single-field models of
inflation [4–6,19].
Now let us derive these features from a more detailed

analysis of (3.6). For constant p, m̂, and H, we can find
homogenous solutions (�n ¼ 0) to (3.6) using the ansatz
’ðk; tÞ / e�t. We can solve the equation trivially because
in our WKB regime of constant p, all terms are propor-
tional to e�t with constant coefficients depending onH and
�. In particular, using the ansatz and doing the integrals we
find that (3.6) reduces to

�
�2 þ 3H�þ p2 þ m̂2 þ m̂2

5
2�� 3H

3H þ �

�
e�t ¼ 0: (3.7)

This equation gives the mode solutions when � � �3H.
Multiplying through by 3H þ �, we get the cubic equation

�3 þ 6H�2 þ ð9H2 þ p2 þ ~m2Þ�þ 3Hp2 ¼ 0; (3.8)

where we have defined ~m2 ¼ 7
2 m̂

2. It should be clear from

this equation that behavior of the perturbations will only be
different from the usual case if ~m2 � H2. In this model,
this is always the case, as this condition is equivalent to the

slow-roll condition 3H _� � V0.
There are three analytic solutions to (3.8) since it is a

cubic. To understand the behavior of the solution and
impose boundary conditions, it will be useful to expand
these solutions perturbatively in the different regimes dis-
cussed above. When H2 � p2, we can expand the modes
around H ¼ 0, giving

�
 ¼ 
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ~m2

q
� 3H

2

2 ~m2 þ p2

~m2 þ p2
;

�3 ¼ �3H
p2

~m2 þ p2
:

(3.9)

When p2 � ~m2 we can match onto the solutions in the
Bunch-Davies vacuum. Specifically, we should use the
mode �þ with a normalization of 1=

ffiffiffiffiffiffi
2p

p
. Using (3.9),

taking into account that e�þt dies exponentially like

1=a3=2, we see that this corresponds to a Minkowskian
mode with exact solution of the standard normalized form

uþðtÞ ¼ i

a
ffiffiffi
k

p e�iðk=aHÞ: (3.10)

When p drops below ~m we need to match onto the modes
in the ~m � p regime. Notice that in the limit, the mode �3

decays very slowly compared to �
. In essence, these
modes have frozen out at the scale k ¼ ~ma.
One might have worried that when V 00 >H2, the fluctu-

ations of � would be massive and would not produce

TRAPPED INFLATION PHYSICAL REVIEW D 80, 063533 (2009)

063533-5



curvature perturbations. Like in small speed of sound
models, we find that the mass can be much larger than H
and still contribute to the power spectrum. Replacing p2 !
p2 þ V00 in (3.9), we find that �3 ’ �3HV 00= ~m2.
Therefore, as long as V00 � ~m2, there is still a nearly
constant mode that will be converted to curvature pertur-
bations. This condition is equivalent to (2.19) and is always
satisfied in these models.

When matching the modes at p� ~m, it is clear that the
leading terms in �
 are smooth at the crossover. The real
part of �
, however, transitions from �3H=2 to �3H in
the crossover between regions I and II. This behavior is
distinct from what would arise for a free scalar field in
de Sitter space, and the matching between the two solu-
tions will introduce new effects suppressed at small
OðH= ~mÞ. In order to determine the relative amplitudes of
the modes, we cannot simply match the two regimes using
continuity at p� ~m. Such a matching calculation assumes
that crossover is rapid, but the wavelength ~m�1 of the
modes at the crossover is much smaller than the time
period H�1 during which the crossover takes place.
Therefore, in order to calculate these subleading contribu-
tions we will need more than the WKB mode solutions.

Let us therefore move on to discuss the exact solution to
the homogeneous linearized equation for the perturbations.
It proves to be convenient to transform the equation to
conformal time � ¼ �1=aH, with late times correspond-
ing to � ! 0. Denoting the derivative with respect to � by 0,
we have

’00 � 2

�
’0 þ k2’þ m̂2

�2H2
’

þ m̂2�

H2

Z �

�1
d�0

�04

�
5

2
�0’0 þ 3’

�
¼ �g�nðk; �Þ

�2H2
:

(3.11)

Let us comment on the structure of the source on the
right-hand side of Eq. (3.11). Since the particle creation
happens on very short time scales, we can concentrate on
the Minkowski limit. In this case, the squeezed state de-
scribing the created � particles in the case of homogeneous
� motion takes the form

j�i ¼ N exp

�X
kp


ðkpÞay~kpa
y
� ~kp

2��ðkpÞ
�
j0i; (3.12)

where �, 
 are Bogoliubov coefficients satisfying j�j2 �
j
j2 ¼ 1 and N is a normalization factor. Here ~kp repre-

sent the physical momenta, given by ~kp ¼ ~k=aðtÞ, where ~k

is the standard comoving wave number. From this, one
computes the expectation value of the number densityR
d3 ~kpj
~kp


� ~kp
j=ð2�Þ3 given in (2.2), using the standard

result (reviewed in [8]) that

ha ~kp
ay~kp

i ¼ j
ðkpÞj2 � exp½��k2p=ðg _�Þ	: (3.13)

Similar to the case of the computation of the expectation
value of ni, where i represents the �i particle species, it is
quite straightforward to see that

h�niðk; tÞ�njðk0; t0Þi � ð2�Þ3�ð3Þðkþ k0Þ�ij

ðg _�Þ3=2
aðtÞ3=2aðt0Þ3=2

��ðt� tiÞ aðtiÞ
3

aðtÞ3 �ðt0 � tjÞ

� aðtjÞ3
aðt0Þ3 : (3.14)

The normalization follows directly from the state (3.12) or

can be seen as the
ffiffiffiffi
N

p
shot noise in a system ofN particles.

The factors of aðtÞ are included to allow for the dilution of
the particles. Here the�ðt� tiÞ function (and analogously
�ðt0 � tjÞ) represents the fact that, for the population i,

particle production is irrelevant before the particles be-
come massless. This is only an approximate expression,
which is parametrically correct but that we expect will
receive order one corrections in a full calculation. The
purpose of this first paper on this class of models is to
understand the main features of the predictions, and there-
fore we consider this level of accuracy enough for the
present. By using the definition

nðk; tÞ ¼ X
i

niðk; tÞ; (3.15)

we obtain

h�nðk; tÞ�nðk0; t0Þi �X
ij

h�niðk; tÞ�njðk0; t0Þi

� ð2�Þ3�ð3Þðkþ k0ÞX
i

ðg _�Þ3=2
aðtÞ3=2aðt0Þ3=2

��ðt� tiÞaðtiÞ
3

aðtÞ3 �ðt0 � tiÞaðtiÞ
3

aðt0Þ3 :
(3.16)

We can substitute as usual

X
i

’
Z

dti
_�

�
; (3.17)

to find
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h�nðk; tÞ�nðk0; t0Þi � ð2�Þ3�ð3Þðkþ k0Þ
Z

dti
_�

�

� ðg _�Þ3=2
aðtÞ3=2aðt0Þ3=2 �ðt� tiÞ aðtiÞ

3

aðtÞ3

��ðt0 � tiÞaðtiÞ
3

aðt0Þ3

¼ ð2�Þ3�ð3Þðkþ k0Þ
Z minðt;t0Þ

dti

�
_�

�

ðg _�Þ3=2
aðtÞ3=2aðt0Þ3=2

aðtiÞ6
aðtÞ3aðt0Þ3 :

(3.18)

It is straightforward to see that the integral gives

h�nðk; tÞ�nðk0; t0Þi � ð2�Þ3�ð3Þðkþ k0Þ ðg _�Þ3=2
aðtÞ3=2aðt0Þ3=2

_�

�H

� aðtearlyÞ3
aðtlateÞ3

¼ ð2�Þ3�ð3Þðkþ k0Þ ðg _�Þ3=2
aðtÞ3=2aðt0Þ3=2 Nhits

� aðtearlyÞ3
aðtlateÞ3

; (3.19)

where tearly, tlate are the smaller and the greater of t, t0. Here
Nhits � _�=ðH�Þ is the number of particle production
events contributing; because of Hubble dilution, this is
limited to events taking place within a Hubble time.

Later in the section, we will see that the �n fluctuations
source the inflaton perturbation through the integral in
cosmic time of a Green’s function whose width in time is
of order H�1. This means that the inflaton perturbations
will be sensitive only to the integral in time of the corre-
lation function of �n, and therefore we can approximate
the time dependence of the above equation with a
� function to obtain

h�nðk; tÞ�nðk0; t0Þi � ðg _�Þ3=2
a3ðtÞ ð2�Þ3�ð3Þðkþ k0ÞNhitsH

�1

� �ðt� t0Þ: (3.20)

We stress that this expression would receive order one
corrections in a more exact calculation, but we expect it
to capture the correct parametric dependence of the result.

Finally we note that this expression can be obtained
more directly in the case where there is a single production
event per Hubble time (and correspondingly Nhits species
in this time). Then, the particles from the jth event have
diluted significantly before the next occurs, and the time
dependence of the correlation function can be modeled
approximately using j ¼ tjH by Nhits�ij ¼ Nhits�ðHðt�
t0ÞÞ ¼ NhitsH

�1�ðt� t0Þ.

It is convenient to rewrite (3.11) in differential form by
acting on it with � d

d�
1
� , giving

’000 þ 4

�2
’0 � 3

�
’00 þ k2’0 þ ~m2

H2�2
’0 � k2

�
’

¼ �gðg _�Þ3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NhitsH

�1
q

�
d

d�

�n̂

�
; (3.21)

where �n̂ is defined to have unit variance:

h�n̂ð	; kÞ�n̂ð	0; k0Þi ¼ ð2�Þ3�ð3Þðkþ k0Þ�ð	� 	0Þ:
(3.22)

In this form, the general homogeneous mode solutions
’hom can be written in terms of hypergeometric functions,
expandable in terms of Bessel functions. We find (using
MATHEMATICA)

’hom ¼ c1 �1 F2

�
� 1

2
;� i ~m

2H
� 1

2
;
i ~m

2H
� 1

2
;� 1

4
k2�2

�

þ c2 � 2�ð3H�i ~mÞ=Hkð3H�i ~mÞ=H
1F2

�
1� i ~m

2H
;
5

2

� i ~m

2H
; 1� i ~m

H
;� 1

4
k2�2

�
�ð3H�i ~mÞ=H

þ c3 � 2�ð3Hþi ~mÞ=Hkð3Hþi ~mÞ=H
1F2

�
i ~m

2H
þ 1;

i ~m

2H

þ 5

2
;
i ~m

H
þ 1;� 1

4
k2�2

�
�ð3Hþi ~mÞ=H

� X3
i¼1

cifið�Þ: (3.23)

The function f1 goes to 1 as � ! 0, and it represents the
late-time constant mode; the other solutions f2;3ð�Þ de-

crease to zero as � ! 0. Imposing that this match the
Bunch-Davies vacuum solution at early times yields three
conditions on the three constants c1, c2, and c3. We find
that for large ~m=H

c1 / e� ~m�=2H: (3.24)

This leads to a tiny contribution to the power spectrum
from homogeneous modes:

PðhomÞ

 � ðH2 þ ~m2Þ2 sech2ð ~m�

2HÞ
2 _�2

� 1

k3
: (3.25)

Because of this exponential suppression, the homogeneous
contribution will prove to be highly subdominant to the
sourced contribution.
To calculate the perturbations generated by the source

(3.2), we must determine the Green’s function for the
differential equation (3.21). We can define Gkð�; �0Þ as
the solution to
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G000
k þ 4

�2
G0

k �
3

�
G00

k þ k2G0
k þ

~m2

H2�2
G0

k �
k2

�
Gk

¼ �ð�� �0Þ; (3.26)

with the boundary conditions across ~� ¼ ~�0 given by

�G00
k ¼ 1; �Gk ¼ �G0

k ¼ 0: (3.27)

It is useful to change the variable from � to ~� ¼ k�, and
solve the simpler equation

~G
:::
þ 4

~�2
_~G� 3

~�
€~Gþ _~Gþ ~m2

H2~�2
_~G� 1

~�
~G ¼ �ð~�� ~�0Þ;

(3.28)

with the boundary conditions across � ¼ �0 given by

� €~G ¼ 1; � ~G ¼ � _~G ¼ 0: (3.29)

Here a dot stands for a derivative with respect to ~�. Notice
that in this way all the dependence on k is implicit in the
definition of ~�, and we have the simple relation:

Gkð�; �0Þ ¼ 1

k2
~Gðk�; k�0Þ: (3.30)

This change of variables will allow us to see analytically
that the power spectrum is scale invariant. The sourced
perturbation is given by

’kð�Þ ¼ gðg _�Þ3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NhitsH

�1
q Z d�0

�0
�n̂kð�0Þ d

d�0

� ð�0Gkð�; �0ÞÞ; (3.31)

and the power spectrum at late times (� ¼ 0) is given by

P
 ¼ H2

_�2
P’ �H2

_�2
g7=2 _�3=2NhitsH

�1

�
Z

d�0
�
1

�0
d

d�0
ð�0Gkð� ¼ 0; �0ÞÞ

�
2

� 1

k3
�H2

_�2
g7=2 _�3=2NhitsH

�1

�
Z

d~�0
�
1

~�0
d

d~�0
ð~�0 ~Gð~� ¼ 0; ~�0ÞÞ

�
2
: (3.32)

This shows that the power spectrum is scale invariant. In
order to determine its amplitude, we need to perform the
integral above in (3.32), where we see that the power
spectrum is determined by an ‘‘effective’’ Green’s function
(see Fig. 1)

~gð~�; ~�0Þ � 1

~�0
d

d~�0
ð~�0 ~Gð~�; ~�0ÞÞ ¼ X3

i¼1

fið~�Þ�ið~�0Þ; (3.33)

with only the f1ð~�Þ�1ð~�0Þ term surviving as ~� ! 0. Though
we have an analytic expression for the �i’s (that we do not
reproduce here for the sake of brevity), we are unfortu-
nately unable to perform the integral analytically.
However, we can notice that the function �1ð~�Þ, whose

only parametric dependence is on ~m=H, has a peak at the
point ~�� � � ~m=H (corresponding to a physical momen-
tum p ¼ k=a� ~m), with amplitude �1ð~��Þ �H2~��= ~m2

and width ~��.
4 This allows us to estimate the integral

(3.32) and to obtain the power spectrum:

P
 � g7=2H _�1=2

� ~m
� 1

k3
ffi 10�9 1

k3
: (3.34)

This expression can be verified numerically.
Finally, we should ensure that our integral approxima-

tion was valid in this context. When p is large, it is clear
that the variation of ’ is large compared to the spacing
between particle production events. However, the contri-
bution from the integral only becomes important when the
frequency of the modes is ~m. Therefore, the integral is a

good approximation when ~m� _��1 � 1. This condition
becomes, using our background solution (2.8),

g3=2�2=5

ð2�Þ9=5H1=10V 0ð1=10Þ � 1: (3.35)

This is a stronger version of the constraints sketched after
Eq. (2.6).
We derived the integral term assuming that the particle

production at each point is the same as for a homogeneous
� field, which is a valid assumption when the modes of

interest obey p2 � g _�. Since the integral term becomes
important at the freeze-out scale p2 � ~m2, we must have

g _� � ~m2, which gives

ð2�Þ12=5�4=5

gH1=5V 01=5 � 1: (3.36)

This constraint is similar to (and stronger than) Eq. (2.6),
but the origins of the two constraints are different. In the
next section, we will look at how all these constraints fit
together in a model with V ¼ 1

2m
2�2.

25 20 15 10 5

0.08

0.06

0.04

0.02

g 0,

FIG. 1 (color online). A look at the contributions of the
Green’s function in Eq. (3.33) to the late-time power spectrum,
for ~m

H ¼ 10.

4Notice that, as anticipated, in cosmic time, this width corre-
sponds to a time interval of order H�1.
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Before moving on, let us comment on the role of the �
fields in the perturbation spectrum. Our model is not a
single-field model, given that we require many � fields in
order to slow the inflaton. As such, one might wonder if
these extra fields may contribute to the density fluctuations.
This is not the case because their mass grows to be large
before any modes could freeze out. Specifically, the effec-
tive mass of a � field is given by m2

eff ¼ g2j�ðtÞ ��ij2. A
Hubble time after the field becomes massless, the effective

mass is given by m2
eff ’ g2 _�2H�2. One can check that

m2
eff � H2 is equivalent to our constraint (2.4). As a result,

the � fields are massive compared to the Hubble scale and
do not contribute to the curvature perturbation.5

However, given the crucial role of the �’s in both the
background solution and the generation of perturbations,
one must ensure that interactions do not cause them to
decay. By construction, the two-body decay �� ! �� is
always present. We can ensure that none of our results are
affected by this process by requiring that dilution of parti-
cles due to expansion is the primary cause of decreasing
number density. This is expressed by the constraint

nh�vi � H. Assuming � / g4ð _�ðt� tiÞÞ�2 and v�
g _��1=2ðt� tiÞ�1 we get the condition ðt� tiÞ3 �
g4ðg _�HÞ�1. Evaluating this expression at the moment

the � fields are created, ðtc � tiÞ�1 ¼
ffiffiffiffiffiffiffi
g _�

q
leads to the

constraint

H � g4
ffiffiffiffiffiffiffi
g _�

q
: (3.37)

We will impose this constraint on our parameters although
it is possible our results would not be significantly affected
even in regions where it is violated. The mechanism itself
can tolerate some � production as long as the energy
density from the decaying �’s does not interfere with the
perturbations.

Let us also compare our result for the scalar power (3.34)
with the curvature perturbation one obtains from the fluc-
tuations in � energy density coming from the variance in �
particle number on the right-hand side of Einstein’s equa-
tion. We can estimate this contribution as

M2
P

@2i
a2


gravity �m��n: (3.38)

Here 
gravity is not the curvature perturbation 
 but comes

from the g0� components of the metric. The expression

(3.38) arises from the Hamiltonian constraint. This contri-
bution is not directly contributing to a measurable power

spectrum, but we would like to ensure that the curvature it
induces during inflation is negligible.
By going into Fourier space, and using the fact that the

fluctuations are evaluated when k=a�H,6 we obtain, after
using Eq. (3.19):

h
gravityðkÞ
gravityðk0Þi � 1

k3
� g7=2

_�7=2

H3M4
P

Nhits�
ð3Þðkþ k0Þ:

(3.39)

Notice that m� � g _�H�1 in this estimate. By comparing

with the contribution we have just computed, 
’ ’ H
_�
’, we

obtain


gravity

’

�
_�2

V

�
~m

H

�
1=2

: (3.40)

This ratio _�2=V is the usual slow-roll parameter, which is
much smaller than � in this model. The ratio ~m=H has to be
smaller than �10 because of the constraint coming from
non-Gaussianities (see next section). For the specific case
we will study in the next section, where Vð�Þ ¼ m2�2=2,
the above expression is also equivalent to Eq. (2.20) times
an additional suppression from the number of e-foldings,
and therefore it is always satisfied in that model.

B. Non-Gaussian perturbations

The size and shape of the non-Gaussian contribution to
the perturbations are particularly important for distinguish-
ing between different models of inflation [25]. Since our
interactions slow the inflaton on a potential which would
otherwise be too steep for inflation, we should expect a
substantial non-Gaussian correction to the power spectrum
as in [6]. A detailed prediction for the bispectrum requires
the calculation of the three-point correlation function of the
curvature perturbation, as first completed for single-field
slow-roll inflation in [26,27].
Following [24], we can expand the equation of motion

(3.5) for the ’ perturbation into first order, second order,
and higher order pieces:

’ � ’ð1Þ þ ’ð2Þ þ � � � : (3.41)

It is again useful to translate the expanded equation of
motion into conformal time, and derive its differential
form [as done for the linearized equation in (3.21)]. Then

we can obtain the second order perturbation ’ð2Þ by inte-
grating against the Green’s function Gkð�; �0Þ the terms in
the expanded equation of motion which are second order in

’ð1Þ and �n. By looking at Eq. (3.5), one sees that one
contribution comes from the expansion of the term propor-
tional to ~m2 in the equation of motion, giving a contribu-

5It is interesting to consider the fate of these heavy particles. In
some regions of our parameter space, they are always lighter
than MP: gð�start ��endÞ � MP, where �start and �end refer to
the start and end of inflation. If in other regions they become
heavy, they may decay (certainly Planck mass black holes decay
rapidly to a lighter species of particles).

6This is due to the fact that the fluctuations�n average quickly
to zero on scales longer than H�1, and therefore the induced
metric perturbations become constant after having redshifted up
to the scale H.
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tion to the second order perturbation of order:

’ð2Þ
k; ~mð�Þ �

Z
d�0Gkð�; �0Þ ~m2

H�0 _�
ð’0ð�0Þ’0ð�0ÞÞk: (3.42)

Another contribution comes from taking into account the
time delay of the perturbation inside the integral, giving
rise to a term of the form:

’ð2Þ
k;�tð�Þ �

Z
d�0Gkð�; �0Þ ~m2

H�0 _�
ð’00ð�0Þ’ð�0ÞÞk: (3.43)

Yet another contribution, of order ’ð1Þ�n, comes from

expanding the ðg _�Þ3=4 coefficient in the source term, giv-
ing a contribution

’ð2Þ
k;�nð�Þ � g7=4 _��1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NhitsH

�1
q

�
Z

d�0Gkð�; �0Þ�0 d

d�0
ð _’ð1Þð�0Þ�n̂ð�0ÞÞk

�0
:

(3.44)

There are additional terms coming from the expansion of
~m2, but it is easy to see that they give subleading contri-
butions. Also the contribution from the non-Gaussian sta-
tistics of �n, which in the absence of interactions can still
come from �-particle shot noise, is expected to be negli-
gible if the number of particles is large enough. This is in
fact always the case. Estimating the size of the non-

Gaussianity of �n by ð ~m3=ðn�NhitsÞÞ1=2, where we have

used that ~m is the typical scale at which the Green’s
functions peak, it is easy to see that in our model, by using

Eq. (3.34), this ratio is smaller than 10�6, corresponding
approximately to a negligibly small fNL � 0:1.
The three-point function of our perturbations is of the

form

h’ð2Þ
k1
ð�Þ’ð1Þ

k2
ð�Þ’ð1Þ

k3
ð�Þi; (3.45)

and we are interested in this amplitude at late times, � ! 0.
We can estimate this using the same method we used for
the Gaussian power spectrum, and let us start with the term
in Eq. (3.42). The perturbations on the right hand side of
(3.42) can come from any of the three modes (3.23), not
only from the constant mode f1. This is so because the

perturbations in ’ð1Þ that source the second order ’ð2Þ in
Eq. (3.42) can be evaluated when still well inside the
horizon when neither of the three modes has yet decayed.
One of the leading effects we find comes from the f2 and f3
modes,7 giving a contribution to the three-point function of
curvature perturbations of order

ð2�Þ3�ð3Þ
�X3
i¼1

~ki

��
H
_�

�
3 Z

d�Gk1ð0; �Þ
~m2

�H _�
ðgðg _�Þ3=4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NhitsH

�1
q

Þ4 (3.46)

�
Z �

d�0gk2ð0; �0Þg02;k2ð�; �0Þ
Z �

d�00gk3ð0; �00Þg03;k3ð�; �00Þ
þ symm: (3.47)

If we pass to the Green’s functions ~G, ~g defined as in the
former section, we find

ð2�Þ3�ð3Þ
�X3
i¼1

~ki

��
H
_�

�
3 Z d~�

k1

~Gð0; ~�Þ
k21

k1 ~m
2

~�H _�
ðgðg _�Þ3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NhitsH

�1
q

Þ4
Z ~�k2=k1 d~�0

k2

~gð0; ~�0Þ
k2

~g02ð~�k2=k1; ~�0Þ
k2

k2
Z ~�k3=k1 d~�00

k3

� ~gð0; ~�00Þ
k3

~g03ð~�k3=k1; ~�00Þ
k3

k3 þ symm

¼ ð2�Þ3�ð3Þ
�X3
i¼1

~ki

��
H
_�

�
3ðgðg _�Þ3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NhitsH

�1
q

Þ4 1

k61

1

x22x
2
3

Z
d~� ~Gð0; ~�Þ ~m2

~�H _�

Z ~�x2
d~�0~gð0; ~�0Þ~g02ð~�x2; ~�0Þ

�
Z ~�x3

d~�00~gð0; ~�00Þ~g03ð~�x3; ~�00Þ þ symm; (3.48)

where we have defined x2 ¼ k2=k1 and x3 ¼ k3=k1. The former expression is of the form

ð2�Þ3�ð3Þ
�X3
i¼1

~ki

��
H
_�

�
3ðgðg _�Þ3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NhitsH

�1
q

Þ4 1

k61
Gðx2; x3; ~m=HÞ þ symm � ð2�Þ3�ð3Þ

�X3
i¼1

~ki

�
Fðk1; k2; k3Þ: (3.49)

The factor of 1=k6, which characterizes the dependence on the global scale of the momenta, tells us that the signal is scale
invariant [25].

As we discussed above, the Green’s functions Gð0; �Þ or gð0; �Þ are peaked at �� � � ~m=ðHkÞ, and the product of
integrals forming the � integrand also exhibits a peak at this value. We can estimate the size of Fðk1; k2; k3Þ using
knowledge of the peak at �� and series expansion of the Green’s functions around � ¼ 0. We find that the Green’s functions

7A similar term with a pair of f2 or a pair of f3 modes will change the final result by no more than an Oð1Þ factor. We study the f2f3
term above because the cancellation between phases is particularly simple.
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gð0; ~�Þ and g2;3ð~�; ~�0Þ can be expanded as a series of the
form ~�p

P
anð~�=~��Þn with order one coefficients an.

Physically, we believe this occurs because the only features
of these functions occur near ~�� ~��. Therefore, we only
expect any nontrivial behavior when ~�� ~��. Using the
above Taylor expansion at �� �� is likely inaccurate, but
we think it should be reliable for order of magnitude
estimates.8

In the language of Eq. (3.33), the leading terms in the

expansion for f2;3ð~�Þ are of order ~�3~�
ið ~m=HÞ and those for

�2;3ð~�Þ are of order H
~m

1
~�2
~�
ið ~m=HÞ. The oscillations contrib-

ute a suppression factor H
~m to the integrals and an ~m

H en-

hancement to the derivatives. Altogether this gives us an
estimate, which we checked against a numerical integra-
tion, of order

h
 ~k1

 ~k2


 ~k3
i � ð2�Þ3�ð3Þ

�X3
i¼1

~ki

�
H2g7N2

hits

k6 _�
: (3.50)

Here we were not careful with the momenta dependence,
and the factor k denotes only the typical size of the wave
number. A more careful numerical analysis for the shape
function x22x

2
3Fð1; x2; x3Þ=Fð1; 1; 1Þ as defined in [25]

shows that most of the signal is concentrated on equilateral
configurations. The equilateral shape can be understood to
be a result of the Green’s functions being peaked at a scale
��: we get a large contribution when all the momenta are
equal and all the Green’s functions can be evaluated at their
peak value. More in detail, by looking at Eq. (3.48), one
can notice that in order for the integrals in ~�0 and ~�00 to
include in their domain the peaks of ~gð0; ~�0Þ and of ~gð0; ~�00Þ
by the time ~Gð0; ~�Þ reaches its peak at ~�� ~��, we need to
have x2, x3 & 1. However, in the limit ~� ! 0, we have
approximately ~g02;3ð~�x2;3; ~�0Þ / ~�2x22;3, which suppresses

this contribution to the shape by x22x
2
3 and forces the

dominant contribution to come from the case where x2,
x3 are as large as possible compatibly with the former
constraint. We obtain that the integrals are peaked for x2,
x3 ’ 1, on equilateral configurations.9 The suppression of
~g02;3ð~�; ~�0Þ at small ~� comes from the fact that the oscillating

modes decay at late time. Notwithstanding the fact that the
leading mechanism for generating non-Gaussianities is
intrinsically a multifield effect, we conclude that the signal
on squeezed configurations is not large, as is always the
case in single-field inflation [26–30].
A similar analysis shows that the contribution due to

’ð2Þ
k;�tð�Þ is parametrically the same as the one of ’ð2Þ

k; ~mð�Þ,
while the one from ’ð2Þ

k;�nð�Þ is suppressed by a factor of

H= ~m. The remaining terms that we did not show are
subleading as well. Since we are not careful with order
one coefficients, there is no need to perform the calculation

for ’ð2Þ
k;�tð�Þ, since we do not expect cancellations or the

shape to be peaked in the squeezed limit.
Summarizing, following the standard definition, we can

estimate the size fNL on equilateral triangles (with j ~kij �
k) to be of order

f
equilateral
NL � h
 ~k1


 ~k2

 ~k3

i0
h
 ~k
� ~ki02

� ~m2

H2
; (3.51)

where the primes indicate that we dropped the delta func-
tions of momenta.

IV. THE CASE Vð�Þ ¼ 1
2m

2�2

Let us now check the conditions for a viable model of
trapped inflation, including the background solution and

0.0

0.5

1.0

x3
0.6

0.8

1.0

x2

0.0

0.5

1.0

x2
2x3

2F 1,x2,x3 F 1,1,1

FIG. 2 (color online). A numerical study of the shape
x2
2
x2
3
Fð1;x2 ;x3Þ

Fð1;1;1Þ for the choice of parameters ~m
H ¼ 10, plotted in the region 0 �

x2 � 1; 1� x2 � x3 � x2. The peak in the equilateral limit is clearly visible.

8All the results using series expansions have been checked
against numerical integrations and provide reliable estimates.

9There is some support also on flattened triangles, but the
numerical study plotted in Fig. 2 shows that this does not
dominate over the equilateral shape.
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Gaussian perturbations. We will take a model with poten-
tial Vð�Þ ¼ 1

2m
2�2 for simplicity; other cases of interest

include more general power law potentials V�ð�Þ ¼
�4����. Given the number of e-foldings, the Gaussian
power spectrum (3.34), and our solution (2.8), we can solve
for two of the parameters and then express the various
inequalities prescribed in Sec. II in terms of fewer model
parameters. From this, we obtain the following relations.

The number of e-foldings is

Ne ¼
Z H

_�
d�� 10�6

ð2�Þ2g2=3
�
MP

m

�
2=3

�
�

MP

�
2=3

¼ 10�6

g2=3ð2�Þ2
�
�

m

�
2=3

; (4.1)

where the slow-roll condition (2.14) forced the total field

range �i ��f ’ �f � � and we used (3.34) to eliminate

�. Using this, (3.34), and our solution (2.8) to write the
self-consistency conditions in terms of m=MP, the con-
straints (2.15), (2.16), (2.20), and (3.35), respectively, give
four conditions10

mNe

MPg
� 1; ð2�Þ31018g9=2N3=2

e

�
m

MP

�
3=2 � 1;

ð2�Þ61018N2
eg

2

�
m

MP

�
2 � 1; 109g7=2N1=2

e

�
m

MP

�
1=2 � 1:

(4.2)

The constraints (3.36) and (3.37) are in the other direction:

g31018ð2�Þ6Ne

�
m

MP

�
� 1; g�9Ne

�
m

MP

�
� 1: (4.3)

Together, these constraints define a viable window in the
space defined by the two free parameters ðg; m

MP
Þ, which is

plotted in Fig. 3. Maximizing the value of the field range �
MP

over this window, the field range is constrained to lie no
more than an order of magnitude above the Planck scale.
The mechanism therefore can operate below the scale
typically needed for standard slow-roll inflation—in fact,
the constraints described above allow field values far below
MP, although we will see in the next section that experi-
mental constraints on the size of the non-Gaussianity in the
power spectrum prevent us from going far below the
Planck scale in this model.

V. OBSERVATIONAL PREDICTIONS

In this section we will outline the predictions for the
CMB derived from our inflationary mechanism.

A. ns and r

Because H and other background parameters change
slowly during inflation, our power spectrum is approxi-
mately scale invariant. Its tilt is given by

ns � 1 ¼ d lnP


d lnk
� d lnP


Hdt
: (5.1)

From (3.34) this becomes

ns ¼ 1þ _H

H2
�

€�

4H _�
’ 1� 0:7ð1�Q6=5Þ

Ne

’ 0:99; (5.2)

where in the next to last passage we used Eqs. (4.1) and
(3.32), and in the last passage we have used a typical
number of e-foldings Ne � 55.11 The parameter Q we
have introduced here represents the ratio �end=�Ne

, be-

tween the value of� atNe e-foldings to the end of inflation

10 6 10 5 10 4 0.001 0.01 0.1 1
g

10 12

10 10

10 8

10 6

10 4

m

MP

10 6 10 5 10 4 0.001 0.01 0.1 1
g

10 12

10 10

10 8

10 6

10 4

MP

FIG. 3 (color online). Top panel: The allowed parameter win-
dow for the m2�2 model. The upper shaded regions (red zones)
are forbidden by Eq. (4.2); the lower shaded regions (blue zones)
are forbidden by Eq. (4.3) and by the constraint (5.7) on the size
of the non-Gaussianities, to be discussed in Sec. VB. The dashed
lines indicate the range of parameters for which�=MP � 1, with
super-Planckian field ranges above and sub-Planckian ranges
below. Bottom panel: Same plot as above for a model with
potential equal to �3�. We do not explicitly give the constraints
in the paper as they are very similar to the ones for the m2�2

model.

10The constraints (2.14) and (2.19) give 1
Ne

� 1, and so are
trivially satisfied.
11For potentials of the form �4����, ns � 1 ¼ �ð2þ 7�Þ�
ð1�Q7=5��=10Þ=ð2Neð14� �ÞÞ.
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and the value at the end of inflation. This parameter was not
introduced in the former estimates because it does not
affect them significantly. The condition � � 1 requires

that Q�6=5 � 1 � Ne, so we can safely take Q� 1=4.
The tilt is red, falling quite close to the statistically pre-
ferred region of the WMAP 5-year data [31]. However, it is
worth mentioning that the tilt may not be a sharp prediction
of this class of models, but may be tunable in general. It
can depend not only on the potential and the field range,
but also on other details such as variation in the spacing
between the particle production events, and in the mass and
species numbers of the particles. In order to compute the
tilt very precisely, it would also be important to systemati-
cally check the contributions of higher dimension opera-
tors. These are limited by symmetries in our string-
theoretic backgrounds, but we have not done a complete
analysis of their leading effects.

The power in gravity waves is as usualPtensor � 8
M2

P

ðH2�Þ2,
leading to a tensor to scalar ratio of

r ¼ Ptensor

P


� �~mH

g7=2 _�1=2M2
P

� g2N3
e10

27ð2�Þ6
�
m

MP

�
4

(5.3)

in the 1
2m

2�2 model. Maximizing this quantity over the

allowed range of ðg; m
MP
Þ from the previous section, we find

r � 10�4 for this potential.

B. Non-Gaussianity

Current constraints from data [31,32] bound fequilateralNL so
that, using Eq. (3.51), we have

~m

H
& 10: (5.4)

Note that since we have not been keeping track of Oð1Þ
factors, there is a possibility that these may shift this
constraint slightly in either direction.

Plugging this into our solution, this is equivalent to

V 0

ð2�Þ3gH3
< 1012: (5.5)

For m2�2 this corresponds to

1

ð2�Þ3g
�
MP

�

�
2
�
Mp

m

�
< 1012; (5.6)

and imposing (4.1) we obtain

g
m

MP

>
10�10

Neð2�Þ3
: (5.7)

This goes in the opposite direction from the previous
conditions (4.2) [except for (4.3)], but leaves a wide win-
dow of viability. As seen in Fig. 3, it is the constraint on the
non-Gaussianity that restricts the field range from going far
below the Planck scale. This is to be expected—as in [5,6],

as the potential grows steeper, a stronger interaction will be
needed to slow the inflaton, and a larger contribution to the
non-Gaussianity will be produced.

VI. TRAPPED INFLATION FROM STRING
THEORY

Because inflation is sensitive to Planck-suppressed op-
erators in the effective field theory, it is generally of interest
to model it in a UV complete theory of gravity. String
theory, as a candidate UV completion of gravity, is a
standard framework in which to develop such construc-
tions. The present work was motivated in part by the top-
down appearance of the structure required for trapped
inflation. In this section, we will explain this structure
and analyze the conditions for realizing trapped inflation
consistently with moduli stabilization in appropriate ex-
amples. These realizations use the same structures recently
used for monodromy-driven large-field inflation [17,33],
but now in a & MP range of field. Because the relevant
setups were described in detail in these works, our discus-
sion here will be somewhat more telescopic; the reader
may therefore find it easiest to refer back to the relevant
portions of [17,33].
To begin, consider wrapped D4-branes in type IIA string

compactifications on nilmanifolds, as in [16,33]. The sim-
plest example of a nilmanifold suffices to exhibit our basic
mechanism for closely spaced particle production events,
though we will see that trapped inflation in this specific
example would introduce too large a backreaction on the
internal geometry. We will therefore ultimately be led to
construct it in string theory by using axion moduli in
warped Calabi-Yau compactifications of the kind analyzed
recently in [17]. Particle production in these models was
also considered in [34] where it was used for reheating.
A nil–3-manifold is obtained by compactifying the nil-

geometry

ds2nil ¼
L2
u



du21þ
L2

udu
2
2þL2

x

�
dxþM

2
½u1du2�u2du1	

�
2

¼L2
u



du21þ
L2

udu
2
2þL2

xðdx0 þMu1du2Þ2 (6.1)

(where x0 ¼ x� M
2 u1u2) by a discrete subgroup of the

isometry group

tx: ðx; u1; u2Þ ! ðxþ 1; u1; u2Þ;

tu1 : ðx; u1; u2Þ !
�
x�M

2
u2; u1 þ 1; u2

�
;

tu2 : ðx; u1; u2Þ !
�
xþM

2
u1; u1; u2 þ 1

�
:

(6.2)

This manifold can be described as follows. For each u1,
there is a torus in the u2 and x0 � x� M

2 u1u2 directions.

Moving along the u1 direction, the complex structure � of
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this torus goes from � ! �þM as u1 ! u1 þ 1. The
projection by tu1 identifies these equivalent tori.

12

At all values u1 ¼ j=M for integer j, the two-torus in the
u2 � x0 directions is equivalent to a rectangular torus

ds2rect � L2
xdy

2
1 þ 
L2

udy
2
2;

ðy1; y2Þ � ðy1 þ n1; y2 þ n2Þ
(6.3)

(since � ! �þ 1 as j ! jþ 1). These coordinates y1 and
y2 are related to x0 and u2 by an SLð2; ZÞ transformation.
The 1-cycle traced out by u2 ¼ �, � 2 ð0; 1Þ becomes a
cycle ðy1; y2Þ ¼ ðM�;�Þ as u1 ! u1 þ 1.

Consider first, as in [16], a D4-brane wrapped on this
cycle. Near u1 ¼ 0, it has a potential energy of the form

Vð�Þ ¼ 1
2m

2�2; � � MP; (6.4)

in terms of the canonically normalized field� correspond-
ing to its collective coordinate in the u1 direction. This
collective coordinate will play the role of the inflaton, and
we will refer to this D4-brane as the inflaton brane.

As mentioned above, at u1 ¼ j=M, j ¼ 1; . . . ;M there is
a rectangular torus in the u2; x

0 directions, equivalent by an
SLð2; ZÞ transformation to the one at the origin. Introduce
N4 additional D4-branes wrapped on the corresponding
SLð2; ZÞ transforms of the cycle wrapped by the inflaton
brane. The jth such brane has a quadratic potential propor-
tional to ðu1 � j=MÞ2, minimized at u1 ¼ j=M. Place each
at its minimum. As the inflaton brane rolls down its poten-
tial (6.4), it encounters these additional branes, causing the
strings �j (and fermion partners) stretched between them

to come down to zero mass. That is,� and the �j couple as

in our basic field theory model (1.1).
It is clear that this structure arises more generally than

the particular model [16,33]. In this particular case it is
worthwhile to analyze the consistency of these added
branes with the moduli stabilization barriers introduced
by the curvature of the nilmanifold and other ingredients
required to stabilize the space. A single D4-brane at the
minimum of its potential is subdominant to the moduli-
stabilizing barriers. There is a limit to how many additional
branes can coexist with moduli stabilization. The tension
of the set of D4-branes is

VD4 ¼ N4

ffiffiffiffi



p
Lu

ð2�Þ4gs�02 : (6.5)

This must be less than the scale of the moduli-stabilizing
barriers, of order of the curvature-induced potential en-
ergy:

VD4 <
L4
xM

2

ð2�Þ7g2s�02 : (6.6)

Now in terms of the field theoretic quantities of the pre-
vious sections,N4 ��=�. So the condition (6.6) translates
into the condition

N4 ��

�
<

L4
xM

2

ð2�Þ3gsLu

ffiffiffiffi



p : (6.7)

In the simplest version of the construction [33]—with the
numerical examples discussed there and in [16]—the num-
ber of D4-branes is limited by this backreaction to be of
order 10. Possibilities for warping down excessive contri-
butions to the potential energy were discussed in [33]. In
general, the mechanism we have discussed arises in a wide
variety of ‘‘monodrofold’’-type compactifications [35].
A similar structure, with somewhat more flexibility in

the parameters, arises in the setting [17] to construct
trapped inflation from string theory. Consider type IIB
string theory on a warped Calabi-Yau manifold, with an
axion c arising from a 2-form Ramond-Ramond potential

Cð2Þ integrated over a 2-cycle �2. In the presence of an
NS5-brane wrapped on �2 within a warped region (with a
corresponding antibrane wrapped on a homologous cycle
in a distant warped region), the potential for c takes the
form

VðcÞ ¼ �

g2sð2�Þ5�02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘4 þ c2g2s

q
; (6.8)

where � encodes the warp-factor dependence. As explained
in [17], the axion decay constant is of order f�MP=L

2.
This setup, with a large stabilized 2-cycle size ‘, naturally
realizes large-field inflation [with c playing the role of the
inflaton, executing many cycles of its basic period c !
cþ ð2�Þ2]. For the case of a blown-down 2-cycle, ‘ ! 0,
the same setup leads to trapping as follows. When ‘ ¼ 0,
as c rolls through the values ð2�Þ2j (with j an integer), new
light degrees of freedom appear in the theory. One intuitive
way to see this is via the S- and T- dual setup depicted in
Fig. 1 of [17]—there the NS5-brane’s horizontal separation
corresponds to ‘, and when this vanishes the unwinding
motion takes the system through configurations where
these NS5-branes meet. At these points, new light degrees
of freedom arise from stretched D2-branes; the theory at
low energies is a nontrivial interacting conformal field
theory (CFT) (see e.g. [36]). The massless degrees of
freedom of this CFT are produced much in the same way
as are the �’s described above (though perhaps in this case
we should call it unparticle production, since the low-lying
degrees of freedom of the CFT are not strictly speaking
particle states). In the original duality frame, the light
‘‘tensionless string’’ degrees of freedom arise with ‘ ! 0
from wrapped D3-branes [with appropriate world volume
flux to cancel the contribution of cgs to the brane tension at
the quantized values cj ¼ ð2�Þ2j].
Of order 103–104 circuits can fit inside the compactifi-

cation, satisfying the backreaction constraint delineated in
Eq. (3.42) of [17] by using the freedom to obtain somewhat

12The directions u1 and u2 are on the same footing; similar
statements apply with the two interchanged and with x0 replaced
by x00 � xþ M

2 u1u2.
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large volume while maintaining high moduli-stabilizing
barriers using, for example, the methods of the large vol-
ume scenario [37] as explained in Sec. 4.4.1 of [17].

This construction corresponds to a linear potential
Vð�Þ ¼ �3� (modulated by instanton-generated sinusoi-
dal corrections), a simple generalization of the m2�2

model analyzed above in Sec. IV. This potential is slightly
flatter but leads to similar conditions on its parameters,
shown in Fig. 3.

Now for a potential Vð�Þ ¼ �4����, from our solution
above we have

�

�
� 10�15g�25=6ð2�Þ�2

�
MP

�

�
7�=12�5=6

�
MP

�

�
7=3�7�=12

:

(6.9)

For m2�2, i.e. � ¼ 2, this becomes [using (4.1)]

�

�
� 10�18

ð2�Þ3g9=2N1=2
e

�
MP

m

�
3=2

: (6.10)

The number of e-foldings is

Ne ¼ 10�6

g2=3ð2�Þ2
�
�

�

�
4=3��=3

; (6.11)

which reproduces the result (4.1) listed above for the case
� ¼ 2.

The non-Gaussianity constraint ~m & 10H corresponds
to (for �< 4)�

MP

�

�
4�� 10�22þ�N�1�ð�=2Þ

e

g2ð2�Þ6 & 1: (6.12)

For � ¼ 2 this becomes

g
m

MP

*
10�10

Neð2�Þ3
; (6.13)

and for � ¼ 1 it is
�

MP
* ð2�Þ�2g�2=310�7N�1=2

e : (6.14)

This corresponds to a constraint on the number of pro-
duction events

Nevents ��

�
& ð2�Þ3=210�3Neg

�3 (6.15)

for any �. Similarly, one can derive a lower bound on
Nevents from our slow-roll conditions. For a wide range of
parameters, the most stringent condition comes from (2.20)
. For �< 4, the constraint is

Nevents � ð2�Þ3=210�9=2Neg
�3: (6.16)

Therefore, for any �< 4 one has a window of �103=2

between the minimum and maximum values allowed.

Altogether, we find that the structure required for
trapped inflation arises in the directions with monodromy
in string compactifications, within a different regime of the
potential and field range from that considered in modeling
chaotic inflation in [16,17]. The ingredients required for
trapped inflation generally introduce more backreaction
than occurs in the corresponding single-field chaotic in-
flation model, but do fit into a reasonable subset of the
known constructions.

VII. DISCUSSION

One of the satisfying recent developments in inflationary
theory has been a more systematic classification of infla-
tionary mechanisms. An inflationary mechanism can be
characterized by its number of degrees of freedom—single
field versus multiple field (a feature correlated with flocalNL

and isocurvature effects), the sound speed of its perturba-

tions (correlated with fequilateralNL ), and the field range of its
inflaton (correlated with the gravity wave signature r). The
present mechanism involves multiple fields (including the
�’s), but it behaves like some single-field models in its

prediction for large f
equilateral
NL .13

Although its signatures are somewhat similar to its
strong-coupling analog [6], we have seen that trapped
inflation fits concretely into previously studied string com-
pactifications; it is fair to say that the mechanism [5,6]
lacks a known clean top-down embedding (in the small
subset of string compactifications yet studied). It would be
interesting to find a compactification that interpolates be-
tween the two cases by varying the number of light degrees
of freedom (and hence the ’t Hooft coupling).
The calculations in this paper required somewhat novel

techniques for treating the effective dynamics of � result-
ing from the production of the sets of (temporarily) light �
particles. There are several ways in which our analysis
could be extended. In particular, it would be useful to
develop more precise analytical tools to treat the
perturbations.
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