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We discuss solar system constraints on fðGÞ gravity models, where f is a function of the Gauss-Bonnet

term G. We focus on cosmologically viable fðGÞ models that can be responsible for late-time cosmic

acceleration. These models generally give rise to corrections of the form �ðr=rsÞp to the vacuum

Schwarzschild solution, where " ¼ H2�r2s � 1, rs is the Schwarzschild radius of the Sun, and H� is the

Hubble parameter today. We generally estimate the strength of modifications to general relativity in order

to confront models with a number of experiments, such as the deflection of light and the perihelion shift.

We show that cosmologically viable fðGÞ models can be consistent with solar system constraints for a

wide range of model parameters.
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I. INTRODUCTION

The modified gravity paradigm has been extensively
studied over the last few years as a way to make gravity
responsible for the observed acceleration of the Universe at
large scales [1]. These models are attractive in the sense
that cosmic acceleration can be realized without recourse
to a dark energy matter component. Unlike the cosmologi-
cal constant scenario, they generally give rise to a dynami-
cal equation of state of dark energy that varies in time.

Among these modifications of gravity, the so-called
fðRÞ theory has become popular and has started to become
a new branch of cosmology [2]. In this theory, the
Lagrangian density f is a function of the Ricci scalar R.
The fðRÞ theory in the metric formalism can be proven to
be classically equivalent to a class of Brans-Dicke theory
with a Brans-Dicke parameter !BD ¼ 0 [3]. A scalar-field
degree of freedom, called scalaron [4], can freely propa-
gate to mediate a fifth force, unless the scalaron mass is
heavy in the region of high density. For the compatibility
with local gravity experiments, the fðRÞ theory needs to
approach the Lagrangian density fðRÞ ¼ R� 2� in gen-
eral relativity (GR) for large values of R much larger than
the present cosmological Ricci scalar R0 [5]. Meanwhile,
nontrivial deviation from the�CDMmodel can arise for R
of the order of R0 [6–11]. This leads to a number of
interesting observational signatures, such as the modifica-
tions to the matter power spectrum [12] as well as to the
weak lensing spectrum [13].

It is also possible to take into account a Gauss-Bonnet
(GB) scalar G that is a combination of the Ricci scalar R,
the Ricci tensor R��, and the Riemann tensor R����

[14,15]. This GB scalar, together with R, belongs to an
infinite class of curvature invariants, the Lovelock scalars,
which have the property that they do not introduce deriva-

tive terms higher than two into the equations of motion for
the metric tensor. Among these scalars, R and G are the
only ones that do not identically vanish in four dimensions
(apart from the cosmological constant). However, the termffiffiffiffiffiffiffi�g
p

G is a total derivative in four dimensions, where g is

the determinant of the metric tensor. This means that the
only way for the GB term to contribute to the equations of
motion is to couple it to something else, e.g., a scalar field
� with the coupling of the form Fð�ÞG [16]. This kind of
coupling is present in the low energy effective action of
string theory [17], due to the presence of dilaton-graviton
mixing terms.
The dynamics of dark energy based on the dilatonic

coupling Fð�Þ / e�� with the exponential potential
Vð�Þ / e��� has been studied by a number of authors
[18–22]. While it is possible to realize a scaling matter
era [19,20] followed by a late-time cosmic acceleration,
the region of viable parameter space to satisfy several
observational constraints is restricted to be very small
[19]. It was also shown in Refs. [20,23] that tensor pertur-
bations tend to exhibit negative instabilities if the GB term
is responsible for cosmic acceleration. Moreover, in such
models, the energy fraction of the GB term needs to be
strongly suppressed for the compatibility with local gravity
experiments [24], which is at odds with the requirement of
cosmic acceleration induced by the GB term.
There is another class of modified gravity models in

which the Lagrangian density is described by Rþ fðGÞ
(so-called ‘‘fðGÞ gravity’’), where f is the function in
terms of the GB term G [25]. Unlike fðRÞ gravity, this
theory does not have an action in the Einstein frame with a
standard kinetic term of a scalar-field degree of freedom.
The conditions for cosmological viabilities of fðGÞ gravity
have been studied in Refs. [26–28] (see also Refs. [29,30]).
Li et al. [26] showed that the condition 0<H6f;GG � 1
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(where f;GG � d2f=dG2) needs to be fulfilled in order to

keep cosmological perturbations under control. In
Ref. [27], the same condition has been derived to ensure
the stability of a late-time de Sitter solution as well as the
existence of standard radiation and matter-dominated
epochs. In particular, the stability of the de Sitter point
requires the condition 0<H6

1f;GG < 1=384, where H1 is

the Hubble parameter at this point. In order to remove
possible singularities in the cosmic expansion history, the
second derivative f;GG should not change sign, i.e. f;GG >

0 for all G, together with the condition that f;GG ! 0 as

jGj ! 1. This removes the presence of unstable modes
during the whole past evolution of the Universe. A number
of cosmologically viable models satisfying these require-
ments have been proposed in Ref. [27].

In this paper, we will study the property of fðGÞ gravity
on solar system scales and investigate whether cosmolog-
ically viable fðGÞ models can be consistent with solar
system constraints. We first find approximate vacuum so-
lutions for these models through an iterative method in-
troduced in Ref. [31]. The solutions look like corrections to
the Schwarzschild solution, where the corrections are typi-
cally in the form of positive powers in the ratio r=rs, where
r is the distance from the center of the compact object and
rs is the Schwarzschild radius. This behavior of positive
powers is similar to the typical correction that the cosmo-
logical constant gives to the Schwarzschild solution [ /
ðr=rsÞ2]. In the case of the Schwarzschild-de Sitter solu-
tion, the metric in the solar system is dominated by the
term rs=r, but one can put upper bounds on the value of the
cosmological constant such that its contribution is allowed
by experimental data. We follow a similar procedure in
order to constrain the values of model parameters in fðGÞ
gravity. We will show that cosmologically viable fðGÞ
models can satisfy solar system constraints for a wide
range of parameter space.

In Sec. II, we briefly review cosmologically viable fðGÞ
models. In Sec. III, we describe the method used to find
approximate spherically symmetric solutions of the
Einstein equations. In Sec. IV, we discuss solar system
constraints in the presence of positive powers of the radius
correction to the Schwarzschild solution. In Secs. V, VI,
and VII, we apply the constraints to a number of fðGÞ
models. In Sec. VIII, we report our conclusions.

II. COSMOLOGICALLY VIABLE fðGÞ MODELS

Let us first briefly review cosmologically viable fðGÞ
models proposed in Ref. [27]. The action describing this
theory is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
Rþ fðGÞ

�
þ Smðg��;�mÞ; (1)

where R is the Ricci scalar, G ¼ R2 � 4R��R
�� þ

R����R
���� is the GB term, and Sm is a matter action

that depends on a spacetime metric g�� and on matter

fields �m. We use the unit Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�GN

p ¼ 1, but we

restore the reduced Planck mass Mpl and the gravitational

constant GN if required.
The late-time cosmic acceleration can be realized by the

presence of a de Sitter (dS) point satisfying the condition
3H2

1 ¼ G1f;GðG1Þ � fðG1Þ, where H1 and G1 are the

Hubble parameter and the GB term at the dS point, respec-
tively. The stability of the dS point demands the condition
0<H6

1f;GGðH1Þ< 1=384 [27]. The GB term G ¼
24H2ðH2 þ _HÞ changes sign from negative to positive
during the transition from the matter era to the accelerated
epoch. For the existence of standard radiation and matter
eras, we require that f;GG > 0 for G � G1 and that f;GG

approaches þ0 in the limit jGj ! 1. We also need the
regularities of fðGÞ and its derivatives f;G, f;GG. The

following two models can satisfy these conditions [27]:

fðGÞ ¼ �
Gffiffiffiffiffiffi
G�

p arctan

�
G
G�

�
� 1

2
�

ffiffiffiffiffiffi
G�

q
ln

�
1þ G2

G2�

�

� ��
ffiffiffiffiffiffi
G�

q
; (2)

fðGÞ ¼ �
Gffiffiffiffiffiffi
G�

p arctan

�
G
G�

�
� ��

ffiffiffiffiffiffi
G�

q
; (3)

where �, �, and G� are positive constants. Note that G�
roughly corresponds to the scale H4� for � and � of the
order of unity, where H� is the Hubble parameter today.

The second derivative of f with respect to G is f;GG ¼
�=½G3=2

� ð1þG2=G2�Þ� and f;GG ¼ 2�=½G3=2
� ð1þ

G2=G2�Þ2� for the models in Eqs. (2) and (3), respectively,
so that f;GG > 0 for � > 0.

In the region of high density where local gravity experi-
ments are carried out (jGj � G�), the above models have
the following asymptotic behavior:

fðGÞ ’ 1

2
��

Gffiffiffiffiffiffi
G�

p � ð�þ 1Þ�
ffiffiffiffiffiffi
G�

q
� 1

2
�

ffiffiffiffiffiffi
G�

q
ln

�
G2

G2�

�

� �
ffiffiffiffiffiffi
G�

p
6

G2�
G2

; (4)

fðGÞ ’ 1

2
��

Gffiffiffiffiffiffi
G�

p � ð�þ 1Þ�
ffiffiffiffiffiffi
G�

q
þ �

ffiffiffiffiffiffi
G�

p
3

G2�
G2

: (5)

The first terms in Eqs. (4) and (5) are linear inG, so they do
not give rise to any contribution to the Einstein equation,
whereas the second terms contribute to the field equation as
a cosmological constant. The other terms in Eqs. (4) and
(5) correspond to the corrections to the�CDMmodel. The
difference between the models in Eqs. (4) and (5) is that the
former has a logarithmic correction that mildly increases
with the growth of jGj. Note that the viable fðRÞ models,
such as (i) fðRÞ ¼ R� �R�ðR=R�Þ2n=½ðR=R�Þ2n þ 1� and
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(ii) fðRÞ ¼ R� �R�½1� ð1þ R2=R2�Þ�n� (n > 0), behave
as fðRÞ ’ R� �R� þ �R�ðR�=RÞ2n in the region of high
density (R � R�). This asymptotic form is similar to the
model in Eq. (5) given above by replacing R for G.

In the following, we shall study solar system constraints
on cosmologically viable fðGÞ models. Before doing so, it
is worth mentioning the difference between fðRÞ and fðGÞ
theories. If we consider a spherically symmetric back-
ground, the Schwarzschild vacuum solution corresponds
the vanishing Ricci scalar (R ¼ 0). In the presence of
nonrelativistic matter, R approximately equals the matter
density 	m=M

2
pl for viable fðRÞ models [9–11]. Then the

term ðR�=RÞ2n is roughly of the order of ð	c=	mÞ2n, where
	c is the cosmological density today. The ratio ð	c=	mÞ2n
becomes much smaller than 1 for n > 0 in the region of
high density (	m � 	c), so one has ðR�=RÞ2n � 1. In the
presence of nonrelativistic matter, the chameleon mecha-
nism [32] can be at work for the fðRÞ models that have the
asymptotic form fðRÞ ’ R� �R� þ �R�ðR�=RÞ2n in the
region R � R�, which allows the possibility for consis-
tency with local gravity tests. In fact, it was shown in
Ref. [33] that these models can satisfy solar system and
equivalence principle constraints for n > 0:9.

On the contrary, one has G ¼ R����R
���� ¼ 12r2s=r

6

on the vacuum Schwarzschild solution, where rs ¼
2GNM� is the Schwarzschild radius and M� is the mass
of the star. SinceG does not vanish even in the vacuum, the
term such as ðG2�=G2Þn (n > 0) can be much smaller than 1
even in the absence of nonrelativistic matter. If matter is
present, this will give rise to the contribution of the order of
R2 	 ð8�GN	mÞ2 to the GB term. The ratio of the matter

contribution to the vacuum GB value Gð0Þ ¼ 12r2s=r
6 ¼

48ðGNM�Þ2=r6 can be estimated as

s � R2

Gð0Þ 	
ð8�Þ2
48

	2
mr

6

M2�
: (6)

As long as s � 1, we can neglect the matter contribution to
the GB term.

At the surface of the Sun (radius r� ¼ 6:96

1010 cm ¼ 3:53
 1024 GeV�1 and mass M� ¼
1:99
 1033 g ¼ 1:12
 1057 GeV), the density 	m drops
down rapidly from the order 	m 	 10�2 g=cm3 to the
order 	m 	 10�16 g=cm3. If we take the value 	m ¼
10�2 g=cm3, we have s 	 4
 10�5 (where we have
used 1 g=cm3 ¼ 4:31
 10�18 GeV4). Taking the value
	m ¼ 10�16 g=cm3 leads to a much smaller ratio: s 	 4

10�33. The matter density approaches a constant value
	m 	 10�24 g=cm3 around the distance r ¼ 103r� from
the center of the Sun. Even at this distance we have s 	
4
 10�31, which means that the matter contribution to the
GB term can be completely neglected in the solar system
we are interested in. If we use the value 	m 	
10�24 g=cm3, s exceeds the order of 1 for the distance r *
108r�. However, this is out of the region where solar
system experiments are concerned. Moreover, the

Schwarzschild solution has no meaning far away from
the star where other contributions can arise, i.e. other close
stars, the mean field of the galaxy, and so on. From the
above discussion, we find that vacuum solutions can be
used when we discuss solar system constraints on fðGÞ
gravity.

III. EXPANSION AROUND THE SPHERICALLY
SYMMETRIC SPACETIME

The cosmologically viable fðGÞ models (2) and (3) will

consist of a numerical factor of order
ffiffiffiffiffiffi
G�

p
times a dimen-

sionless function (because fðGÞ has the dimension of
½mass�2). Meanwhile, the typical value of the GB term on
the vacuum Schwarzschild solution is given by

G s � 12=r4s : (7)

When we discuss solar system constraints, it is convenient
to define the following dimensionless ratio:

" �
ffiffiffiffiffiffi
G�
Gs

s
: (8)

Since
ffiffiffiffiffiffi
G�

p
is of the order of the square of the present

Hubble parameter H�, the parameter " is approximately

given by " 	 ðH�rsÞ2=ð2
ffiffiffi
3

p Þ. In the subsequent sections,
we shall discuss the case of the Sun with the Schwarzschild
radius rs ¼ 2:95
 103 m. Using the value H� 	
70 km sec�1 Mpc�1, the parameter " for the Sun is ap-
proximately given by

" 	 10�46: (9)

The model (2) can be written in the form fðGÞ ¼
"½� ffiffiffiffiffiffi

Gs

p
gðxÞ � ��

ffiffiffiffiffiffi
Gs

p �, where gðxÞ ¼ x arctanx�
ð1=2Þ lnð1þ x2Þ and x ¼ G=G� ¼ G=ðGs�

2Þ. Hence, the
function f can be replaced by the form f ¼ "~f.
The equations of motion in the vacuum can be written as

G�
� þ "��

� ¼ 0; (10)

where G�
� is the Einstein tensor, and

��� ¼ 8½R�	�
 þ R	�g
� � R	
g�� � R��g
	

þ R�
g�	 þ Rðg��g
	 � g�
g�	Þ=2�r	r
 ~f;G

þ ðG ~f;G � ~fÞg��: (11)

In general, these theories will have vacuum solutions,
which we wish to study here. Although exact solutions
are not always found analytically, it is possible to obtain
approximate solutions which reproduce the real ones very
well at least on some scales. In fact, since " � 1, we can
try to use the iterative method introduced in Ref. [31].
We look for static spherical symmetric solutions of the

kind
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ds2 ¼ �Aðr; "Þdt2 þ dr2

Bðr; "Þ þ r2ðd�2 þ sin2�d’2Þ;
(12)

where the functions A and B are Taylor expanded in the
form

Aðr; "Þ ¼ A0ðrÞ þ A1ðrÞ"þ A2ðrÞ"2 þ . . . ; (13)

Bðr; "Þ ¼ B0ðrÞ þ B1ðrÞ"þ B2ðrÞ"2 þ . . . : (14)

Using this expansion for A and B, both G�
�ðr; "Þ and

��
�ðr; "Þ can be expanded order by order in ". At the

lowest level, the equations of motion correspond to

G�
�
ð0Þ ¼ 0; (15)

which leads to the usual Schwarzschild solution B0 ¼
A0 ¼ 1� rs=r. At first order, one has

"½G�
�
ð1ÞðA1; B1; A0; B0Þ þ��

�
ð0ÞðA0; B0Þ� ¼ 0; (16)

which reduces to ordinary differential equations for A1, B1,
where A0, B0 are the Schwarzschild terms found previ-
ously. This method can be reiterated to get the coefficients
A2, B2, as well as all other higher-order terms.

It should be noted that, for a general approach to the
modification of gravity, including quintessence, there is no
more analogue of the Birkhoff theorem regarding the
unicity of the solution for a spherically symmetric vacuum
solution. We can only impose to have a static metric. The
bottom line is that the forms of A and B can be found at any
order-" approximation, by solving the Einstein equations
iteratively with respect to the small parameter 0< " � 1.

Suppose that we find such an iterative solution and write
both A and B as power expansions of ". Then the iterative
solution should have in general a radius of convergence,
inside which each correction is larger than the next-order "
term. In this case we expect that the dominant term corre-
sponds to the Schwarzschild contribution. Therefore in the
small " limit we will have

A ¼ 1� 1=	þ "c1	
p þ "2c3	

m þOð"3Þ; (17)

B ¼ 1� 1=	þ "c2	
q þ "2c4	

n þOð"3Þ; (18)

where 	 � r=rs. In Secs. VI and VII we will show that the
correction terms in Eqs. (17) and (18) in fact arise for the
cosmologically viable fðGÞ models given in (2) and (3).
We will restrict ourselves to the region 	 � 1, which is
generically satisfied in the solar system outside of the Sun.
In other words, this corresponds to the weak limit of the
theory. We have introduced c1;2;3;4 as constants whose

values need to be bounded experimentally, and also p, q,
m, n as the powers of 	. In the following, we will restrict
our attention to the case p ¼ q > 0 and m ¼ n > 0. Later
we will see that this assumption is quite general for cos-
mologically viable fðGÞ models.

In order to have a meaningful " expansion, one needs to
verify that there exists a set of convergence, e.g.,

D ¼ f	j	 � 1; "	p � 	�1g: (19)

This implies that the expansions (17) and (18) can be
trusted only in this region. Outside of it, one must find
the solutions of Einstein equations, both analytically or
numerically, without using the " expansion. This also
implies that it does not make sense to study this solution
in the limit 	 ! 1. However, even if the full solution is
known, it does not have physical meaning for values of r
where the solar system begins to feel other stars’ contri-
butions. This situation is analogous to the Schwarzschild-
de Sitter solution, where the same solution cannot be
trusted any more at distances a few parsecs away from
the Sun. In this region, the solar system cannot be treated as
an entity isolated from the rest of the galaxy. Of course, for
larger p, the set D becomes smaller. However, this is not
enough: one should also verify that in the same set the "2

term is much smaller than the " one. This implies that inD,
one is also required to have

D2 ¼ f	j	 � 1; "	m � 	pg � D: (20)

If 0 � m � 2pþ 1, then this condition is verified. We will
call a good " expansion for the one where this last condi-
tion is valid. In general, we may have more complicated
cases where there exists an order of expansion d such that
Di � Dd for all i � 1 (and d might not be one), such that
the expansion makes sense in Dd. If there is no such set,
then the expansion does not make sense. If there is such a
set, we can define D ¼ Dd.
If D2 � D, then, in D (or, more in general, in Dd), it is

safe to approximate the perturbative solution as

A ¼ 1� 1=	þ "c1	
p; B ¼ 1� 1=	þ "c2	

p:

(21)

In the next section we shall study a number of solar system
bounds for the metric (21).

IV. SOLAR SYSTEM CONSTRAINTS

There are a number of solar system constraints on the
deviation from general relativity, such as (a) deflection of
light, (b) Cassini experiment, (c) Perihelion shift,
(d) retardation of light, and (e) gravitational redshift. In
the following, we discuss those constraints for a general
metric in the form of (21).

A. Deflection of light

The first constraint we discuss is the deflection of light.
The Lagrangian for a photon moving in the � ¼ �=2 plane
in the gravitational field of the metric (12) is given by

L ¼ 1
2A _t2 � 1

2B
�1 _r2 � 1

2r
2 _’2 ¼ 0; (22)

where a dot represents an affine parameter along the geo-
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desics. There are two constants of motion, namely

E � A _t and L � r2 _’: (23)

Then we find

_r 2 ¼ L2

�
E2

L2

B

A
� B

r2

�
: (24)

The minimal distance r0 can be defined such that _rðr0Þ ¼
0, giving

L2

r2sE
2
¼ 	2

0

Að	0Þ ; (25)

where 	0 � r0=rs.
Integrating d’=dr ¼ _’= _r by using Eqs. (23)–(25), we

obtain

’ð	Þ ¼ 
Z 	

	0

d �	
	0

�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að �	Þ

Bð �	Þ½Að	0Þ �	2 � Að �	Þ	2
0�

s
; (26)

where �	 is used to avoid the confusion with the upper limit

	 of the integral. The Schwarzschild-de Sitter solution
corresponds to c1 ¼ c2 and p ¼ 2, in which case the
integral (26) reduces to the standard GR contribution.
Therefore, the cosmological constant does not give any
modification to GR for light bending [34]. In standard GR,
the integral is taken in the limit 	 ! 1. This is a mathe-
matical extrapolation, as the metric does not hold in the
whole spacetime. Of course this property holds in our
approach, where the approximate metric is sensible only
in D, the domain of convergence. Up to first order in " and
in the domain D, it is possible to approximate the integral
as

’ ¼ 
Z 	

	0

d �	
	0

�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�		0

�	3ð	0 � 1Þ � 	3
0ð �	� 1Þ

s

þ "
Z 	

	0

d �	Fð	0; �	Þ; (27)

where

Fð	0; 	Þ ¼
�

		0

	3ð	0 � 1Þ � 		3
0 þ 	3

0

�
3=2 	pfc1	3ð	0 � 1Þ þ c2½	3ð1� 	0Þ þ ð	� 1Þ	3

0�g � c1ð	� 1Þ	2	pþ1
0

2	ð	� 1Þ : (28)

We can further simplify this expression by considering the
limits 	, 	0 � 1:

’ ¼ 
Z 	

	0

d �	
	0

�	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�	2 � 	2

0

q


Z 	

	0

d �	
�	2 þ 	0 �	þ 	2

0

2 �	2ð �	þ 	0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�	2 � 	2

0

q
 1

2
"	0

Z 	

	0

d �	
c1 �	

2ð �	p � 	p
0 Þ � c2 �	

pð �	2 � 	2
0Þ

�	ð �	2 � 	2
0Þ3=2

:

(29)

Taking the positive sign in front of each integral, the
deviation angle in the region D is given by

#ð	Þ ¼ 2
Z 	

	0

d �	
	0

�	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�	2 � 	2

0

q
þ

Z 	

	0

d �	
�	2 þ 	0 �	þ 	2

0

�	2ð �	þ 	0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�	2 � 	2

0

q
þ "	0

Z 	

	0

d �	
c1 �	

2ð �	p � 	p
0 Þ � c2 �	

pð �	2 � 	2
0Þ

�	ð �	2 � 	2
0Þ3=2

� �; (30)

in the limit that 	 � 	0. The first two contributions in
Eq. (29), corresponding to the GR ones, give

#GR ¼ 2

	0

þOð	0=	Þ: (31)

Meanwhile, the " contributions can be evaluated as

p ¼ 1;

#" ¼ �"c1	0 þ "	0ðc1 � c2Þ lnð2	=	0Þ þOð	�1
0 Þ; (32)

p ¼ 2; #" ¼ ðc1 � c2Þ"	0	þOð	�1
0 Þ; (33)

p¼ 3;

#" ¼ 1
2ðc1 � c2Þ"	0	

2 þ �c"	3
0½lnð2	=	0Þ � 1� þOð	�1

0 Þ;
(34)

p � 4;

#" ¼ c1 � c2
p� 1

"	0	
p�1 þ �c

p� 3
"	3

0	
p�3 þOð	p�5

0 Þ:
(35)

We have kept not only the dominant correction, but also the
next one. Of course the latter becomes important only for
c1 ¼ c2, that is, when the first correction vanishes.
Therefore, we have evaluated the second (smaller) contri-
bution only when the first vanishes, that is, when c1 ¼ c2.
In other words, we define �c ¼ c1 if c1 ¼ c2. The experi-
mental bound on #" relative to #GR is given by the very
long baseline interferometry, which combines measure-
ments taken by different radio telescopes on Earth [35].
The experimental value #exp relative to the theoretical
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prediction has been constrained to be #exp=#theor ¼
1:0001 0:0001. Therefore, in order that #" does not
affect the GR result, we impose

#"

#GR

< 10�4: (36)

When p � 2, this condition translates into

c1 � c2
2ðp� 1Þ"	

2
0	

p�1 < 10�4: (37)

Recall that in the domain D we have

"	0	
p�1 � 1

	0

	2
0

	2
� 1

	0

; (38)

in which case the condition (37) is satisfied for c1, c2, p of
the order of unity. Hence, the deflection of light always
remains a small correction in the domain of convergence.

B. Cassini experiment

Iess et al. [36] showed that the contribution to the frac-
tional frequency shift of a stable and coherent two-way
radio signal (Earth to spacecraft to Earth) y, due to the
metric of a gravitational theory (which possesses a weak
field limit), is proportional to the deviation angle# of light,
and it is given by the formula

y ¼ 2
v1l0 þ v0l1
l0 þ l1

#; (39)

where v0 and v1 are transverse velocities of Earth and a
spacecraft, and l0 and l1 are their distances from the Sun.
Since l1 � l0, the " contribution can be written as

y" 	 2vEarth½’ð	0; 	EarthÞ þ ’ð	0; 	CassiniÞ�
	 vEarth

c1 � c2
p� 1

"	0ð	p�1
Cassini þ 	p�1

EarthÞ; (40)

where the approximate equality in the second line is valid
for p � 2. Meanwhile, from Eq. (31), the GR contribution
can be written as

yGR 	 4
vEarth

	0

: (41)

The " contribution needs to be a negligible correction to
GR. In order to have y" � yGR, we require that

"	2
0	

p�1
Cassini � 1; (42)

which is satisfied, as we have seen before, in the region D,
of course if 	Cassini 2 D.

The signal due to GR detected by Cassini is y� 10�10,
within an experimental error of �yexp � 10�14. Therefore,

the contribution y" from the modifications of gravity needs
to satisfy the condition y" < �yexp � 10�14, or equiva-

lently, y"=yGR < 10�4. If p � 2, this condition translates
into

c1 � c2
4ðp� 1Þ"	

2
0	

p�1
Cassini < 10�4: (43)

As we have shown in Eq. (38), this relation is satisfied in
the domain of convergence. The constraint (43) can be
used to place experimental bounds on fðGÞ models later.

C. Perihelion shift

Let us proceed to constraints coming from the perihelion
shift of the inner planets, whose GR value is in extremely
good agreement with experimental data. We will follow a
similar procedure to the one discussed in Sec. IVA. The
difference is that we now deal with the motion of a massive
particle whose Lagrangian reads

L ¼ 1
2A _t2 � 1

2B
�1 _r2 � 1

2r
2 _’2 ¼ 1

2: (44)

As in the previous case, the constants of motion are

E ¼ A _t and L ¼ r2 _’: (45)

Defining u ¼ rs=r, we can derive the following differential
equation:

d2u

d’2
þ u� r2s

2L2
¼ r2sE

2

2L2

B

A

�
1

B

dB

du
� 1

A

dA

du

�
� 1

2

dB

du
u2

� ðB� 1Þu� r2s
2L2

�
dB

du
þ 1

�
: (46)

The flat-space solution can be obtained by setting the
right-hand side of Eq. (46) to be zero, as

u[ ¼ r2s
2L2

½1þ � cosð���0Þ�; (47)

where 0< �< 1 is the eccentricity of the closed orbit.
From Eq. (44), it follows that

_r 2 ¼ B

�
E2

A
� L2

r2
� 1

�
: (48)

The minimum distance 	0 ¼ r0=rs satisfies

r2sE
2

2L2
¼ Að	0Þ

�
1

2	2
0

þ r2s
2L2

�

¼
�
1� 1

	0

þ "c1	
p
0

��
1

2	2
0

þ r2s
2L2

�
’ 1

2	2
0

þ r2s
2L2

:

(49)

Since both E and L are constants, Eq. (49) is an algebraic
condition for 	0. Therefore, once we fix the orbit, that is rs,
E, and L, then we also fix r0. The same solution will be
valid at all times; therefore, the orbit will always have the
same condition for r0, i.e. the same perihelion and the same
aphelion. In other words, the minimum (and the maximum
as well) value for r will be unchanged at successive peri-
helia. Since _r ¼ 0 also implies dr=d’ ¼ 0, the same initial
conditions for the differential equation at the perihelia are
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identical at each perihelion and so the orbit repeats exactly,
see Rindler’s book [37].

Expanding Eq. (46) at linear order in ", we find

d2u

d’2
þu� r2s

2L2
¼ 3

2
u2þ"u�p�1r2s

2L2	3
0

fc1pð	0� 1Þ


 ðL2r�2
s þ	2

0Þþ c2fL2r�2
s ½ðp� 2Þu2	3

0

�pð	0� 1Þ�þp	2
0gg: (50)

We evaluate the right-hand side of Eq. (50) on the
Newtonian solution u[. In this case, using Eq. (47), we
have

L2

r2s
	 1

2
	0ð1þ �Þ: (51)

By doing so, Eq. (50) reduces to

d2u

d’2
þ u� r2s

2L2
¼ "½	0ð1þ�Þ�p

2ð�þ 1Þ	2
0ð�cos’þ 1Þpþ1

fc1pð�þ 1Þ


 ð	0 � 1Þð�þ 2	0 þ 1Þ
þ c2ðp� 2Þ�2	0cos

2’

þ c2fp½�2ð1�	0Þ þ 2�þ 2	0 þ 1�
� 2	0g þ 2c2ðp� 2Þ�	0 cos’g: (52)

In the limit 	0 � 1, the right-hand side can be simplified
to

d2u

d’2
þu� r2s

2L2
¼ "½	0ð1þ�Þ�p
2ð�þ1Þ	2

0ð�cos’þ1Þpþ1


f2c1pð1þ�Þ	2
0þ	0½c1pð�2�1Þ

þc2ðp�2Þ�2cos2’�c2ðpð�2�2Þþ2Þ
þ2c2ðp�2Þ�cos’�g: (53)

The second term on the right-hand side of Eq. (53) is
subdominant unless c1 ¼ 0. In the following, we will focus
on the case c1 � 0.

The solutions can be written down and studied for each
p. As it happens in GR, the homogeneous solution can be
described by the Newtonian solution with some periodic
corrections, i.e. only dependent on cos’ and higher har-
monics ( cos2’ and so on). However, there will be terms
which have a secular impact on the orbit, and here we are
looking exactly for such terms. The solution for Eq. (53),
valid for any p, is given by

u ¼ r2s
2L2

½1þ � cos’� þ 3�’ sin’

2ð1þ �Þ2	2
0

� �"pðpþ 1Þ


 c1	
p
0P1ð�2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

ð1� �Þp sin’ arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

1þ �

s
tan

’

2

�

þ P2ð�;’Þ; (54)

where P1ðxÞ is a polynomial such that P1ð0Þ ¼ 1 with

degree in x equal to the integer part of p=2, and P2 is
periodic in ’ so that it does not have any secular contri-
bution. The first contribution on the right-hand side of
Eq. (54) is the Newtonian solution, the second one is the
standard GR secular correction, whereas the third one is
the secular contribution due to the " modification of the
metric. Let us examine orbits with small eccentricity. Then
at lowest order in �, one finds that Eq. (54) reduces to

u 	 r2s
2L2

½1þ � cos’� þ 3�’ sin’

2ð1þ �Þ2	2
0

� 1

2
�"c1pðpþ 1Þ


 	p
0’ sin’; (55)

where we have neglected a possible constant contribution
from the arctan which, multiplied by sin’, reduces to a
periodic term.
The result (55) coincides with another simpler method at

lowest order in �. One can expand Eq. (53) in series of �,
giving

d2u

d’2
þ u� r2s

2L2
¼ c1p"	

p
0 ½1� ðpþ 1Þ� cos’þ p��

þ 6�ðcos’� 1Þ þ 3

2	2
0

þOð�2Þ: (56)

The solution of this equation is

u 	 r2s
2L2

½1þ � cos’� þ 3�’ sin’

2	2
0

� 1

2
�"c1pðpþ 1Þ


 	p
0’ sin’þ d1 cosð2’Þ þ d2 cosð3’Þ; (57)

where the coefficients d1;2 do not need to be known for our
purpose. The second term of Eq. (57) coincides with the
second term of Eq. (55) at lowest order in �. The correc-
tions are due to higher orders of �, which are not included
in Eq. (57).
Using the relation (51), the approximate solution (55)

can be rewritten as

u 	 r2s
2L2

½1þ � cosð’� 
’Þ�; (58)

where 
ð� 1Þ is defined by


 � 3

2

1

ð1þ �Þ	0

� 1

2
"c1pðpþ 1Þð1þ �Þ	pþ1

0 : (59)

From Eq. (58) we find that in one orbit the angle between
two perihelia is larger than 2� approximately by 2�
, or

�’� 2�¼ 3�

ð1þ�Þ	0

��"c1pðpþ 1Þð1þ�Þ	pþ1
0

	 3�

ð1þ�Þ	0

�
1� 1

3
c1"pðpþ 1Þð1þ 2�Þ	pþ2

0

�
:

(60)

The experimental bound on the shift �’� 2� for Earth,
based on several thousands of optical observations of
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planetary positions, is [38]

�’� 2� ¼ 5 1 arcsec=century: (61)

For Mercury the bound is 43:1 0:1 arcsec=century.
Since the GR contribution is given by

�’GR ¼ 3�

ð1þ �Þ	0

; (62)

one sets the modifications of gravity to contribute less than
the experimental relative error, that is�������� �’"

�’GR

��������¼ 1

3
jc1j"pðpþ 1Þð1þ 2�Þ	pþ2

0 <
1

5
: (63)

The correction term remains as such if

"	pþ2
0 � 1: (64)

This condition is not necessarily satisfied in the whole
domain of convergence D. Therefore, together with the
bound (63), this can be used to constrain modified gravity
models.

D. Retardation of light

Let us study the gravitational time-delay effect in light
signals. For a light signal propagating from 	0 to 	, the
integration of Eq. (24) with respect to 	 gives

t ¼ rs
Z 	

	0

d �	

�
AB

�
1� A

A0

	2
0

�	2

���1=2
: (65)

Expanding the integrand in " and assuming that both 	0

and 	 are much greater than unity, the integral (65) is
approximately given by

tð	0;	Þ	 rs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	0�1

p
ffiffiffiffiffiffi
	0

p
Z 	

	0

d �	
�	2

ð �	�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�	2�	2

0

q �"rs
2

Z 	

	0

d �	



�
	
�	p½ �	2ðc1þc2Þ�	2

0ð2c1þc2Þ�þc1	
pþ2
0

ð �	2�	2
0Þ3=2

þOð �	p�1Þ
�
; (66)

where 	 represents the position of the satellite. See
Ref. [39] for the similar calculation about the gravitational
time-delay effect.

The second term in Eq. (66) corresponds to the " con-
tribution t". Under the condition 	 � 	0, the " contribu-
tion can be evaluated as

p ¼ 1;

r�1
s t"ð	0; 	Þ 	 �1

4ðc1 þ c2Þ"	2 þ 1
8"	

2
0½ðc2 � 3c1Þ

þ 2ðc1 � c2Þ lnð2	=	0Þ�; (67)

p ¼ 2;

r�1
s t"ð	0; 	Þ 	 �1

6ðc1 þ c2Þ"	3 þ 1
4ðc1 � c2Þ"	2

0	

þ 1
4
�c"	2

0; (68)

p ¼ 3;

r�1
s t"ð	0; 	Þ 	 �1

8ðc1 þ c2Þ"	4 þ 1
8ðc1 � c2Þ"	2

0	
2

� 1
32
�c"	4

0½13� 12 lnð2	=	0Þ�; (69)

p � 4;

r�1
s t"ð	0; 	Þ 	 � 1

2

c1 þ c2
pþ 1

"	pþ1 þ 1

4

c1 � c2
p� 1

"	2
0	

p�1

� 1

4ðp� 3Þ �c"	
3
0	

p�3; (70)

where we have introduced the constant �c defined as c1
when c1 ¼ c2.
If p � 4, then the time difference between two points 	1

and 	2 coming from the " contribution is

�t" 	 � rs
2

c1 þ c2
pþ 1

"ð	pþ1
1 þ 	pþ1

2 Þ: (71)

The two contributions add, because in the first integral one
has propagation from the satellite to the Sun (dt=d	 < 0),
and in the other one from the Sun to Earth (dt=d	 > 0).
Since the standard GR contribution to Eq. (66) is tGR 	
rs ln½2	=	0�, the time difference between two points 	1

and 	2 can be estimated as

�tGR 	 rs ln

�
4	1	2

	2
0

�
: (72)

The ratio among the two contributions is then given by

�t"
�tGR

¼ � 1

2
"
c1 þ c2
pþ 1

	pþ1
1 þ 	pþ1

2

lnð4	1	2=	
2
0Þ
: (73)

The bound regarding the ratio between the measured delay
and the one predicted by GR comes from the Viking
mission on Mars, which gives the result �texp=�tGR ¼
1:000 0:001 [40]. Hence, this gives the bound�������� �t"

�tGR

��������<10�3: (74)

Setting 	1 	 	2 	 	, this condition translates into

"jc1 þ c2j
2ðpþ 1Þ

	pþ1

lnð2	=	0Þ< 10�3: (75)

This is generally satisfied in the domain of convergence, as
the logarithmic term grows slowly with 	.

E. Gravitational redshift and equivalence principle

Let us finally consider the gravitational redshift. In this
case, for a light signal propagating at different heights r
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and r1, the ratio of the frequencies � and �1 for corre-
sponding heights is given by

�

�1
¼

ffiffiffiffiffiffiffiffiffiffiffi
AðrÞ
Aðr1Þ

s
	 1þ 1

2
ð	�1

1 � 	�1Þ þ 1

2
c1"ð	p � 	p

1 Þ:
(76)

The "-dependent term is much smaller than the standard
GR one in the D domain. Defining �� ¼ �� �1, it then
follows that

��"=�

��GR=�
¼ c1"		1ð	p � 	p

1 Þ
	� 	1

: (77)

The bound on ð��"=�Þ=ð��GR=�Þ comes from the experi-
ment of a hydrogen-maser clock on a rocket launched to an
altitude of about 107 m [41], which corresponds to
��exp=��GR ¼ 1 0:0002. This leads to the following

bound:

��"=�

��GR=�
< 2
 10�4: (78)

In the nonrelativistic limit, the gravitational potential V
can be identified as g00 ¼ 1þ 2V, that is

V ¼ � 1

2	
þ 1

2
c1"	

p ¼ �GNM�
r

þ 1

2
c1"

�
r

2GNM�

�
p
:

(79)

This only depends on the mass M� of the Sun, not on the
mass/properties of the test particle. Hence, all test particles
with the same distance from the center will feel the same
acceleration and the equivalence principle will not be
violated. This appears evident as the theory of gravitation
discussed here is still a metric theory.

V. POWER-LAW fðGÞ MODEL

The approach we have used so far works only if the
iterative parameter " is much smaller than 1, and the
method works better for smaller ". As a result, this method
cannot be evidently applied to all forms of Rþ fðGÞ. For
example, let us consider the simple power-law case [42]

fðGÞ ¼ �
ffiffiffiffiffiffi
G�

q �
G2

G2�

�
k
; (80)

such that fðGÞ is defined for all real values of k and G. In
fact, for the spherically symmetric spacetime, this
Lagrangian will give rise to terms typically of order

G f;G � f ¼ �ð2k� 1Þ �"
ffiffiffiffiffiffi
Gs

q ��
G
Gs

�
2
�
k
; (81)

G 2
sf;GG ¼ 2�kð2k� 1Þ �"

ffiffiffiffiffiffi
Gs

q ��
G
Gs

�
2
�
k�1

; (82)

where

�" � "1�4k ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�=Gs

q
�1�4k: (83)

The fact that �" can be larger than 1, implies that the
corrections to the Schwarzschild metric may become large
unless 1� 4k > 0, that is k < 1=4. The GR case corre-
sponds to k ¼ 1=2, in which the contribution of the GB
term vanishes. If k � 1=2 but close to it, then we still
require that �j2k� 1j=" � 1 in order to regard these
terms as corrections to the equations of motion. In general,
if k � 1=2 and k > 1=4, the iterative method cannot be
used to find approximate solutions to the equations of
motion. In such cases the solutions need to be obtained
by numerical integrations.
If k < 1=4, then f;GG is proportional to ½ðGs=GÞ2�1�k, so

that this term blows up as G ! 0. In cosmological back-
grounds, the GB term G ¼ 24H2ðH2 þ _HÞ changes sign
from negative to positive during the transition from the
matter era to the accelerated epoch [27]. This leads to the
divergence of f;GG at G ¼ 0, which means that the pure

power-law fðGÞ model is not cosmologically viable. We
also note that the GB term inside and outside of a spheri-
cally symmetric body (mass M� and radius r�) with ho-
mogeneous density is given by G ¼ �48ðGNM�Þ2=r6� and
G ¼ 48ðGNM�Þ2=r6, respectively. As we move from the
interior to the exterior of the star, the GB term also crosses
0 from negative to positive. Although it is possible to
derive iterative spherically symmetric solutions for k <
1=4 by using the expansion in terms of ��, the power-law
fðGÞ model is out of our interest because of the problems
mentioned above.

VI. MODEL A

In this section we study the model given in Eq. (2), i.e.

fðGÞ ¼ "½���
ffiffiffiffiffiffi
Gs

q
þ �

ffiffiffiffiffiffi
Gs

q
gðxÞ�; (84)

where

gðxÞ ¼ x arctanx� 1

2
lnð1þ x2Þ and x ¼ G

Gs"
2
: (85)

The Lagrangian is a function of G=G�, but we choose to
write it in this form, so the dependence on " becomes
explicit. Since f;GG > 0 for positive � and G�, there is no
singularity of this quantity unlike the power-law fðGÞ
model.
Let us discuss then the different contributions to the

equations of motion (11). For the model (84) we have

Gf;G � f ¼ G
�ffiffiffiffiffiffi
Gs

p
"
arctanxþ ��"

ffiffiffiffiffiffi
Gs

q
� �"

ffiffiffiffiffiffi
Gs

q
gðxÞ

¼ "

�
��

ffiffiffiffiffiffi
Gs

q
þ 1

2
�

ffiffiffiffiffiffi
Gs

q
ln

�
1þ G2

G2
s"

4

��
; (86)

which is of the order of "��
ffiffiffiffiffiffi
Gs

p
plus a logarithmic

correction. The other terms that appear in the equations
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of motion, i.e. f;GG and f;GGG, can be written as follows:

f;GG ¼ �
ffiffiffiffiffiffi
Gs

p
G2

s"
3

d2g

dx2
¼ �

ffiffiffiffiffiffi
Gs

p
"

G2
s"

4 þ G2
; (87)

f;GGG ¼ �
ffiffiffiffiffiffi
Gs

p
G3

s"
5

d3g

dx3
¼ � 2�

ffiffiffiffiffiffi
Gs

p
G"

ðG2
s"

4 þ G2Þ2 ; (88)

which are both of the order ofOð"Þ (as typically jGj � Gs

in the solar system).
We write the metric in terms of the expansion parameter

":

ds2 ¼ �
�
1� rs

r
þ "�1ðrÞ þ "2�2ðrÞ

�
dt2

þ
�
1� rs

r
þ "c 1ðrÞ þ "2c 2ðrÞ

��1
dr2

þ r2ðd�2 þ sin2�d’2Þ: (89)

Although the second-order contribution is not used in order
to obtain experimental bounds on the model, we will
evaluate it to check whether the terms in the series become
smaller for higher orders of " and to verify that D2 � D.
Because of the Bianchi identities, we can use only two
equations, i.e. the 0-0 and the 1-1 equations, as the others
are automatically satisfied. The second-order equations
follow after solving the first-order equations.

A. Spherically symmetric solutions and the domain of
convergence

Linearizing the 0-0 component of the modified Einstein
equations at first order in ", we obtain the differential
equation for c 1 in terms of 	 ¼ r=rs:

	
dc 1

d	
þ c 1 ¼ 32

ffiffiffi
3

p
�	3 þ 12

ffiffiffi
3

p
�	2 lnð	Þ

þ ð4 ln"� 2�� 28Þ ffiffiffi
3

p
�	2; (90)

whose particular solution is

c 1 ¼ 8
ffiffiffi
3

p
�	3 þ 4

ffiffiffi
3

p
�	2 ln	

þ 2
3

ffiffiffi
3

p ð2 ln"� �� 16Þ�	2: (91)

Here we have neglected the contribution coming from the
homogeneous solution, as this would correspond to an
order " renormalization contribution to the mass of the
system. Although " � 1, the term in ln" only contributes
by a factor of order 102. Hence, the first term on the right-
hand side of Eq. (91) dominates over the last term.

The 1-1 component of the Einstein equations gives the
equation used to determine � as follows:

ð	�	2Þd�1

d	
þ�1 ¼ 8

ffiffiffi
3

p
�	4

� 2
ffiffiffi
3

p ð10þ 6 ln	þ 2 ln"��Þ�	3

� 2
ffiffiffi
3

p ð�� 6 ln	� 2 ln"� 6Þ�	2

þ	c 1: (92)

Substituting the solution (91) into Eq. (92), we get the
following solution for �1:

�1 ¼ �16
3

ffiffiffi
3

p
�	3 þ 2

3

ffiffiffi
3

p ð4� �þ 6 ln	þ 2 ln"Þ�	2:

(93)

Since 	 � 1, the largest contributions to c 1 and �1

correspond to the ones proportional to 	3, which are differ-
ent from the Schwarzschild-de Sitter contribution (which
grows as 	2). Hence, the model (2) gives rise to the
corrections larger than that in the cosmological constant
case by a factor 	.
In the Appendix, we present the equations for the

second-order quantities c 2 and �2. Discarding the homo-
geneous part of the solutions of Eqs. (A1) and (A2), we
obtain

c 2 ¼ �512�2	7 � 4
21�

2ð�3972þ 168 ln"þ 504 ln	

� 84�Þ	6 � 4
21�

2ð�322 ln"þ 161�� 966 ln	

þ 1547Þ	5; (94)

�2 ¼ 1216
7 �2	7 � 4

21�
2ð�14�þ 28 ln"þ 1014þ 84 ln	Þ	6

� 4
21�

2ð294 ln	� 399� 49�þ 98 ln"Þ	5; (95)

where the dominant terms are the first terms in Eqs. (94)
and (95).
So far we have found the solutions up to the order of "2.

This expansion is meaningful if each term of the expansion
is smaller than the previous one. For the solar system
experiments, we will consider the case 	 � 1. This auto-
matically imposes that the Schwarzschild contribution rs=r
is smaller than the Minkowski value 1, which corresponds
to the weak field approximation. The first-order correction
in " is smaller than the Schwarzschild contribution if

"jc 1j � 1=	; and "j�1j � 1=	: (96)

Since the dominant terms in c 1 and �1 have the depen-
dence �	3, the conditions (96) translate into

	 � j�"j�1=4: (97)

Therefore, at first order, the domain of convergence is

1 � 	 � 1011j�j�1=4: (98)

The consistency of this inequality requires that j�j � 1044.
The second-order terms in " can be neglected if the follow-
ing conditions are satisfied in the same region:

"2c 2 � "c 1 and "2�2 � "�1: (99)
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Since the dominant contributions in c 2 and �2 have the
dependence �2	7, the conditions (99) are equivalent to the
requirement (97). Hence, our solutions using the expansion
in " can be justified in the domain of convergence D.

B. Solar system constraints

We have seen that in the domain D of convergence, the
second-order term proportional to "2 can be neglected.
Moreover, in this domain, we can approximate the solu-
tions further, keeping only the highest power in 	 ¼ r=rs
at the order ". Hence we have, for local gravity consider-
ations, the metric (12) with

A ¼ 1� 1

	
� 16

3

ffiffiffi
3

p
�"	3½1þOð"; 	�1Þ�; (100)

B ¼ 1� 1

	
þ 8

ffiffiffi
3

p
�"	3½1þOð"; 	�1Þ�: (101)

Therefore, in the domain of convergence, we will always
regard the order " quantity as a correction to the
Schwarzschild contribution, and for the order " we will
always keep only the highest power in 	. Since the solution
given above is an approximate one, valid in the domain of
convergence, it does not make sense to see whether or not
this metric is asymptotically flat; this would correspond to
the solution in a region outside of the domain of conver-
gence. However, even having the real solution at hand
(which is not the case), one should not trust it far away
from the Sun, as other forces would provide large
contributions.

In the following, let us place constraints on the model
parameter � by using a number of experimental bounds
discussed in Sec. IV.

(i) Deflection of light
The constraint (37) coming from the deflection of
light gives

jc1 � c2j
2ðp� 1Þ "	

2
0	

p�1
Earth < 10�4: (102)

For this model we have that

c1 ¼ �16
3

ffiffiffi
3

p
�; c2 ¼ 8

ffiffiffi
3

p
�; p ¼ 3: (103)

These numbers define the model and are the same for
all remaining constraints. The radius of the Sun in
units of the Schwarzschild radius is 	0 ¼
2:35
 105. The distance of Earth from the Sun in
units of the Schwarzschild radius is 	Earth ¼ 5:08

107. This translates into the following bound:

� < 1
 1015; (104)

where we have used the value (9) for ".
(ii) Cassini experiment

As we have already seen, the Cassini experiment
places the bound y" < 10�14, i.e.

vEarth

jc1 � c2j
p� 1

"	0ð	p�1
Cass þ 	p�1

EarthÞ< 10�14:

(105)

The speed of Earth in units of the speed of light is
vEarth ¼ 9:93
 10�5, whereas the distance of
Saturn in units of the Schwarzschild radius is
	Cass ¼ 4:85
 108. This gives

� < 2
 1012: (106)

(iii) Perihelion shift
The bound (63) coming from the shift of the peri-
helion of Earth leads to

1
3 jc1j"pðpþ 1Þð1þ 2�EarthÞ	pþ2

Earth <
1
5: (107)

For the eccentricity �Earth ¼ 0:02 and the perihe-
lion of Earth in units of the Schwarzschild radius
	Earth ¼ 4:98
 107, we obtain the constraint

� < 2
 105: (108)

For Mercury, �Hg ¼ 0:2 and 	Hg ¼ 1:56
 107, the

bound is slightly weaker, � < 5
 105.
(iv) Retardation of light

The bound (74) coming from the retardation of
light, together with Eq. (72), gives the following
constraint:

1

2
"
jc1 þ c2j
pþ 1

	pþ1
Mars þ 	pþ1

Earth

lnð4	Mars	Earth=	
2
0Þ
< 10�3; (109)

which gives, with 	Mars ¼ 7:71
 107 in units of
the Schwarzschild radius,

� < 5
 1012: (110)

(v) Gravitational redshift
From the constraint (78) coming from the gravita-
tional redshift, together with Eq. (77), it follows that

jc1j"Earth	2	1ð	p
2 � 	p

1 Þ
	2 � 	1

< 2
 10�4: (111)

Here "Earth 	 10�57, 	1 is the radius of Earth in
units of its Schwarzschild radius, i.e. 	1 ¼ 7:18

108, and 	2 ¼ 1:84
 109 is the distance of the
experimental apparatus (for a height of 104 km).
We then obtain the following bound:

� < 3
 1015: (112)

The tightest constraint on � comes from the perihelion
shift experiment. This bound is weak so that the fðGÞ
model (2) can be consistent with solar system constraints
for a wide range of the model parameter.
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VII. MODEL B

Let us next proceed to the constraints on the model (3).
This model can be written as

fðGÞ ¼ "½���
ffiffiffiffiffiffi
Gs

q
þ �

ffiffiffiffiffiffi
Gs

q
gðxÞ�; (113)

where

gðxÞ ¼ x arctanx; and x ¼ G
Gs"

2
: (114)

We shall derive vacuum solutions for the spherically sym-
metric metric (12) by using the same expansion parameter
" defined in (8). The term Gf;G � f in the equations of

motion can be estimated as

G f;G � f ¼ "�
ffiffiffiffiffiffi
Gs

q �
�þ G2

G2
s"

4 þ G2

�
: (115)

Since G2 � G2
s"

4, it follows that

G f;G � f 	 "�
ffiffiffiffiffiffi
Gs

q
ð�þ 1Þ þOð"5Þ; (116)

which works as a cosmological constant at lowest order.
Note that we have f;GG � "5 þOð"9Þ and f;GGG � "5 þ
Oð"9Þ, so these terms are higher than the linear order in ".
These properties are different from those in the model (2).

For the model (3), the dominant contribution to the
Schwarzschild metric comes from the linear term in "
and the next-order corrections correspond to terms in "5.
Hence, we look for a metric of the form

ds2 ¼ �
�
1� rs

r
þ "�1ðrÞ þ "5�2ðrÞ

�
dt2

þ
�
1� rs

r
þ "c 1ðrÞ þ "5c 2ðrÞ

��1
dr2

þ r2ðd�2 þ sin2�d’2Þ: (117)

Linearizing the 00 component of the Einstein Eq. (10) at
first order in ", we obtain the following differential equa-
tion:

	
dc 1

d	
� c 1 þ 2

ffiffiffi
3

p
�ð1þ �Þ	2 ¼ 0; (118)

which has the particular solution

c 1 ¼ � 2
ffiffiffi
3

p
3

�ð1þ �Þ	2: (119)

The 11 component of the linearized Einstein equation gives

ð	2 � 	Þd�1

d	
��1 þ 4

ffiffiffi
3

p
3

�ð�þ 1Þ	3

� 2
ffiffiffi
3

p
�ð�þ 1Þ	2 ¼ 0; (120)

whose particular solution is

�1 ¼ � 2
ffiffiffi
3

p
3

�ð1þ �Þ	2: (121)

These expressions for the metric corrections represent the

contribution of an effective cosmological constant (as in
the case of the Schwarzschild-de Sitter metric). This solves
the equations of motion up to the order ".
Let us derive next-order solutions c 2ðrÞ and �2ðrÞ. The

differential equations for c 2 and �2 are

	
dc 2

d	
þ c 2 � 2

ffiffiffi
3

p
�	14ð128	� 123Þ ¼ 0; (122)

ð	2 �	Þd�2

d	
��2 þ 2

ffiffiffi
3

p
5

�	14ð80	2 � 146	þ 65Þ ¼ 0;

(123)

which have the following particular solutions:

c 2 ¼ 2
ffiffiffi
3

p
5

�	14ð40	� 41Þ; (124)

�2 ¼ � 2
ffiffiffi
3

p
15

�	14ð16	� 13Þ: (125)

In principle, one can repeat this method order by order in ".
It is then clear that the vacuum solution will not be strongly
constrained by solar system experiments, as the first non-
zero contribution will be that of a cosmological constant.
To be more precise, the domain of convergence D is
defined as

"�ð1þ �Þ	2 � 1=	 � 1; (126)

which implies that

1 � 	 � "�1=3

½�ð1þ �Þ�1=3 	
1015

½�ð1þ �Þ�1=3 : (127)

For the consistency of this inequality, we require that
�ð1þ �Þ � 1045. If � and � are of the order of unity,
then the domain D corresponds to the distance 105 cm &
r & 1020 cm.
The contributions "5c 2 and "5�2 can be negligible

relative to the first-order contributions provided that
�"5	15 � �ð1þ �Þ"	2, i.e.

	 � ð1þ �Þ1=13"�4=13: (128)

If � ¼ Oð1Þ, then the domain D2 of convergence corre-
sponds to r & 1019 cm. One may wonder if this trend
continues at next order, that is, "6. When the previous
two contributions are coupled, this gives rise to terms of
the order �2ð1þ �Þ"6. Introducing the corrections "6c 3

and "6�3 to the metric and expanding the equations of
motion at order "6, we obtain the following differential
equations:

	
dc 3

d	
þ c 3 � �2ð�þ 1Þ	17ð608	� 1136Þ ¼ 0; (129)

ð	2 � 	Þd�3

d	
��3 � �2ð�þ 1Þ	17



�
32	2 þ 1064

45
	� 304

5

�
¼ 0; (130)
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whose solutions are given by

c 3 ¼ �2ð1þ �Þ	17ð32	� 568
9 Þ; (131)

�3 ¼ �2ð1þ �Þ	17ð169	þ 152
45 Þ: (132)

Therefore, the expansion is meaningful for �ð1þ
�Þ"6	18 � "5	15, that is, D3 ¼ D � D2. This shows
that the domain of convergence at the order "6 coincides
with D2.

Let us discuss solar system constraints on the model (3)
by using the experimental bounds discussed in Sec. IV. We
will show that the strongest bound comes from the shift of
the perihelion of Earth.

(i) Deflection of light
For the model (3) we have that

c1 ¼ c2 ¼ � 2
ffiffiffi
3

p
3

�ð1þ �Þ; p ¼ 2: (133)

Since c1 ¼ c2, the constraint (37) coming from the
deflection of light is trivially satisfied.

(ii) Cassini experiment
Since c1 ¼ c2 at order ", the bound (43) of the
Cassini experiment is fulfilled.

(iii) Perihelion shift
The bound coming from the shift of the perihelion of
Earth corresponds to (107) with �Earth ¼ 0:02 and
	Earth ¼ 4:98
 107. This leads to

�ð1þ �Þ< 1
 1014: (134)

From the bound of Mercury, we obtain a similar
constraint.

(iv) Retardation of light
Using the bound (109) coming from the retardation
of light with 	Mars ¼ 7:71
 107, we obtain the fol-
lowing constraint:

�ð1þ �Þ< 6
 1020: (135)

(v) Gravitational redshift
Using the constraint (111) of the gravitational red-
shift with "Earth ¼ 10�57, 	1 ¼ 7:18
 108, and
	2 ¼ 1:84
 109, it follows that

�ð1þ �Þ< 3
 1025: (136)

The bottom line is that the model B, having p ¼ 2, is
less constrained than the model A.

VIII. CONCLUSIONS

In this paper, we have discussed solar system constraints
on fðGÞ gravity models that are cosmologically viable.

These models give rise to power-law corrections of the
form ðr=rsÞp to the Schwarzschild metric, which are char-

acterized by an expansion parameter " ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�=Gs

p 	
10�46 for the Sun. The smallness of this parameter allows
us to find approximate vacuum solutions in a spherically
symmetric spacetime.
In order to confront fðGÞ models with a number of solar

system experiments, we have carried out a general analysis
for estimating their deviation from general relativity. These
include the experiments such as deflection of light, Cassini
tracking, perihelion shift of Earth, retardation of light,
and gravitational redshift. The results we have derived
can be generally applied to any modified gravity models
which have power-law corrections to the Schwarzschild
metric.
The fðGÞ models given in Eqs. (2) and (3) are designed

to give rise to a late-time cosmic acceleration preceded by
a matter-dominated epoch. We find that these models can
satisfy all of the solar system constraints discussed in
literature for a wide range of model parameters. For the

model (2), there exists a logarithmic correction ð�=2Þ
ffiffiffiffiffiffi
G�

p
lnðG2=G2�Þ to the Lagrangian density in the region of

high density (G2 � G2�). The tightest bound comes from
the shift of perihelion of Earth, but the constraint on the
parameter � is weak: � < 2
 105. In order to set stronger
bounds on these theories, it is then necessary to have better
measurement of the quadrupole moment of the Sun, as it
affects the perihelion shift. For the model (3), the leading
correction term to the Lagrangian density corresponds to

ð�=3Þ ffiffiffiffiffiffi
G�

p
G2�=G2, whose effect is very small even com-

pared to the model (2). Hence, the model parameter for the
model (3) is very weakly constrained: �ð1þ �Þ< 1014.
The main reason why the fðGÞ models can satisfy solar

system constraints fairly easily is that, even in the vacuum
spherically symmetric background, the Gauss-Bonnet sca-
lar takes a nonvanishing value G ¼ 12r2s=r

6, where rs is
the Schwarzschild radius. In the solar system, the GB term
is much larger than the cosmological value G� �H4� .
Hence, the inverse power-law terms such as ðG2�=G2Þn (n >
0) are strongly suppressed even for the vacuum solution.
This property is different from fðRÞ gravity in which the
Ricci scalar R vanishes in the vacuum spherically symmet-
ric background. In this case, the presence of nonrelativistic
matter with density 	m leads to a nonvanishing Ricci scalar
R approximately proportional to 	m. Because of the exis-
tence of matter, the local gravity constraints can be satis-
fied for viable fðRÞmodels having the asymptotic behavior
fðRÞ ¼ R� �R�½1� ðR2�=R2Þn� in the region R2 � R2�. In
fðGÞ gravity, we have shown that the contribution of matter
density 	m to the GB term (� 	2

m) can be negligible
relative to the vacuum contribution (� r2s=r

6) outside of
the area of the Sun. Thus, our analysis based on the vacuum
spherically symmetric solution is reliable to discuss the
compatibility of fðGÞ models with solar system
experiments.
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APPENDIX: SECOND-ORDER EQUATIONS FOR
THE MODEL A

In this Appendix, we present second-order equations in
terms of the expansion parameter " for the model (2). The
second-order quantities c 2 and �2 in the metric (89) obey
the following equations of motion:

ð	4 � 	� 3	3 þ 3	2Þdc 2

d	
þ ð3	� 3	2 � 1þ 	3Þc 2 þ 4096	10�2 þ ð672 ln	þ 224 ln"� 17488� 112�Þ�2	9

þ ð�1040 ln"þ 520�� 3120 ln	þ 29472Þ�2	8 þ ð�24448þ 1776 ln"� 888�þ 5328 ln	Þ�2	7

þ ð664�� 3984 ln	þ 9952� 1328 ln"Þ�2	6 þ ð�1584� 184�þ 368 ln"þ 1104 ln	Þ�2	5 ¼ 0; (A1)

and

ð�21	2 þ 21	3 þ 7	� 7	4Þd�2

d	
þ ð7þ 7	2 � 14	Þ�2 þ 8512	10�2 þ ð�34976þ 112�� 224 ln"� 672 ln	Þ�2	9

þ ð168 ln	� 28�þ 56 ln"þ 56260Þ�2	8 þ ð1344 ln"þ 4032 ln	� 44440� 672�Þ�2	7

þ ð�1960 ln"� 5880 ln	þ 980�þ 17444Þ�2	6 þ ð2352 ln	� 392�þ 784 ln"� 2800Þ�2	5 ¼ 0: (A2)

The solutions to this equation, discarding the homogeneous parts, are given by Eqs. (94) and (95).
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