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Small-field inflation typically requires rather special initial conditions to commence. It is proposed that

in models where the inflaton is an axionlike field, with a periodic contribution to the potential, there is a

possibility of significantly enhancing the chances of inflation without any fine-tuning of initial conditions

and with no additional fine-tuning of the dynamics beyond what is needed for the potential to support

inflation in the first place.
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I. INTRODUCTION

It is often said that the enormous expansion of the
Universe during inflation erases any memory of its pre-
inflationary state. While this is likely to be true, it is also
the case that in many models of inflation one needs rather
special initial conditions for inflation to start. This fine-
tuning of initial conditions is quite separate from any fine-
tuning of the dynamics that may be necessary.

Not all inflationary scenarios are afflicted with this
malady; notably, chaotic inflation [1,2] requires essentially
no fine-tuning of initial conditions. Models of this sort
(frequently referred to as large-field models) are attractive
partly due to their simplicity. They are also of great phe-
nomenological interest as they can easily accommodate
increasingly accurate observational data. Furthermore,
since the inflaton traverses a trans-Planckian distance dur-
ing inflation, large-field models typically predict poten-
tially measurable levels of tensor perturbations (as
suggested by the Lyth bound [3]). In some sense, the
simplest models of chaotic inflation are the most attractive
incarnation of the idea of inflation. On the theoretical side
there are, however, some puzzles due to the necessarily
trans-Planckian expectation values of the inflaton. Some of
the arguments appearing in this context invoke effective
field theory ideas while others reflect expectations based on
string theory.

There are also many models of inflation which do not
involve trans-Planckian expectation values of the inflaton
(such models are sometimes referred to as small-field
models). An interesting class of inflationary models of
the small-field type has recently been discussed in the
context of D-brane inflation [4–7] in the supersymmetric
standard model [8–10] and in supergravity [11,12]. These
scenarios envision inflation taking place close to an inflec-
tion point of the inflaton potential. In each of these cases
some fine-tuning of the effective inflaton potential is in-
volved; a recent treatment of these issues [5,13] considers
inflection points arising when the inflaton potential has a

pair of extrema which can be tuned to coincide. This
requires fine-tuning at the level of one part in 10�3.
If one accepts as inevitable the fine-tuning of the poten-

tial, inflection point inflationary scenarios have a number
of attractive features, such as the fact that they admit a low
scale of inflation which may be desirable from some points
of view. As a small-field model, inflection point inflation
predicts a very low level of tensor perturbations, which can
be regarded either as a positive or negative consequence. In
the end, this question will be settled by observation [14].
A serious conceptual drawback of inflection point in-

flation is that it requires fine-tuning of initial conditions as
well as of the dynamics. An aspect of this is often referred
to as the overshoot problem [15]: for generic initial con-
ditions, the evolving inflaton field will simply miss the
inflection point as if it were not there at all [5,6,16]. The
only way for inflation to start is if some agent causes the
inflaton expectation value to be very close to the inflection
point with negligible velocity. This is a potentially disturb-
ing aspect of this class of models [17]. It is the purpose of
this short paper to suggest a small-field scenario which
does not involve any fine-tuning of the initial conditions,
and no additional fine-tuning of the dynamics beyond what
is required to have an approximate saddle point.

II. INFLECTION POINT INFLATION

Inflation near an inflection point has been discussed in a
number of recent articles [5,6,13], so only a very brief
summary is included here. Consider the scalar potential
Vð�Þ in the vicinity of a point �0, where it is assumed that
V0ð�0Þ ¼ V 00ð�0Þ ¼ 0. In this region the potential can be
approximated by

Vð�Þ ¼ V0 þ V1ð���0Þ þ V3ð���0Þ3 þ . . . ; (1)

where V1 ¼ 0 for an exact saddle point, but the linear term
could be present without spoiling anything provided it is
small enough. Allowing for V1 � 0, to get at least 60 e-
folds, one needs [5,13]
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To simplify the formulas in this section, V1 will be ne-
glected: more general expressions can be found in [5,13].

The slow roll parameters are given by
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Clearly, one has � � � in models of this type.
In the slow roll approximation, the number of e-folds is

given by

N ¼ 1
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and the scalar perturbation spectrum is characterized by the
spectral index

ns � 1 ¼ 1� 6�þ 2� � 1� 4

N
: (6)

TakingN ¼ 60 here and below (with standard assumptions
about reheating), this gives ns ¼ 0:93, which is consistent
with current limits. In the slow roll approximation, the
amplitude of the scalar perturbation spectrum is given by

P2
S ¼ 1

12�2M6
P

V3

V02 ; (7)

evaluated at horizon crossing. For the present case, using
P2
S ¼ 2:5� 10�9 [19], this gives the condition

V2
3

V0

¼ 4�2

3M2
PN

4
P2
S ¼

2:5� 10�15

M2
P

: (8)

Another piece of information is provided by limits on
the ratio of tensor to scalar perturbations r ¼ 16�.
Imposing r < 0:25 [19], translates into

V2
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V2
3

¼ 9

8
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PN
4r < 3:6� 106M6

P: (9)

The analysis summarized above (using the slow roll
approximation) is somewhat simplified—to get a realistic
picture, one should also account for quantum effects near
the inflection point [6,13].

The major difficulty, as discussed in the introduction, is
to motivate the rather stringent initial conditions required
for inflation to start. Numerical investigation shows that to
avoid overshoot, � needs to be sufficiently close to the

inflection point, and furthermore _� has to be negligible. In
short, the initial condition needs to be in a suitable, small
region of phase space. It is clearly a problem to explain
why the inflaton field expectation value would reside in
such a special region in the pre-inflationary epoch. The

scenario proposed in the following section is basically
trying to make this region of phase space appear less
special.

III. THE ‘‘STAIRCASE’’ SCENARIO

The basic idea is that the dynamics of the inflaton are
governed by a potential which over some range of field
space can be visualized as an ascending staircase: an array
of inflection points. A suitable potential could arise as
follows. Suppose that in some region of field space the
potential energy is dominated by two types of contribu-
tions: one of them periodic and the other linear in the
inflaton field. The periodic contribution is naturally inter-
preted as an instanton-generated energy density of an
axionlike field identified with the inflaton. This contribu-
tion, periodic with period 2�f, defines a scale. The other
key element of the scenario is the presence of a second,
nonperiodic [20] contribution uð�Þ, so that the energy
density has the form

Vð�Þ ¼ �4P

�
�

f

�
þ uð�Þ; (10)

where P is a periodic function (with period 2�) and � is a
parameter with dimension of mass. The present proposal
assumes that the scale of variation of uð�Þ is much smaller
than that set by f. If this is the case, it will be a good
approximation to linearize this contribution over some
potentially large number of cycles of the inflaton. If there
is enough freedom in a specific model for these two con-
tributions to be fine-tuned, the resulting potential acquires,
due to the periodicity of the first contribution, a sequence
of inflection points. The total potential in this region re-
sembles a smoothed staircase.
An idealized realization, which can be envisaged to

appear as an approximation in many instances (including
the specific examples described below), is to assume the
inflaton potential in the form

Vð�Þ ¼ �4

�
� sin

�
�

f

�
þ ð1þ �Þ�

f
þ �

�
; (11)

where � and � are constant parameters. If it is possible to
tune � � 1, the potential has a sequence of approximate
saddle points at

�k ¼ 2k�f; (12)

with k assuming values in a range of integers such that the
�k lie in the region of field space where (11) is valid. Close
to any of these points the potential takes the form (1) with

V0 ¼ �4ð�þ 2k�Þ; V1 ¼ �
�4

f
; V3 ¼ �4

6f3
:

(13)

The question of precisely how much fine-tuning of � is
required will be revisited at the end of this section.
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In the context of chaotic inflation, it is usually assumed
that in the pre-inflationary universe the distribution of the
inflaton field is essentially random, apart from the assump-
tion that the energy density remains sub-Planckian so that
field theory notions may be applicable [1]. In the original
proposal for chaotic inflation, a spacial domain of extent
L�H�1 �M�1

P is considered where the inflaton field is
homogeneous. The chaotic inflation scenario assumes a
large initial inflaton expectation value and negligible ve-
locity, but one can also consider the situation where the
initial inflaton velocity is large. This will lead to an ascend-
ing trajectory where the inflaton stops at some point before
it starts rolling back down. If the velocity of the inflaton is
sufficiently large [21] to scale at least one step of the
staircase and as long as there is a large number of steps,
any initial condition of this sort will cause the inflaton to
stop somewhere on the staircase. If the density of inflection
points is sufficient, this turning point will be close enough
to one of them with vanishing velocity so that (at least
intuitively) there is a very good chance that inflation will
commence. Making that last statement precise would re-
quire adopting a satisfactory notion of measure on the
space of initial conditions.

If inflation takes place at the k-th step, one can impose
current observational bounds to see if the constraints are
reasonable. The condition on the tensor ratio (9) gives

ð�þ 2k�Þ2
�
f

MP

�
6
< 1:0� 105; (14)

which is a very weak bound: already for k of the order 10
and � of order 1 this implies the axion decay constant f has
to be below the Planck scale, which is, in any case, to be
expected. Next, applying the COBE normalization (8)
yields

�4M2
P ¼ f6ð�þ 2k�Þ9:0� 10�14: (15)

This fixes the scale of the potential � well below the
Planck scale for sensible values of the axion decay constant
and assuming that the parameter � is not large. This is a
reasonable assumption, given that large enough � would
lead to a model of chaotic inflation which would be ana-
lyzed differently. It is clear from Eq. (11) that� determines
the spacing of the steps in energy. Since the constraints
(14) and (15) limit � from above, there is no obstruction
from the observational side to making the steps in energy
quite dense.

One also needs to revisit the fine-tuning condition (2),
which can be expressed as

�<
1

3

�
f

MP

�
4ð�þ 2k�Þ2 � 10�3: (16)

For a given k, this is a fine-tuning condition on alpha.
However, if one regards �, f, and � as determined by the
underlying theory, the relation (16) can be interpreted as a
condition on k, the number of ‘‘stairs’’ the inflaton has to

scale for sustained inflation to commence. This depends on
the initial conditions, so (16) can be reinterpreted as a
requirement that the initial inflaton ‘‘velocity’’ be large
enough.
Despite Hubble friction, the scale of inflation depends

not only on the potential, but also on the initial conditions.
There is, however, no need to tune them: all that is required
for inflation to commence is that the turning point is in a
region of field space where the approximate form of the
potential (11) is valid. Note, also, that if (11) is an approxi-
mate form of a symmetric potential (valid in some range of
�), then the sign of the initial inflaton velocity is not
relevant.
It is interesting to ask whether any traces of the ‘‘uphill’’

phase can be detectable. This is very unlikely, indeed, since
if inflation takes place at an inflection point typically very
large numbers of e-folds ensue [13], significantly exceed-
ing the 55–70 e-folds of expansion since visible perturba-
tions were generated. Thus, in general, there should be no
memory of any initial transient.

IV. POST-INFLATIONARY EVOLUTION

After the Universe inflates at the uppermost inflection
point reached, the inflaton expectation value continues to
move down. The potential gradient accelerates the inflaton,
but since there is another inflection point nearby it is
important to know whether another stage of inflation is
possible as the inflaton approaches that point. To answer
this question, one needs to resort to numerical analysis.
The evolution of the inflaton is governed by Einstein’s
equations, which reduce to

€�þ 3H _�þ V;�ð�Þ ¼ 0; 3M2
PH

2 ¼ 1

2
_�2 þ Vð�Þ:

(17)

It is convenient to use the number of e-folds, N, as the
evolution parameter [13]. Using dN ¼ Hdt and denoting
derivatives with respect to N by a prime, the resulting
equations can be written in first-order form as

�0 ¼ u;

u0 ¼ � 1

H2

�
uVð�Þ
M2

P

þ V;�ð�Þ
�
;

H0 ¼ � 1

2M2
P

Hu2;

(18)

with the Friedman constraint�
3M2

P � 1

2
u2
�
H2 ¼ Vð�Þ: (19)

It is straightforward to integrate these equations numeri-
cally and consider inflaton velocities at the point where
inflation ends. For example, taking one of the inflection
points considered by Linde and Westphal [13] with V0 ¼
2:7� 10�23, V1 ¼ 7:29� 10�32, and V3 ¼ 1:0� 10�20
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(in Planck units), one finds that if the inflaton starts at rest
with an initial value not exceeding 7� 10�5 one gets
hundreds of e-folds. The inflaton velocity u at the time
when inflation ends depends very weakly on the initial
condition and is of the order 3� 10�2. This is much too
large for inflation to commence at the next inflection
point—at the parameter values cited, the initial inflaton
velocity cannot exceed 10�4 for inflation to start.
Exploring various choices of parameters leads to the con-
clusion that on the way down, once the inflaton makes it
past the inflection point where inflation takes place, it
attains a velocity which causes all the remaining inflection
points to be overshot. Thus only one stage of inflation is
possible in this scenario: at the uppermost inflection point
reached.

While the background evolution is essentially unaf-
fected by the presence of inflection points on the way
down, they may leave observable traces in the cosmic
microwave background since they induce small variations
of the inflaton velocity. Eventually, the staircase region will
end (assuming that the nonperiodic contribution uð�Þ in
(10) was bounded below). To formulate a realistic scenario,
the total potential should have a minimum such that the
Universe can reheat. This part of the story depends on the
behavior of uð�Þ in the region of field space where the
linear approximation is no longer valid and thus will differ
from model to model.

V. EXAMPLES

To construct specific models, one needs an axion (to be
identified with the inflaton) and an instanton-generated
potential with a reasonable scale and periodicity. This
potential restricts the shift symmetry of the axion to a
discrete subgroup. The other essential ingredient is a
source of additional symmetry breaking which eliminates
the residual discrete shift symmetry. It is natural to con-
sider models of axion inflation in the framework of string
theory (e.g. [22,23]). In fact, string theory vacua provide a
setting where the key ingredients of the staircase scenario
are easily found since they typically involve numerous
fields with periodic potentials. These fields are usually
called axions since it is expected that the QCD axion,
which resolves the strong CP problem, can be found among
them. String theory axions arise by dualizing second-rank
antisymmetric fields, which arise in the process of com-
pactification in heterotic as well as type II vacua.

Before considering string theory, one can of course
formulate suitable models purely in field theory [24].
One simple way that a staircase potential could appear is
if there were two periodic contributions to the axion po-
tential with disparate periods:

V ¼ �4 cos

�
�

f

�
þ�04 cos

�
�

f0
þ �

�
; (20)

where � is a phase. If f � f0, then the contribution with

the longer period could be approximated by a linear po-
tential over many cycles of the first term. This way a
potential of the form (11) appears. Models like this were
discussed by Freese, Liu, and Spolyar [26] (and recently in
[27]). In that work, the relative contribution of the periodic
and quasilinear pieces were chosen such that a sequence of
minima ensued, leading to a realization of ‘‘chain infla-
tion’’ [28]. Here, the two terms in (20) would have to be
fine-tuned to give a sequence of inflection points leading to
a staircase potential in some region of field space. The
staircase is finite in this example so that the initial con-
ditions, while not fine-tuned, need to be such that the
inflaton turns back in the staircase region, i.e. the initial
inflaton velocity could not be too large.
String theory offers good prospects for finding staircase

potentials. An example which has the right ingredients
appeared quite recently [29] in connection with efforts to
construct a string theory model of large-field inflation. The
inflaton is identified with an axion arising from a 2-form
field integrated over a 2-cycle �2 in the usual way [30].
The potential receives an instanton contribution (due to
Euclidean D1-branes) which gives rise to a standard peri-
odic term. The authors of [29] have, however, also identi-
fied a nonperiodic contribution due to branes wrapping the
2-cycle �2. This term (basically the Dirac-Born-Infeld
action action of the wrapped brane) is nonperiodic—it
contributes to the energy increasing without bound as a
function of the axion field. The ensuing potential is of the
form (10); specifically

Vð�Þ ¼ �4 cos

�
�

f

�
þ�03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ�2

q
; (21)

where �, �0, and v depend on the geometry. For inflaton
values much larger than v2, the potential again takes the
form (11). In [29], the geometry was assumed such that the
instanton contribution to the potential was suppressed rela-
tive to the nonperiodic term. The relative magnitude of the
two terms is determined by the geometry, but there appears
to be no obstruction to fine-tuning the coefficients so that
the two terms lead to an infinite staircase for � � v. It
would certainly be interesting to verify this and explore the
observable consequences of this class of models.

VI. CONCLUSIONS

Inflation at an inflection point is an attractive implemen-
tation of the inflationary paradigm, which appears in a
number of contexts. A major concern with such models
is ensuring that inflation actually begins. The scenario
described here addresses this issue. The basic observation
is that if there is any chance at all of inflation starting in a
model with a single point of inflection, that chance should
increase if there is a whole sequence of such points. A
reasonably natural way such a structure could come about
is by ‘‘tilting’’ a periodic potential due to the breaking of
discrete shift symmetry. Apart from the case of inflation at
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inflection points, this could also be relevant for other
instances of small-field inflation (e.g. hilltop inflation
[31]). This note has focused on presenting the universal
aspects of the idea.

Apart from making inflection point inflation somewhat
more plausible, the scenario proposed here suggests obser-
vational consequences which could eventually support or
refute it. The main source of information is, of course, the
cosmic microwave background. The uphill evolution of the
inflaton could leave traces in the cosmic microwave back-
ground in the form of large deviations from scale invari-
ance [6]. This would, however, only be observable if the
visible perturbations were generated right at the start of
inflation, that is, if inflation lasted only for about 60 e-
folds, which is very unlikely in the scenario discussed
above. Beyond this possibility, one could expect clear
signatures if multiple inflection points were traversed by
the inflaton after inflation. Even though the background
evolution in the ‘‘downhill phase’’ is hardly affected by the
inflection points, the inflaton velocity would vary periodi-
cally as it crosses the steps on the way down which would
be reflected in the cosmic microwave background as
k-dependent oscillations in the spectrum of primordial
density perturbations. The impact of a ‘‘feature’’ in the
potential on the perturbation spectra has been the subject of
numerous studies (e.g. [32,33]). The observable effects of a

sequence of steps induced by a duality cascade in the
context of brane inflation were analyzed recently by
Bean et al. [34]. The observational imprint of inflaton
oscillations of the inflaton potential was also recently
considered in [35,36]. These studies have considered vari-
ous forms of the potential, but not quite the kind discussed
here. Clearly, it would be very interesting to explore the
signatures of a staircase of inflection points.
Finally, it would be important to construct explicit,

consistent models of ‘‘staircase inflation’’ in string theory,
perhaps by making the second of the two examples dis-
cussed above more precise. At this point, it is not com-
pletely clear that staircase inflation can be realized in string
theory, but the essential elements required are certainly
present given the ubiquity of axions and the rather generic
mechanism for breaking the shift symmetry identified in
[29]. Although it is not obvious a priori, it appears that
these models have enough freedom to attain the requisite
fine-tuning while retaining control over the approximations
made. Since string theory has many axion-type fields, it is a
very natural setting for staircase inflation.
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