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We show that the common singularities present in generic modified gravity models governed by actions

of the type S ¼ R
d4x

ffiffiffiffiffiffiffi�g
p

fðR;�; XÞ, with X ¼ � 1
2g

ab@a�@b�, are essentially the same anisotropic

instabilities associated to the hypersurface Fð�Þ ¼ 0 in the case of a nonminimal coupling of the type

Fð�ÞR, enlightening the physical origin of such singularities that typically arise in rather complex and

cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities

typically give rise to dynamically unavoidable singularities, precluding completely the possibility of

having physically viable models for which the hypersurface @f
@R ¼ 0 is attained. Some examples are

explicitly discussed.
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I. INTRODUCTION

In the absence of a more fundamental physical model
based on first-principles for the description of the cosmic
acceleration discovered more than a decade ago [1] (see,
for reviews, [2]), many dark energy phenomenological
models have been proposed and investigated in detail. In
particular, the questions about the stability against small
perturbations in the initial conditions and in the model
parameters are always the first requirement demanded to
assure the physical viability of any cosmological model.
The most part of such dark energy models belong to the
general class of cosmological models governed by an
action of the type (see, for instance, [3])

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
fðR;�; XÞ; (1)

where R stands for the spacetime scalar curvature, � is a
scalar field, X ¼ � 1

2g
ab@a�@b�, and f is a smooth func-

tion. Quintessence models [4], for instance, correspond to
the choice fðR;�; XÞ ¼ 1

16�R� 1
2g

ab@a�@b�þ Vð�Þ:
Nonminimally coupled models [5–7], on the other hand,
are typically of the type

fðR;�; XÞ ¼ Fð�ÞR� 1
2g

ab@a�@b�þ Vð�Þ: (2)

Many other models discussed in the literature correspond
yet to the case fðR;�; XÞ ¼ gðR;�Þ þ hð�;XÞ, including
k-essence [8] and the string-inspired case of a Dirac-Born-
Infeld tachyonic action [9]. (For more recent works, see
[10].) The particular case of pure modified gravity
fðR;�; XÞ ¼ fðRÞ (see, for a recent review, [11]) has
been intensively investigated as an alternative to quintes-
sence. Some primordial inflationary models [12] are also

described by actions of the type (1). Since one of the
proposals of any cosmological model is to describe our
universe without finely-tuned parameters, a given dark
energy or inflationary model would be physically viable
only if it is robust against small perturbations in the initial
conditions and in the model parameters. This is the ques-
tion to be addressed here.
Nonminimally coupled models of the type (2) are known

to be plagued by anisotropic singularities in the phase
space region corresponding to Fð�Þ ¼ 0. For instance,
Starobinski [13] was the first to identify the singularity
corresponding to the hypersurfaces Fð�Þ ¼ 0, for the case
of conformally coupled anisotropic solutions. Futamase
and coworkers [5] identified the same kind of singularity
in the context of chaotic inflation in Fð�Þ ¼ 1� ��2

theories (See also [6]). In [14], it is shown that such kind
of singularities are generically related to anisotropic
instabilities.
Many authors have described different singularities cor-

responding to @f
@R ¼ 0 in general models like (1) (see, for

instance, [3]) or, more commonly, in pure fðRÞ gravity
models (see, for instance, [11,15]). Such singularities ap-
pear typically in rather complex and cumbersome inhomo-
geneous perturbation analyses, obscuring their physical
origin and cause. In this work, we show that these singu-
larities are essentially due to anisotropic instabilities, in a
similar way to those ones described in [14] for models of
the type (2). Moreover, we show that such instabilities
typically give rise to dynamically unavoidable singular-
ities, rendering the original model physically nonviable.
One can advance that there are some geometrically

special regions on the phase space of the model in question
by an elementary analysis of the equations derived from
the action (1). They are the generalized Klein-Gordon
equation

*michele@fma.if.usp.br
†asaa@ime.unicamp.br

PHYSICAL REVIEW D 80, 063504 (2009)

1550-7998=2009=80(6)=063504(5) 063504-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.063504


Daðf;X@a�Þ þ f;� ¼ 0; (3)

and the Einstein equations

FGab ¼ 1
2ðf� RFÞgab þDaDbF� gabhF

� 1
2f;X@a�@b�; (4)

where F ¼ FðR;�; XÞ � @f
@R . We will consider here the

simplest anisotropic homogeneous cosmological model,
the Bianchi type I, whose spatially flat metric is given by

ds2 ¼ �dt2 þ a2ðtÞdx2 þ b2ðtÞdy2 þ c2ðtÞdz2: (5)

The dynamically relevant quantities in this case are

H1 ¼ _a

a
; H2 ¼

_b

b
; and H3 ¼ _c

c
: (6)

For such a metric and with a homogeneous scalar field� ¼
�ðtÞ, Einstein Eq. (4) can be written as

FG00 ¼ �1
2ðf� FRÞ � ðH1 þH2 þH3Þ _Fþ 1

2f;X
_�2;

(7)

FG11

a2
¼ 1

2ðf� FRÞ þ ðH2 þH3Þ _Fþ €F; (8)

FG22

b2
¼ 1

2ðf� FRÞ þ ðH1 þH3Þ _Fþ €F; (9)

FG33

c2
¼ 1

2ðf� FRÞ þ ðH1 þH2Þ _Fþ €F; (10)

and the generalized Klein-Gordon equation will read

d

dt
ðf;X _�Þ þ ðH1 þH2 þH3Þf;X _�� f;� ¼ 0: (11)

Notice that (11) is a second order differential equation for
�, while Eqs. (8)–(10) form a higher order system of
ordinary differential equations. Since F ¼ FðR;�; XÞ,
the term corresponding to €F involves, in fact, second
derivatives of R and, consequently, third derivatives of
Hi, i ¼ 1, 2, 3. Thus, the corresponding phase space M
is 11-dimensional and spanned by the variables

ð�; _�;H1; _H1; €H1; H2; _H2; €H2; H3; _H3; €H3Þ. Equation (7)
corresponds to the energy constraint. It restricts the solu-
tions of (8)–(11) on a certain (vanishing energy) hypersur-
face E of M. Thus, effectively, the solutions of (8)–(11)
are constrained to the 10-dimensional manifold E 2 M.

It is quite simple to show that Eqs. (8)–(10) are not
compatible, in general, on the hypersurface F of M
corresponding to the region where FðR;�; XÞ ¼ 0.
Subtracting (9) and (10) from (8) we have, respectively,
on such hypersurface

ðH1 �H2Þ _F ¼ 0; and ðH1 �H3Þ _F ¼ 0: (12)

Hence, Eqs. (8)–(10) cannot be fulfilled in general for
anisotropic metrics. As it will be shown, the hypersurface

F indeed corresponds a geometrical singularity for aniso-
tropic spacetimes which cannot be dynamically prevented
in general by requiring, for instance, that _F ¼ 0 on the
hypersurface F as suggested naively from (12).
Furthermore, the Cauchy problem for the Eqs. (8)–(11) is
ill-posed on this hypersurface, since one cannot choose
general initial conditions on it.

II. THE SINGULARITY

In order to study the geometrical nature of the singular
hypersurface F , let us consider the Einstein Eqs. (7)–(10)
in detail. For the metric (5), we have the following identi-
ties

G00 ¼ H1H2 þH2H3 þH1H3; (13)

G11 ¼ a2ð _H1 þH1ðH1 þH2 þH3Þ � 1
2RÞ; (14)

G22 ¼ b2ð _H2 þH2ðH1 þH2 þH3Þ � 1
2RÞ; (15)

G33 ¼ c2ð _H3 þH3ðH1 þH2 þH3Þ � 1
2RÞ; (16)

R ¼ 2ð _H1 þ _H2 þ _H3 þH2
1 þH2

2 þH2
3 þH1H2

þH2H3 þH1H3Þ: (17)

Now, we introduce the new dynamical variables p ¼ H1 þ
H2 þH3, q ¼ H1 �H2, and r ¼ H1 �H3. Notice that

R ¼ 2 _pþ 2
3ð2p2 þ q2 þ r2 � qrÞ; (18)

implying that €R involves terms up to third order derivative
in p and up to second order in q and r. In terms of the new
dynamical variables, Einstein Eqs. (8)–(10) can be cast in
the form

3 €F ¼ ð _pþ p2ÞF� 3
2f� 2p _F; (19)

q _F ¼ �ð _qþ qpÞF; (20)

r _F ¼ �ð _rþ rpÞF: (21)

As to the energy constraint (7), we have

1
3 ðp2 þ qr� q2 � r2ÞFþ p _Fþ 1

2ðf� FRÞ ¼ 1
2f;X

_�2;

(22)

and the generalized Klein-Gordon Eq. (3) reads simply

ðf;X þ f;XX _�2Þ €�þ ðf;XR _Rþ f;X� _�þpf;XÞ _�� f;� ¼ 0:

(23)

Notice that the Eqs. (19)–(23) do not involve the terms q
:::

and r
:::
. Moreover, Eqs. (20) and (21) are, respectively, first

order differential equations for q and r, from which the
terms involving first and second derivative of q and r
present in the terms _F and €F of (19) and (22) can be
evaluated directly. The order reduction of the system of
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differential equations attained with the introduction of the
new dynamical variables implies that the phase spaceM is
not 11, but 7-dimensional and spanned by the variables

ð�; _�;p; _p; €p; q; rÞ. The solutions are still constrained to
the hypersurface E 2 M corresponding to the energy
constraint (22). It is clear, however, that the manifold E
is, in fact, 6-dimensional.

There is still a further dynamical restriction on the
solutions of (19)–(23). From (20) and (21), one has

r _q� q _r ¼ 0; (24)

implying that qðtÞ=rðtÞ is a constant of motion fixed only
by the initial conditions. Suppose the initial ratio is
qð0Þ=rð0Þ ¼ �: this would imply that ðH1 �H2Þ ¼
�ðH1 �H3Þ for all t, leading to, for instance, c�ðtÞ /
a��1ðtÞbðtÞ in the metric (5). This simplification is a con-
sequence of the scalar character of our homogeneous
source field, and it is also present [14] in the nonminimally
coupled case given by actions of the form (2). LetQ be the
hypersurface corresponding to q=r constant. Finally, the
solutions of (19)–(23) are necessary restricted to the 5-
dimensional submanifold Q \ E of M.

A closer analysis of Eqs. (20) and (21) reveals the
presence of the singularity. They can be written as

_q ¼ �
�
pþ _F

F

�
q; (25)

_r ¼ �
�
pþ _F

F

�
r: (26)

In general, the right-hand side of these equations diverge
on the hypersurface F corresponding to FðR;�; XÞ ¼ 0,
unless q ¼ r ¼ 0. The first observation is that (25) and
(26) imply, in general, that, if q (or r) vanishes for some t, it
will vanish for any t. This is why such kind of singularity
can be evaded in homogeneous and isotropic situations. We
will return to this point in the next section, with an explicit
example. For any physically viable cosmological model,
small amounts of anisotropy, corresponding to small q and
r, must stay bounded during the cosmological history. In
fact, it is desirable that they diminish, tending towards an
isotropic situation. However, this does not happen in gen-
eral if FðR;�; XÞ ¼ 0 in (25) and (26). Let us assume that
_F � 0 on the hypersurface F . (We will return to this point
later.) In this case, if any anisotropic solution crosses F ,
necessarily _q and _r will diverge, corresponding to a real
spacetime geometrical singularity, as one can check by
considering the Kretschman invariant I ¼ RabcdR

abcd,
which for the metric (5) is given by

1
4I ¼ ð _H1 þH2

1Þ2 þ ð _H2 þH2
2Þ2 þ ð _H3 þH2

3Þ2 þH2
1H

2
2

þH2
1H

2
3 þH2

2H
2
3 : (27)

As one can see, I is the sum of non-negative terms.
Moreover, any divergence of the variables H1, H2, H3, or

of their time derivatives, would suppose a divergence in I,
characterizing a real geometrical singularity. Since the
relation between the variables p, q, r, and H1, H2, H3 is
linear, any divergence of the first, or of their time deriva-
tive, will suppose a divergence in I.
There are two basically distinct situations where the

singularity corresponding to the hypersurface F could be
evaded dynamically. Wewill show that both are very unlike
to occur in physical situations. The first one corresponds to
the case when the hypersurface F belongs to some dy-
namically inaccessible region. In such a case we, of course,
do not face any singularity, since FðR;�; XÞ will never
vanish along a solution of the system. This would be
equivalent to stating that F \ E \Q ¼ ;. In our case, it
would imply, from (22), that the equation

p _F ¼ Xf;X � 1
2f (28)

has no solution in M. This would correspond to a quite
concocted and artificial function f. In particular, for all
models we could find in the literature having the hypersur-
face F , the Eq. (28) has solutions.
The second situation corresponds to the already men-

tioned case where _F ¼ 0 on the hypersurface F . From
(28), we see that this requires necessarily that the function
f be homogeneous of degree 1

2 in the variable X on F .

Again, a highly artificial situation.
Any point on the energy constraint hypersurface E is, in

principle, a dynamically possible point. Moreover, it is
desirable for any cosmological model free of finely-tuned
parameters that any point or, at least, a large region of E
could be chosen as the initial condition for a cosmological
evolution. This, of course, includes also the neighborhood
of the hypersurface F provided that F \ E � ;.

III. AN EXPLICIT EXAMPLE

The singularities described in the preceding section
imply that any model governed by an action of the type
(1) having a hypersurface F will certainly present severe
anisotropic instabilities that will render it physically non-
viable. Let us work out an explicit example in order to
illustrate the dynamical role of such anisotropic instabil-
ities. The pure modified gravity model

fðRÞ ¼ R� �R� ln
�
1þ R

R�

�
; (29)

where � and R� are free positive parameters, was recently
proposed [16] as a viable model to describe the recent
cosmic acceleration. Such a model has a hypersurface F
corresponding to f0ðRÞ ¼ FðRÞ ¼ 0, where

FðRÞ ¼ 1� �R�
Rþ R�

: (30)

In [16], it is assumed a universe filled with radiation and
dark matter, but, for our purposes here, it is enough to
consider the pure geometrical Lagrangian given by (29).
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Let us start, as in [16], assuming a homogeneous and
isotropic universeH1 ¼ H2 ¼ H3 ¼ H. Einstein Eqs. (7)–
(10) for this case would correspond simply to the energy
constraint

6H _RF0ðRÞ þ fðRÞ � RFðRÞ þ 6H2FðRÞ ¼ 0; (31)

and to the generalized Friedman equation

€RF0ðRÞ þ ð2HF0ðRÞ þ _RF00ðRÞÞ _Rþ 1
2fðRÞ

� ð _H þ 3H2ÞFðRÞ ¼ 0; (32)

where R ¼ 6 _H þ 12H2 in this homogeneous and isotropic
case. Note that

F0ðRÞ ¼ �R�
ðRþ R�Þ2

> 0; (33)

for Rþ R� � 0. Equation (32) is a third order differential
equation for H. Hence, the relevant phase space is 3-
dimensional and spanned by the variables ðH; _H; €HÞ, but
the solutions are in fact constrained to the 2-dimensional
manifold E corresponding to the energy constraint (31).
The manifold E is an ordinary smooth surface, with a single
value of €H assigned to each pair ðH; _HÞ, provided H � 0
and Rþ R� � 0. Thus, the solutions of (32) can be con-
veniently projected on the plane ðH; _HÞ, without any loss of
dynamical information.

It is convenient to work with the dimensionless quanti-
ties H ¼ ffiffiffiffiffiffi

R�
p

h,
ffiffiffiffiffiffi
R�

p
� ¼ t, R ¼ �R�. The phase space for

this model is quite simple. There are only two fixed points

corresponding to h ¼ � ffiffiffiffiffiffiffiffiffiffiffi
~�=12

p
, where ~� is the positive

solution of the equation

2� lnð1þ �Þ ¼ �þ �
�

1þ �
: (34)

This solution exists and is unique provided that �> 1.
Both Eqs. (31) and (32) are invariant under the transfor-
mation � ! �� and h ! �h, implying that the h negative
portion of the phase space can be obtained from the posi-
tive one by means of a time reversal operation. Typical

trajectories projected on the ðh; _hÞ plane of the phase space
are depicted in Fig. 1. Notice that the surfaces correspond-

ing to � ¼ R=R� constant are simple parabolas 6 _hþ
12h2 ¼ � in the ðh; _hÞ plane. For the model in question,
the F surface corresponds to one of these parabolas,
namely � ¼ �� 1. The point here is that the existence
of such a surface does not imply any singular behavior for
the Eq. (32). For instance, the solutions crossing the sur-
face FðRÞ ¼ 0 depicted in 1 are perfectly regular. Hence,
homogeneous and isotropic solutions can cross without
problem the singular hypersurface.

Suppose now the system has a small amount of anisot-
ropy, i.e., jqj � jpj and jrj � jpj. In this case, we have
from (18) R � 2 _pþ 4

3p
2 and the Eq. (19) for p will be

essentially the same (32) obeyed byH in the isotropic case,
provided the anisotropy is indeed kept small along the
solutions. For the amounts of anisotropy q and r, however,
the relevant equations will be (25) and (26). Since we know

from (24) that rðtÞ ¼ �qðtÞ, we can consider here only the
variable q

_q ¼ �
�
pþ F0ðRÞ

FðRÞ
_R

�
q: (35)

In any region of the phase space far from the surface
FðRÞ ¼ 0, the right-handed side of (35) is well behaved.
Moreover, from the energy constraint (22), we have

pþF0ðRÞ
FðRÞ

_R¼2

3
pþ�2��þ1

3

q2

p
þ 1

2p

�
R� fðRÞ

FðRÞ
�
: (36)

A closer analysis reveals that

RFðRÞ � fðRÞ ¼ �R�
�
lnð1þ �Þ � �

1þ �

�
� 0; (37)

with the equality holding only for � ¼ 0, implying that for
the region FðRÞ> 0, at least, the quantity between paren-
thesis in (35) is positive, leading indeed to an isotropization
of the solutions. For regions close to the surface FðRÞ ¼ 0,
on the other hand, the situation is qualitatively different.
From (36), we have that the right-handed side of (35)
diverges on the surface FðRÞ ¼ 0. If an anisotropic solu-
tion reaches such surface, we have from Eq. (35) that _q
diverges, implying that this model does not admit any
amount of anisotropy at all, precluding any possibility of
constructing a realistic model based solely in the geometric
Lagrangian (29). Similar results hold also for the other

.
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FIG. 1. Typical trajectories for the model (29) projected on the
ðh; _hÞ plane, with � ¼ 2 (the same value adopted in the analysis
of [16]). The (attractive de Sitter) fixed point in this case
corresponds to h � 0:7157. The �-constant parabolas are shown.
The solid one, in particular, correspond to � ¼ �� 1 (the
singular F surface, defined by FðRÞ ¼ 0Þ. The regions corre-
sponding to FðRÞ> 0 and FðRÞ< 0 are, respectively, the region
above and the region below the parabola � ¼ �� 1. As one can
see, homogeneous and isotropic solutions can cross without
problems the singular surface.
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functions fðRÞ discussed in [16], namely

fðRÞ ¼ R� �R�
�
1þ R

R�

�
�
; (38)

with � 2 ð0; 1Þ.

IV. FINAL REMARKS

The singularities associated with the hypersurface
FðR;�; XÞ ¼ 0 described here are not new. They have
been discovered and rediscovered many times for many
different models in rather complex and cumbersome in-
homogeneous perturbation analysis around a given well
behaved background solution. Our results, however, en-
lighten the physical origin of such singularities. They arise
already in the background level and are related to aniso-
tropic expansion rates. Any solution crossing the hypersur-
face FðR;�; XÞ ¼ 0will not admit, in general, any amount
of anisotropy, otherwise it will certainly develop a cata-

strophic geometrical singularity with, for instance, the
blowing up of the Kretschman invariant (27). This, in
fact, precludes the possibility of constructing a realistic
model with solutions crossing the hypersurface
FðR;�; XÞ ¼ 0 since we would have qualitatively distinct
behavior for arbitrarily close homogeneous solutions: a
perfect isotropic and a slightly anisotropic one.
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