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Probabilities for observations in cosmology are conditioned both on the Universe’s quantum state and

on local data specifying the observational situation. We show the quantum state defines a measure for

prediction through such conditional probabilities that is well-behaved for spatially large or infinite

universes when the probabilities that our data are replicated are taken into account. In histories where

our data are rare volume weighting connects top-down probabilities conditioned on both the data and the

quantum state to the bottom-up probabilities conditioned on the quantum state alone. We apply these

principles to a calculation of the number of inflationary e-folds in a homogeneous, isotropic minisuper-

space model with a single scalar field moving in a quadratic potential. We find that volume weighting is

justified and the top-down probabilities favor a large number of e-folds, hereby predicting the curvature of

our Universe at the present time to be approximately zero.

DOI: 10.1103/PhysRevD.80.063531 PACS numbers: 98.80.Qc, 04.60.�m, 98.80.Bp, 98.80.Cq

I. INTRODUCTION

As observers we are physical systems within the
Universe. This paper develops the consequences of this
elementary truth for the general nature of prediction in
quantum cosmology. Specifically we provide a derivation
of a ‘‘measure’’ for prediction that is well-behaved for
spatially very large or infinite universes. The use of this
measure is illustrated by a calculation of the predictions of
Hawking’s no-boundary quantum state (NBWF) [1] for the
number of e-folds of inflation in a simple minisuperspace
model.

Quantum cosmological probabilities of use to us1 are
conditioned on some part of our data. For instance, the
probability of an observation of the cosmic microwave
background (CMB) spectrum is necessarily conditioned
on when and where the observation is made in the history
of the Universe. Calculation of probabilities conditioned
on our data must take account of the physical processes
that produced us. There is a quantum probability that our
data occur in any spacetime volume. Therefore, we do not
necessarily exist in the Universe, and, if we do, we are not
necessarily unique. Indeed, in a very large universe the
probability becomes significant that our data will be repli-
cated exactly elsewhere. Top-down probabilities condi-
tioned on part of our data as well as the NBWF can
differ significantly from the bottom-up probabilities con-
ditioned2 only on the NBWF.

Top-down probabilities obtained by volume weighting
of bottom-up probabilities have been discussed in the
context of homogeneous, isotropic minisuperspace models
by a number of authors [4–7]. Consider the top-down
probabilities conditioned on data on our past light cone
that approximately locate us in some Hubble volume some-
where on a surface of homogeneity in spacetime. Assume
that there is one and only one instance of our data on this
surface. Then the top-down probabilities are proportional
to the bottom-up probabilities multiplied by the number of
Hubble volumes on the surface. A detailed derivation of
this is given in Sec. II, but roughly the top-down proba-
bilities favor larger universes because there are more pla-
ces for our data to be.
Volume weighting evidently breaks down for universes

with very large or infinite spatial volume. However, that is
also the limit in which the probability for replica-
tion of our data becomes significant. For such histories
a more general weighting applies that depends on the
probability pE that our data occur in any one Hubble
volume. In Sec. II we show explicitly that the top-
down probabilities that take account of the probability of
replication pE provide a measure for prediction that
remains well-behaved even in the large or infinite vol-
ume limit. The resulting probabilities may depend signifi-
cantly on pE but they are not divergent. Volume weight-
ing is recovered for finite universes when pE is sufficiently
small.
Realistic values of pE will be very small but very, very

difficult to compute precisely. However, as we show in
Sec. II, pE only needs to be bounded to obtain results that
are insensitive to its value by justifying volume weighting.
Such bounds are discussed in Sec. III. In Sec. IV we apply
these bounds to derive volume weighting for the class of
minisuperspace models considered in [6,7]. This supports
the conclusion of those papers where it was shown that top-

1Most generally these data would include a description of us as
physical systems within the Universe. It might be clearer to call
the collection of human observers working on cosmology the
human scientific IGUS (information gathering and utilizing
system) as we have elsewhere [2,3]. But here we abbreviate
this by ‘‘we,’’ ‘‘us,’’ etc.

2All probabilities in this paper are implicitly conditioned on
the NBWF and the theory of dynamics, but we will not indicate
this explicitly.
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down probabilities with volume weighting favor long peri-
ods of slow roll inflation.

II. PREDICTION IN QUANTUM COSMOLOGY

A. Bottom-up and top-down

A quantum state of the Universe such as the NBWF
predicts probabilities for the members of decoherent sets of
alternative coarse-grained histories of spacetime geometry
and matter fields [8,9]. An important example of bottom-up
predictions of the NBWF is provided by the probabilities
for the ensemble of possible classical histories of the
Universe characterized by deterministic correlations in
time governed by the Einstein equation and the classical
equations for matter fields [6,7]. To achieve a discussion
that is both manageable and applicable we restrict attention
in this paper to predictions of the properties of these
classical histories, conditioned on data that are also part
of their description. Thus, when we refer just to ‘‘bottom-
up probabilities’’ we mean the probabilities for the histor-
ies in this classical ensemble.3

As mentioned in the introduction, useful predictions in
cosmology assume some part of our data D and predict
conditional probabilities for other properties of the
Universe. These are called top-down probabilities [11].
The bottom-up NBWF probabilities for histories are inputs
to the calculation of conditional probabilities. In general
we take the point of view that all possible conditional
probabilities are available in quantum cosmology. Which
ones are useful to calculate is up to us. Two classes of top-
down probabilities are of particular interest.

The first class consists of probabilities for observa-
tions—probabilities for data that we seek to predict, either
which we have now or might obtain in the future.
Probabilities for our observations of the Universe are nec-
essarily conditioned on data D that include a local descrip-
tion of ourselves and our observational situation. The use
of top-down probabilities to predict observations is not a
choice; they are the probabilities for our observations.

A second important class of top-down probabilities are
those for global properties of our Universe conditioned on
our local data even when these global properties are not
directly observable [11]. Examples are the probabilities for
past histories and for the nature of the structure of the
Universe on scales beyond the present horizon.

Much of our data D result from chance accidents that
have occurred over the history of the Universe—the chance
accidents of biological evolution for instance. The proba-
bility for this exact chain of accidents is very small in the
observable spacetime volume. However, in a sufficiently
large universe the probability becomes significant that even

these accidents of biological evolution are repeated some-
where. For instance, in the oft considered model universe
where many bubbles have nucleated with infinite volume
spatial slices the probability is unity that our data occur an
infinite number of times in each bubble for any nonzero
pE. In a large universe it is both general and physically
realistic to take account of the probability that the data D
may be replicated elsewhere in the Universe.
When bottom-up probabilities are significant for mul-

tiple copies of our data at different locations in spacetime
they do not specify which copy we are. To predict what we
observe requires the specification of a further (xero-
graphic) distribution giving the probability that we are
any particular copy [12]. A simple and natural assumption
is that we are equally likely to be any one of the copies. We
will assume that here. Further, to avoid venturing into the
treacherous quagmire of current speculation concerning
‘‘Boltzmann brains’’ we will assume that we and the other
copies are nondeluded ordinary observers.
At best, our data are limited to a spacetime region lying

to the past of part of the past light cone of the present
moment. All we know for certain is that the Universe
exhibits at least one instance of a region with this data D
somewhere in classical spacetime, a physical situation
which we abbreviate asD�1. Assuming that we are equally
likely to be any copy of our data, we calculate top-down
probabilities conditioned on D�1 by summing the bottom-
up probabilities for entire classical histories weighted by
the probability that D occurs at least once somewhere in
spacetime. In the following we implement this idea
concretely.

B. Homogeneous and isotropic classical ensembles

In this subsection we follow an analysis in [3] to give a
general derivation of the weighting that connects top-down
to bottom-up probabilities for the illustrative example of an
ensemble of homogeneous, isotropic, classical, Lorentzian
cosmological histories. We will apply this to the specific
classical ensemble predicted by the NBWF in Sec. IV. But
for the more general discussion here we need only assume
that there is a one-parameter family of such universes. We
denote the parameter by �0 and the bottom-up probabil-
ities by pð�0Þ. We sketch the framework for constructing
the top-down probabilities for some feature F of the
classical histories labeled by �0 conditioned on one in-
stance of a subset D of our total data. The number of
e-folds of scalar field driven inflation is the feature treated
in [6,7] and in Sec. IV.
In general there could be an instance ofD anywhere in a

classical spacetime. For example, if the spacetime exhibits
many nucleated bubbles with open spacelike slices inside,
there could be an instance of D in a large collection of
bubbles at many different times. But in homogeneous and
isotropic models it is reasonable to suppose that part of our
data includes information about our location in time but not

3By restricting attention to the ensemble of classical histories
we obtain a well-defined notion of location which in a diffeo-
morphism invariant theory would be problematic in a more
general operator based context [10].
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in space. That information could fix our location to be
somewhere on one spacelike surface in a universe that
starts from a singularity and expands forever. But there
may be more than one spacelike surface on which our data
could occur as in a bouncing homogeneous isotropic
universe.4

We therefore suppose that D can be divided into two
parts: First, a partDs consisting of large scale observations
that place the data on one or more surfaces of homogeneity
tiðDs;�0Þ in each classical spacetime which we abbreviate
simply by ti. Observations of the present Hubble constant
H0 and local average energy density are an example. The
second part Dh consists of local observations that are
largely independent of the large scale features of the space-
times. Observations of human observers, plants and ani-
mals, the features of the solar system, etc., fall into this
class along with a great many other details. Thus D ¼
ðDs;DhÞ. For each �0 divide the surface labeled by ti
into Hubble volumes with size �1=H0 and denote their
total number by Nhðti; �0Þ.

Denote by pi
EðDÞ the probability that the dataD occur in

any one of the Hubble volumes on the surfaces ti and
assume that the probability of more than one occurrence
in any one volume is negligible. Although it is not neces-
sary, for simplicity we will assume that pi

EðDÞ does not
depend on global properties and, in particular, on the
parameter �0. We will discuss these probabilities further
in Sec. III.

As mentioned above, all we know for certain from our
local observations is that there is at least one occurrence of
Dh (abbreviatedD

�1
h ) in one of these Hubble volumes. The

probability that there is at least one instance of Dh in the
classical spacetime labeled by �0 is 1 minus the probabil-
ity that there are no instances. For any particular Hubble
volume the probability that there is no instance ofD in it is
1� pi

EðDÞ. The probability that there is no instance of D
anywhere in the spacetime labeled by �0 is the product of
such factors over all the Nhðti; �0Þ Hubble volumes in a
surface ti and then over all surfaces. That is [3]

pðD�1jDs;�0Þ ¼ 1�Y

i

½1� pi
EðDÞ�Nhðti;�0Þ; (2.1)

where here, as elsewhere, ti is understood to depend on Ds

and �0. Top-down probabilities are the bottom-up proba-
bilities pð�0Þ weighted by this probability, as we now
derive. To avoid a debauche d’indices we will consider
just the case where there is a single surface singled out by
Ds in all spacetimes in the ensemble. Then, dropping the
now superfluous index i,

pðD�1jDs;�0Þ ¼ 1� ½1� pEðDÞ�Nhðt;�0Þ: (2.2)

Results for more general cases will be discussed elsewhere.
We construct the (top-down) probabilities pðF jD�1Þ for

some feature F of the classical histories conditioned on at
least one instance of a subsetD of our total data. Denote by
CF the class of histories in the ensemble with the feature

F . The probability pðF jD�1Þ is the sum of the probabil-
ities for �0 given D�1 over all classical histories in this
class, namely,

pðF jD�1Þ ¼
Z

�02CF
d�0pð�0jD�1Þ: (2.3)

Introducing the characteristic function eF ð�0Þ for the class
CF and using the definition of conditional probability this

can be written in terms of joint probabilities as5

pðF jD�1Þ ¼
R
d�0eF ð�0Þpð�0; D

�1ÞR
d�0pð�0; D

�1Þ : (2.4)

Now,

pð�0; D
�1Þ ¼ pð�0; Ds; D

�1
h Þ

¼ pðD�1
h jDs;�0Þpð�0; DsÞ: (2.5)

Further,

pð�0; DsÞ ¼ pðDsj�0Þpð�0Þ: (2.6)

Generally pðDsj�0Þ will be constant over the range of Ds

for which there are surfaces contained in the history
labeled by �0 and zero otherwise.
Combining (2.4), (2.5), (2.6), and (2.1) we have

pðF jD�1Þ ¼
R
d�0eF ð�0Þf1� ½1� pEðDÞ�Nhðt;�0ÞgpðDsj�0Þpð�0ÞR

d�0f1� ½1� pEðDÞ�Nhðt;�0ÞgpðDsj�0Þpð�0Þ
: (2.7)

This central result can be summarized as follows: To obtain
the top-down probabilities for a feature F of the classical
histories conditioned on our data D, sum the bottom-up
probabilities over those histories which contain F
weighted by the probability (2.1) that there is at least one
instance of the data D somewhere in the Universe.

If the data D are dependent on anything like the chance
accidents of biological evolution, the probabilities pE are
well beyond our power to compute at the present. However,
in certain important limits, the top-down probabilities be-
come insensitive to the values of pE. We describe two cases
of this:

4Looking beyond homogeneity and isotropy to spacetimes
with nucleated bubbles there can be such surfaces in many
different bubbles.

5If there is a probability for F in a classical history eF ð�0Þ
can be replaced by pðF j�0Þ.
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The data D are common.—When the relevant values of
Nh are very large compared to 1=pE, the data D will be
common in the Universe. In that limit the top-down prob-
abilities are independent of pE and are sums over the
bottom-up ones with no weighting

pðF jD�1Þ �
Z

d�0eF ð�0Þpð�0Þ: (2.8)

This gives a well defined measure when the probabilities
pð�0Þ are normalized, as we assume. This kind of limit
plays a role when the numberNh can become very large, as
in some models of eternal inflation [13].

The data Dh are rare.—The data Dh will be rare when
there is a maximum number of Hubble volumes Nm

h on any

of the surfaces ti in each history with significant probabil-
ity of the classical ensemble and pEðDÞ � 1=Nm

h . Then

(2.7) reduces to

pðF jD�1Þ �
R
d�0eF ð�0ÞNhðt; �0Þpð�0ÞR

d�0Nhðt; �0Þpð�0Þ : (2.9)

This result is independent of pE and is exactly the volume
weighting discussed in [4–7]. Volume weighting is thus
justified when there is a maximum number of Hubble
volumes Nm

h and pEðDÞ can be bounded by 1=Nm
h .

Volume weighting of bottom-up probabilities becomes
problematic if Nh becomes very large or is infinite so that
the integrals in (2.9) diverge. That may be the case even for
universes that have closed spatial slices if the surfaces
determined by the data Ds are infinite as in the interior
of nucleated bubbles or for the reheating surface in certain
inflationary models [14]. However in ensembles of this
kind the general expression (2.7) for top-down probabil-
ities still applies. This remains finite for large or even
infinite Nh even when the low pEðDÞ approximation (2.9)
to it breaks down. The NBWFmeasure is finite when proper
account is taken of the basic fact that we are physical
systems within the Universe that were formed by physical
processes that could also have occurred elsewhere.

III. OBJECTIVE PREDICTIONS

All predictions of observations depend to some extent on
where, when, and how the observations are made. The
most useful predictions depend as little as possible on
such details. They are then broadly applicable in many
situations. Such predictions can be called objective.

In the present models useful predictions are ones that
depend as little as possible on the precise value of pEðDÞ
and the data D that determine it. We have identified two
limits where this is the case: (i) When the universe is so
large that D is common, top-down probabilities are ap-
proximately equal to bottom-up ones, and (2.8) holds.
(ii) When the universe is small enough that D is rare and
volume weighting described by (2.9) applies.

Data D are rare on a surface specified by Ds when
pEðDÞ � 1=Nm

h . To justify using the objective volume

weighting limit it is only necessary to bound pEðDÞ from

above. The data used to provide this bound could range
from none of our present data to all of it. The more data D
are conditioned on, the smaller pEðDÞwill be. But the more
data, the more difficult it will be to calculate pEðDÞ or even
estimate it. This suggests using more and more data D for
which pEðDÞ is estimable until it provides a bound that
makes D rare in the Universe and volume weighting ap-
plicable—if that is possible!
This situation is not so different from that in everyday

experimental physics. Consider an experiment to measure
the value of some constant. The results depend on the true
value of the constant, but also to some small degree on the
probabilities that the results are influenced by details of the
experimental arrangement. The latter dependencies are the
source of systematic errors. Systematic errors can be com-
pensated for if their probabilities can be calculated accu-
rately enough. If not, we seek to bound their probabilities
from above thereby setting limits to the accuracy of the
measurement. Both compensation and bounds require a
theory of the experimental arrangement.
We can mention two strategies for identifying large

amounts of data for which pEðDÞ is estimable:
Naturally occurring data with a simple origin.—Data on

the observed temperature fluctuations in the CMB are an
example. The CMB radiation originated from calculable
small fluctuations in the early Universe calculably propa-
gated to the present. The probability of our CMB tempera-
ture map is something like 2�Nb where Nb is the number of
bits necessary to describe the map—a number of order 106

for WMAP [15]. This is useful D for predictions of the
amount of past inflation but would not be appropriate for
predictions of the CMB itself.
Controllable random data.—We can generate data

under controlled circumstances whose probabilities are
straightforward to compute. Commercially available quan-
tum random number generators generate strings of random
bits at the rate of several Mb=s. The probability pstring of a

string Nb bits long is 2
�Nb . Run for a year such a generator

will produce data whose probability is of rough order

pstring � 10�1013 . The probability pEðDÞ is this times the

probability that there is at least one such machine in a
Hubble volume. That may be difficult to estimate but pstring

provides a powerful upper bound.
In the next section we will show the bounds provided by

such kinds of data are sufficient to justify volume weight-
ing for computing the probabilities for the amount of
inflation in a homogeneous isotropic model quantum
cosmology.
The condition for the common limit (2.8) is pEðDÞ �

1=Nm
h . If N

m
h is truly infinite this is trivially satisfied. But if

Nm
h is large but finite an estimate of pEðDÞ for all of our

data D is required. That may be difficult to compute or
even define.
In classical physics it was possible to hope for a descrip-

tion of the Universe that was independent of who observed
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it and how they did it. Physics strives for such objectivity
today but developments of the last century make it more
difficult to achieve. In textbook quantum theory the de-
scription of a measured subsystem depends on what is
measured. In cosmology observers and their apparatus
are part of the Universe not somehow separate from it.
Predictions of global observations depend on where and
when they are made. In quantum cosmology an observer is
a quantum subsystem like many others with a probability
for evolving in any spacetime volume and a probability for
being replicated elsewhere.

In this paper we have sought to consider an observer as a
quantum mechanical system within the Universe although
only in a very crude model. We have not thereby aban-
doned the search for objective descriptions. Rather we have
shown what is necessary to achieve them.

IV. PROBABILITIES FOR INFLATION

In this section we illustrate the framework developed in
Sec. II by estimating as a function of pE the top-down
probabilities predicted by the NBWF for the number of
e-folds of scalar field driven inflation in the minisuper-
space models considered in [6,7]. These assume homoge-
neous, isotropic spacetime geometries and a single
homogeneous scalar field � moving in a quadratic poten-
tial V ¼ ð1=2Þm2�2. The feature F in (2.7) is thus the
number of e-folds N. The top-down probabilities condi-
tioned on the NBWF and at least one instance of a subset of
our data D are pðNjD�1Þ.

A. Bottom-up probabilities for the number of e-folds

The bottom-up probabilities for the Lorentzian histories
in the classical ensemble predicted by the NBWF were
calculated in [6,7]. We briefly review the essential results
here specializing for simplicity to the case where the
cosmological constant vanishes.

In quantum cosmology states are represented by wave
functions on the superspace of three-geometries and spatial
matter field configurations. For homogeneous isotropic
models minisuperspace is spanned by the scale factor b
and the value � of the homogeneous scalar field. Thus,
� ¼ �ðb; �Þ.

The no-boundary wave function (NBWF) [1] is defined
by a sum-over-histories having the schematic form

�ðb; �Þ ¼
Z

C
�g�� expð�I½að�Þ; �ð�Þ�Þ: (4.1)

Here, að�Þ and�ð�Þ are the histories of the scale factor and
matter field and I½að�Þ; �ð�Þ� is their Euclidean action. The
sum is over cosmological geometries that are regular on a
manifold with only one boundary at which að�Þ and �ð�Þ
take the values b and �. The integration is carried out along
a suitable complex contour C which ensures the conver-
gence of (4.1) and the reality of the result. We use units
where @ ¼ c ¼ G ¼ 1.

For some regions of minisuperspace the integral in (4.1)
can be approximated by the method of steepest descents.
Then the wave function will be well approximated to
leading order in @ by a sum of terms of the form

�ðb; �Þ � exp½�IRðb; �Þ þ iSðb; �Þ�; (4.2)

one term for each extremizing history. The functions
IRðb; �Þ and �Sðb; �Þ are the real and the imaginary parts
of the action evaluated at the extremum. In simple cases
these extremizing histories may real; but in general they
will be complex—‘‘fuzzy instantons.’’
A wave function of the semiclassical Wentzel-Kramers-

Brillouin (WKB) form (4.2) predicts an ensemble of

coarse-grained Lorentzian histories ðâðtÞ; �̂ðtÞÞ in regions
of minisuperspace where Sðb; �Þ varies sufficiently rapidly
when compared with IRðb; �Þ. The requirements for this
are called the ‘‘classicality conditions.’’ When they are
satisfied, the histories are the integral curves of Sðb; �Þ.
Their probabilities to leading semiclassical order are given
by exp½�2IRðb; �Þ�. This is constant along the integral
curves as a consequence of the Wheeler-DeWitt equation.
There is a one-parameter family of extremizing histories

that can be labeled by the magnitude of the complex scalar
field �0 � j�ð0Þj at the ‘‘south pole’’ of the fuzzy instan-
ton. The NBWF thus predicts a one-parameter ensemble of
classical Lorentzian solutions conveniently also labeled by
�0. The classicality condition is satisfied for �0 greater
than a critical value�c

0 � 1:2. The bottom-up probabilities

for classical Lorentzian histories can therefore be written
in leading semiclassical order as

pð�0Þ � exp½�2IRð�0Þ� ð�0 >�c
0Þ (4.3)

and are zero in this semiclassical approximation for �0 <
�c

0. The results for a numerical calculation for IRð�0Þ are
shown in the left panel of Fig. 1.
A striking feature of the ensemble of classical histories

in this model is the close connection between classicality

and inflation [7]. The histories have values of ĥðtÞ �
ðdâ=dtÞ=â and �̂ðtÞ, which all lie within a very narrow

band around ĥ ¼ m�̂ characteristic of Lorentzian slow roll
inflationary solutions. Since the histories represented in
Fig. 1 span the full ensemble predicted by the NBWF, it
follows that a classical homogeneous and isotropic uni-
verse must have an early inflationary state if the universe is
in the no-boundary state. This is remarkable since infla-
tionary spacetimes encompass an extremely small subset in
classical phase space [16].
However, as Fig. 1 shows, the bottom-up probabilities

conditioned only on the NBWF are largest for classical
histories with a small amount of inflation. We next estimate
the probabilities for the number of e-folds in our Universe
defined by the top-down probabilities conditioned on data
that, among many other things, specify our location in
time.
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B. Top-down probabilities for the number of e-folds

For a discussion of the number of inflationary e-folds the
relationship between top-down and bottom-up probabil-
ities at large �0 is of special interest. That is where the
number of e-folds is the largest (Fig. 1, right panel).

For sufficiently large�0 there is an approximate analytic
solution for the fuzzy instanton giving the NBWF in the
semiclassical approximation [17]. The solution is the com-
plex analog of the familiar slow roll approximation for
motion in a potential ð1=2Þm2�2. The predictions for the
ensemble of classical histories in this approximation were
derived in [6,7]. We next quote the results relevant for this
discussion.6

The predicted classical ensemble consists of Lorentzian
histories of the form

�̂ðtÞ � �0 �mt=3; (4.4a)

âðtÞ � 1

m�0

exp½mtð�0 �mt=6Þ�; (4.4b)

assuming that t is not so large that the slow roll approxi-
mation for the fuzzy instanton fails. These are Lorentzian,
slow roll, inflationary solutions to the Einstein equation
with the scalar field approximately �0 at the start of
inflation.

Denote by Nð�0Þ the number of inflationary e-folds in
the classical history labeled by �0. This is

Nð�0Þ �
Z te

0
dt

1

âðtÞ
dâ

dt
� 3

2
�2

0: (4.5)

The integral is from the start of inflation at t ¼ 0 with �̂ �
�0 to its end at te with �̂ ¼ �e. The approximation
assumes that �0 � �e � 1.
The real part of the action of the fuzzy instanton in this

approximation is

IRð�0Þ � � �

2ðm�0Þ2
: (4.6)

This determines the bottom-up probabilities of the histories
pð�0Þ through (4.3),

pð�0Þ � exp½�=ðm�0Þ2� � exp½2�=ð3m2NÞ�: (4.7)

Equations (4.7) and (4.5) provide the ingredients neces-
sary to estimate the conditional (top-down) probability
pðNjD�1Þ for the number of e-folds of our Universe given
at least one instance of our data D. Suppose for simplicity
that our data locate us on a unique surface of homogeneity
in each spacetime of the classical ensemble. The one-to-
one relationship between N and �0 provided by (4.5)
[cf. Figure. 1] allows N to be used as a label for histories.
The number of present Hubble volumes in a history with N
e-folds will be

NhðNÞ ¼ N0
hðNÞ expð3NÞ; (4.8)

where N0
hðNÞ varies slowly with N and depends on the

present Hubble constant.
The resulting estimate of (2.7) is the following:

pðNjD�1Þ � f1� ½1� pEðDÞ�N0
h
ðNÞ expð3NÞg exp½3�=2m2N�=N1=2

RðdN=N1=2Þf1� ½1� pEðDÞ�N0
h
ðNÞ expð3NÞg exp½3�=2m2N� ; (4.9)
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FIG. 1. Left panel: The different histories in the ensemble predicted by the NBWF can be labeled by �0—the magnitude of the
scalar field at the south pole of the fuzzy instanton. The asymptotic value of the real part of the action of the complex solutions that
behave classically at late times is plotted here as a function of �0. The action tends to a finite value at the lower bound �c

0 that arises

from the classicality conditions. It goes to zero as �� �=2ðm�0Þ2 at large �0. The classical ensemble ranges from �c
0 to �

pl
0 at the

Planck scale. The results shown here are form2 ¼ :05 (Planck units). Right panel: The number of e-folds N of inflation in the different
classical histories predicted by the NBWF. Without further constraints the NBWF selects inflating universes but the bottom-up
probabilities favor histories with a small number of e-folds.

6The second line of Eq. (6.1) in [7] should read âðtÞ ¼ aðyðtÞÞ � e��ðtÞtþ�2t2=6. The solution for the scale factor in a model with zero
cosmological constant such as we consider here is obtained by replacing the parameter � in this formula by m in this case where
� ¼ 0.
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where pEðDÞ is the probability that the dataD occur in any
one of the Hubble volumes and we have used (4.5) to
convert the measures.

The range of N is bounded below by the classicality
constraint, which implies that N * 3=2. We assume the
range is bounded above by N & Npl ¼ 3=2m2 so that the
energy density in the scalar field is less than the Planck
density. The normalizing integral in the denominator there-
fore converges.7

The top-down probabilities pðNjD�1Þ are shown in
Fig. 2, for five different values of pE. These range from
pE ¼ 1, for which the top-down weighting has no effect, to

pE � 1=N
pl
h � expðð9=ð2m2ÞÞ for which the top-down

probabilities are given by volume weighting to a good
approximation. Figure 2 shows that top-down probabilities
differ significantly from the bottom-up ones for small pE.
For realistic values ofm volume weighting holds for pE �
expð�1012Þ. We have seen in Sec. III that at least in the
homogeneous isotropic ensemble discussed here, one can
easily find data D for which pE meets this condition. Thus

the volumeweighting used in [5–7] is derived. And thus the
prediction of those papers for a high probability that our
Universe underwent a significant amount of inflation in the
past is justified in the context of our simple minisuperspace
models.

V. CONCLUSION

The quantum state of the Universe and the theory of its
quantum dynamics8 are in principle adequate to predict
probabilities for every physically meaningful set of alter-
natives the Universe may exhibit. We have derived a
general connection between two important sets of proba-
bilities in quantum cosmology. First, there is the set of
bottom-up probabilities for the alternative classical histor-
ies of the Universe conditioned on the theory of the quan-
tum state and dynamics alone. Second is the set of top-
down probabilities for the classical properties of our
Universe—our observations, our history, etc.—that is fur-
ther conditioned on data that localize us to one or more
spacelike surfaces in four-dimensional classical spacetime.
The top-down probabilities (2.7) are appropriately

weighted sums of bottom-up probabilities. This weighting
is not a choice, or a postulate, or a proposal. Instead it
arises necessarily within the usual framework of quantum
mechanics from just three considerations: (1) We, together
with our data, arose from quantum processes within the
Universe. We occur in any Hubble volume with a proba-
bility pE that is approximately independent of global fea-
tures of the universe we seek to predict. (2) In a large
universe our data may be replicated elsewhere with signifi-
cant probability. But all we know for certain about this data
is that the Universe exhibits at least one instance of it.
(3) We are equally likely to be any of the instances of our
data that the Universe exhibits.
Volume weighting arises as an approximation to this

more general weighting when our data are rare in all
histories in the ensemble that are predicted with any sig-
nificant probability. Unlike its approximation, the general
weighting (2.7) is well-behaved even when spatial volumes
become infinite.
In [6,7] it was explicitly assumed that our data are rare in

the Universe. This paper has provided a quantitative justi-
fication of that assumption in terms of the probability that
our data are replicated. That justification supports the
conclusion, of both those papers and this, that top-down
probabilities derived from the NBWF favor many e-folds
of slow roll inflation in simple minisuperspace models.
Hence the NBWF predicts that we should measure the
curvature of our Universe at the present time to be approxi-
mately zero.
It has not escaped our notice that the discussion in this

paper may bear on issues that arise in eternal inflation. We

3 2 3 2m2
N0

1

2

p N D 1

FIG. 2. The top-down probabilities for the number of e-folds N
predicted by the NBWF conditioned on at least one instance of a
subset of our dataD for five different values of pEðDÞ. The range
of N in this model is bounded from below by the classicality
constraint which implies N * 3=2. We assume it is also bounded
above by the Planck scale which means N & Npl ¼ 3=ð2m2Þ.
The dashed curve that rises to the left has pE ¼ 1 and hence
equals the bottom-up distribution (4.7). The dashed curve rising

to the right, at large N, has pE � 1=N
pl
h , and gives the volume

weighted no-boundary probabilities. The three remaining curves

correspond to (from top to bottom at large N) pE ¼ 1=Npl
h ,

100=N
pl
h , and 1=ðNpl

h Þ1=2. The volume weighted top-down prob-

abilities derived from the NBWF favor histories with many
e-folds of slow roll inflation in the past and therefore predict
an approximately flat universe today.

7In models where the potential becomes flat at large �, the
range of �0 may extend all the way to infinity. In this case one
must include the prefactor for the no-boundary probability
distribution to be normalizable [18].

8Supplemented by a xerographic distribution when necessary
as discussed in the introduction.
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have seen that the NBWF provides a ‘‘measure’’ for global
predictions in cosmology that remains well-defined even
when the ensemble of histories includes universes in which
our data locate us on one or more spatially infinite surfaces.
Such universes occur in the regime of eternal inflation.
Indeed it has been argued that, in the model we have
discussed, the reheating surface can have infinite volume
when one includes the effect of inhomogeneities [14]. In a
forthcoming paper [13] we consider inhomogeneities ex-
plicitly and show how the NBWF measure of these can be
applied to predict the structure of our Universe on observ-
able scales, as seen by a typical observer, in the regime of
eternal inflation.

ACKNOWLEDGMENTS

We thank Stephen Hawking for inspiration and guidance
in quantum cosmology over a long period of time as well as
discussions of this work. We thank Matt Kleban, Mark
Srednicki, Paul Steinhardt, Neil Turok, and the participants
of the Cosmic Singularity Symposium at PCTS (Princeton)
for stimulating discussions. We also thank A. Barvinsky
and M. Tegmark for discussions on particular points. We
thank the Mitchell Institute of Texas A&M University for
hospitality while part of this work was being completed.
The work of J. H. was supported in part by the National
Science Foundation under Grant No. PHY05-55669.

[1] S.W. Hawking, Nucl. Phys. B239, 257 (1984).
[2] M. Gell-Mann, The Quark and the Jaguar (Freeman, San

Francisco, 1994).
[3] J. B. Hartle and M. Srednicki, Phys. Rev. D 75, 123523

(2007).
[4] D. Page, Phys. Rev. D 56, 2065 (1997).
[5] S.W. Hawking, arXiv:0710.2029.
[6] J. B. Hartle, S.W. Hawking, and T. Hertog, Phys. Rev.

Lett. 100, 201301 (2008).
[7] J. B. Hartle, S.W. Hawking, and T. Hertog, Phys. Rev. D

77, 123537 (2008).
[8] J. B. Hartle and T. Hertog, ‘‘Classical Prediction in

Quantum Cosmology’’ (unpublished).
[9] J. B. Hartle, in Gravitation and Quantizations:

Proceedings of the 1992 Les Houches Summer School,
edited by B. Julia and J. Zinn-Justin (North-Holland,
Amsterdam, 1995); arXiv:gr-qc/9304006.

[10] S. B. Giddings, D. Marolf, and J. B. Hartle, Phys. Rev. D
74, 064018 (2006).

[11] S.W. Hawking and T. Hertog, Phys. Rev. D 73, 123527
(2006).

[12] M. Srednicki and J. B. Hartle, arXiv:0906.0042.
[13] J. B. Hartle, S.W. Hawking, and T. Hertog, ‘‘The No-

Boundary Measure in the Regime of Eternal Inflation’’
(unpublished).

[14] S. Winitzki, Phys. Rev. D 65, 083506 (2002); P.
Creminelli, S. Dubovsky, A. Nicolis, L. Senatore, and
M. Zaldarriaga, J. High Energy Phys. 09 (2008) 036.

[15] M. Tegmark (private communication).
[16] G.W. Gibbons and N. Turok, Phys. Rev. D 77, 063516

(2008).
[17] G.W. Lyons, Phys. Rev. D 46, 1546 (1992).
[18] A. O. Barvinsky and A.Yu. Kamenshchik, Phys. Lett. B

332, 270 (1994).

JAMES HARTLE AND THOMAS HERTOG PHYSICAL REVIEW D 80, 063531 (2009)

063531-8


