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The fðRÞ gravity theories provide an alternative way to explain the current cosmic acceleration without

a dark energy matter component. If gravity is governed by a fðRÞ theory, a number of issues should be

reexamined in this framework, including the violation of causality problem on nonlocal scale. We examine

the question as to whether the fðRÞ gravity theories permit space-times in which the causality is violated.

We show that the field equations of these fðRÞ gravity theories do not exclude solutions with breakdown of
causality for a physically well-motivated perfect-fluid matter content. We demonstrate that every perfect-

fluid Gödel-type solution of a generic fðRÞ gravity satisfying the condition df=dR > 0 is necessarily

isometric to the Gödel geometry, and therefore presents violation of causality. This result extends a

theorem on Gödel-type models, which has been established in the context of general relativity. We also

derive an expression for the critical radius rc (beyond which the causality is violated) for an arbitrary fðRÞ
theory, making apparent that the violation of causality depends on both the fðRÞ gravity theory and the

matter content. As an illustration, we concretely take a recent fðRÞ gravity theory that is free from

singularities of the Ricci scalar and is cosmologically viable, and show that this theory accommodates

noncausal as well as causal Gödel-type solutions.
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I. INTRODUCTION

The possibility of modifying Einstein’s theory of gravi-
tation by adding terms proportional to powers of the Ricci
scalar R to the Einstein-Hilbert Lagrangian, presently
known as fðRÞ gravity, has a long history (see, e.g., [1])
and received the attention of many researchers (see, e.g.,
Ref. [2] for historical reviews). Quadratic corrections were
used to construct a renormalizable gravity action [3] and to
fuel inflation [4]. Modifications with negative power of R
motivated by string/M theory [5], were also proposed in the
scientific literature. Many of these works were motivated
by quantum corrections, which are important close to the
Planck scale. More recently, due to the impressive amount
of astrophysical data pointing to a phase of accelerated
expansion of the Universe [6], fðRÞ gravity had a revival,
motivated by the fact that these theories can be used to
explain the observed accelerating late expansion with no
need of a dark energy component. This has given birth to a
great number of papers [7] on fðRÞ gravity (see also
Ref. [8] for recent reviews). Several features of these
theories, including solar system tests [9], Newtonian limit
[10], gravitational stability [11] and singularities [12], have
been exhaustively discussed. General principles such as the
so-called energy conditions have also been used to place
constraints on fðRÞ theory [13]. As a result, a number of
fðRÞ theories have been suggested to describe the evolution
of the Universe, retaining the standard local gravity con-
straints (see, for example, Refs. [14–16]).

If gravitation can be described by a fðRÞ theory instead
of general relativity, there are a number of issues that ought
to be reexamined in the fðRÞ gravity framework, including
the question as to whether these theories permit space-time
solutions in which the causality is violated. To tackle this
problem in the fðRÞ gravity framework, we first recall that
there are solutions to the Einstein field equations that
possess causal anomalies in the form of closed timelike
curves. The famous solution found by Gödel [17] 60 years
ago is the best known example of a model that makes it
apparent that the general relativity theory does not exclude
the existence of closed timelike world lines, despite its
Lorentzian character, which leads to the local validity of
the causality principle. The Gödel model is a solution of
Einstein’s equations with cosmological constant� for dust
of density �, but it can also be interpreted as perfect-fluid
solution (with pressure p ¼ �) without cosmological con-
stant. In this regard, it was shown by Bampi and Zordan
[18] (for a generalization see Ref. [19]) that every Gödel-
type solution of Einstein’s equations with a perfect-fluid
energy-momentum tensor is necessarily isometric to the
Gödel space-time. Owing to its unexpected properties,
Gödel’s model has a well-recognized importance and has
motivated a number of investigations on rotating Gödel-
type models as well as on causal anomalies not only in the
context of general relativity (see, e.g. Refs. [20]) but also in
the framework of other theories of gravitation (see, for
example, Refs. [21]).
Gödel-type universes in gravity theories whose

Lagrangian is an arbitrary function of the curvature invar-
iants R, R��R

�� and R����R
���� were recently examined

by Clifton and Barrow [22]. In particular, they have shown
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that any fðRÞ gravity theory in which df=dR � 0, admits a
perfect-fluid Gödel-type solution with closed timelike
curves.1

In this article, to proceed further with the investigation
of Gödel-type universes along with the question of break-
down of causality in fðRÞ gravity, we extend the results of
Refs. [22,23] in four different ways. First, we examine the
dependence of the critical radius rc (beyond which the
causality is violated) with the fðRÞ gravity theory, and
derive an expression for the critical radius of Gödel-type
perfect-fluid solutions of any fðRÞ gravity theory. Second,
we demonstrate that every perfect-fluid Gödel-type solu-
tion of a generic fðRÞ gravity satisfying the condition2

fR � df=dR > 0 is necessarily isometric to the Gödel
geometry, and hence any fðRÞ gravity exhibits violation
of causality. This extends to the context of fðRÞ gravity a
theorem on Gödel-type models, which has been established
in the framework of general relativity. Third, given the
inevitable breakdown of causality for any perfect-fluid
Gödel-type solution, we reexamine the violation of cau-
sality by considering two other matter sources, namely,
combination of a perfect fluid with a scalar field, and a
single scalar field. For both cases we show that fðRÞ
gravity permit solutions without violation of causality.
Fourth, we concretely illustrate our general results by
taking a recent fðRÞ gravity theory that is free from singu-
larities of the Ricci scalar and is cosmologically viable
[16], and show that this theory accommodates both causal
and noncausal solutions.

II. fðRÞ GRAVITYAND GÖDEL-TYPE UNIVERSES

The causality problem in fðRÞ theories can be looked
upon as having two interconnected physically relevant
ingredients, namely, the gravity theory (which involves
the matter source) and the space-time geometry.
Regarding the former, we begin by recalling that the action
that defines an fðRÞ gravity is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
fðRÞ
2�2

þLm

�
; (1)

where �2 � 8�G, g is the determinant of the metric g��,

fðRÞ is a function of the Ricci scalar R, and Lm the
Lagrangian density for the matter fields. Varying this ac-
tion with respect to the metric we obtain the field equations

fRR�� � f

2
g�� � ðr�r� � g��hÞfR ¼ �2T��; (2)

where fR � df=dR, h ¼ g��r�r�, r� denotes the co-

variant derivative, and T�� ¼ �ð2= ffiffiffiffiffiffiffi�g
p Þ�

�ð ffiffiffiffiffiffiffi�g
p

LmÞ=�g�� is the matter energy-momentum tensor.

Clearly, for fðRÞ ¼ R these field equations reduce to the
Einstein equations. An important constraint, often used to
simplify the field equations, comes from the trace of
Eq. (2), which is given by

3hfR þ fRR� 2f ¼ �2T; (3)

where T � T�
� is the trace of the energy-momentum

tensor.
The second important ingredient of the above mentioned

causality problem is related to the space-time geometry. In
this regard, we recall that the Gödel-type space-time-
homogeneous metrics that we focus our attention on in
this paper is given, in cylindrical coordinates [ðr; 	; zÞ], by
[23]

ds2 ¼ ½dtþHðrÞd	�2 �D2ðrÞd	2 � dr2 � dz2; (4)

where

HðrÞ ¼ 4!

m2
sinh2

�
mr

2

�
; (5)

DðrÞ ¼ 1

m
sinhðmrÞ; (6)

with ! and m being parameters such that !2 > 0 and
�1 � m2 � þ1.3 All Gödel-type metrics are character-
ized by the two parameters m and !: identical pairs
ðm2; !2Þ specify isometric space-times [23–25]. Gödel
solution is a particular case of the m2 > 0 class of space-
times in which m2 ¼ 2!2.
The line element of Gödel-type metrics can also be

written as

ds2 ¼ dt2 þ 2HðrÞdtd	� dr2 �GðrÞd	2 � dz2; (7)

where GðrÞ ¼ D2 �H2. In this form it is clear that the
existence of closed timelike curves of Gödel-type, i.e.,
circles defined by t, z, r ¼ const, depend on the behavior
of the function GðrÞ. If GðrÞ< 0 for a certain range of r
(r1 < r < r2, say)Gödel’s circles defined by t, z, r ¼ const
are closed timelike curves. In this regard, it is easy to show
that the causality features of the Gödel-type space-times
depend upon the two independent parameters m and !
[23]. Form ¼ 0 there is a critical radius, defined by!rc ¼
1, such that for all r > rc there are noncausal Gödel’s
circles. For m2 ¼ ��2 < 0 there is an infinite sequence

1For fðRÞ gravity with df=dR ¼ 0, the existence of these
curves depends on the functional form of fðRÞ, i.e., the violation
of causality may or may not occur [22]. These theories, however,
do not fulfill the conditions to avoid instabilities and to ensure
agreement with local tests of gravity.

2Classically, this condition is necessary to ensure that the
effective Newton constant Geff ¼ G=fR does not change its
sign. At a quantum level, it prevents the graviton from becoming
ghostlike (see, e.g., Refs. [15] for details).

3Clearly, for m2 ¼ ��2 < 0 the metric functions HðrÞ and
DðrÞ become circular functions HðrÞ ¼ ð4!=�2Þsin2ð�r=2Þ and
DðrÞ ¼ ��1 sinð�rÞ, while in the limiting case m ¼ 0, they
become H ¼ !r2 and D ¼ r.
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of alternating causal and noncausal t, z, r ¼ const regions
without and with Gödel’s circles. For 0<m2 < 4!2 non-
causal Gödel’s circles occur for r > rc such that

sinh 2 mrc
2

¼
�
4!2

m2
� 1

��1
: (8)

When m2 ¼ 4!2 the critical radius rc ! 1. Thus, for
m2 � 4!2 there are no Gödel’s circles, and hence the
breakdown of causality of Gödel type is avoided.

From Eqs. (4)–(6) it is straightforward to show that the
Ricci scalar for the Gödel-type metrics takes a constant
value R ¼ 2ðm2 �!2Þ, hence the third term on the left-
hand side of Eqs. (2) vanishes. A further simplification
comes about by the following choice of basis:


0 ¼ dtþHðrÞd	; 
1 ¼ dr; (9)


2 ¼ DðrÞd	; 
3 ¼ dz; (10)

relative to which the Gödel-type line element (4) takes the
form

ds2 ¼ �AB

A
B ¼ ð
0Þ2 � ð
1Þ2 � ð
2Þ2 � ð
3Þ2; (11)

where clearly �AB ¼ diagð1;�1;�1;�1Þ. Indeed, taking
into account the constraint Eq. (3), the field Eqs. (2) take
the form

fRGAB ¼ �2TAB � 1
2ðfþ �2TÞ�AB; (12)

where the nonvanishing components of the Einstein tensor
GAB take the quite simple form

G00 ¼ 3!2 �m2; G11 ¼ G22 ¼ !2;

G33 ¼ m2 �!2:
(13)

Having set up the basic ingredients of the causality
problem in fðRÞ gravity, in the next sections we shall
examine whether these theories permit causal and non-
causal solutions.

III. NONCAUSAL GÖDEL-TYPE SOLUTION

An important component of the above gravitational in-
gredient of the causality problem is the matter source. In
this regard, we first consider a physically well-motivated
perfect fluid of density � and pressure p, whose energy-
momentum tensor in the basis (9) and (10) is clearly given
by

TðMÞ
AB ¼ ð�þ pÞuAuB � p�AB: (14)

For this matter source, the field Eqs. (12) reduce to

2ð3!2 �m2ÞfR þ f ¼ �2ð�þ 3pÞ; (15)

2!2fR � f ¼ �2ð�� pÞ; (16)

2ðm2 �!2ÞfR � f ¼ �2ð�� pÞ; (17)

where we have used Eq. (13). Equations (16) and (17) give

ð2!2 �m2ÞfR ¼ 0: (18)

Thus, for fðRÞ theories that satisfy the condition to keep
unaltered the sign of the effective Newton constant as well
as to avoid graviton from becoming ghostlike [15], i.e.,
fR > 0, Eq. (18) givesm2 ¼ 2!2, which defines the Gödel
metric, and the remaining field equations reduce to

�2p ¼ f

2
; (19)

�2� ¼ m2fR � f

2
; (20)

where f is an arbitrary function of the Ricci scalar (with
fR � 0), and both f and fR are evaluated at R ¼ m2 ¼
2!2. This result can be seen as an extension of Bampi and
Zordan [18] result (obtained in the framework of general
relativity) to the context of fðRÞ gravity in the sense that for
arbitrary � and p (with p � ��) perfect-fluid solution of
every fðRÞ gravity, which satisfies the condition fR > 0, is
necessarily isometric to the Gödel geometry.4 Concerning
the causality features of these solutions we first note that
since they are isometric to Gödel geometry they unavoid-
ably exhibit closed timelike curves, i.e., noncausal Gödel’s
circles whose critical radius rc is given by Eq. (8). But,
taking into account Eqs. (19) and (20) we have that, in the
framework of fðRÞ gravity, rc is given by

rc ¼ 2

m
sinh�1ð1Þ ¼ 2sinh�1ð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fR

2�2�þ f

s
; (21)

making apparent that the critical radius, beyond which
there exist noncausal Gödel’s circles, depends on both
the gravity theory and the matter content. We emphasize
this expression (21) for the critical radius holds for any
fðRÞ gravity which satisfies the condition fR > 0.
Despite this inescapable breakdown of causality for any

perfect-fluid Gödel-type fðRÞ solution, to concretely illus-
trate an estimation of the bounds on rc for a specific theory,
let us consider the recently proposed fðRÞ theory described
by [16]

fðRÞ ¼ R� �R� ln
�
1þ R

R�

�
; (22)

which is free from singularities of the Ricci scalar, cosmo-
logically viable and satisfies the existence of relativistic
stars for positive parameters � and R�. To this end, we use
the positivity of the density � and Eq. (20) to obtain

m2fR � f

2
� 0; (23)

where f is an arbitrary function of the R (with fR � 0), and

4We note that this extension is contained in Ref. [22] but it has
not been explicitly stated.
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both f and fR are evaluated at R ¼ m2. By using (22) for
� ¼ 2 (see Ref. [16]) it is easy to show that the inequality
(23) holds for all m such that m2 � 0:55R�, making there-
fore explicit the lower bound on m2 and therefore on the
critical radius rc for this theory.

IV. CAUSAL GÖDEL-TYPE SOLUTION

Since any perfect-fluid Gödel-type solution of fðRÞ
gravity is inevitably noncausal, the question as to whether
other matter sources could generate Gödel-type causal
solutions naturally arises at this point. In this section we
shall examine this problem by considering two different
matter sources, namely, a combination of a perfect fluid
with a scalar field, and a single scalar field.5

A. Perfect fluid plus scalar field

The combined energy-momentum tensor we consider is
given by

TAB ¼ TðMÞ
AB þ TðSÞ

AB; (24)

where TðMÞ
AB corresponds to a perfect fluid [Eq. (14)] and

TðSÞ
AB is energy-momentum tensor of a scalar field, i.e.,

TðSÞ
AB ¼ �jA�jB � 1

2
�AB�M�N�

MN; (25)

where a vertical bar denotes components of covariant

derivatives relative to the local basis 
A ¼ eðAÞ� dx� [see
Eqs. (9) and (10)]. Following Ref. [23] it is straightforward
to show that a scalar field of the form �ðzÞ ¼ ezþ const
satisfies the scalar field equation h� ¼ �ABrArB� ¼ 0
for a constant amplitude e of�ðzÞ. Thus, the nonvanishing
components of energy-moment tensor for this scalar field
are

TðSÞ
00 ¼ �TðSÞ

11 ¼ �TðSÞ
22 ¼ TðSÞ

33 ¼ e2

2
; (26)

and the field Eqs. (12) for the combined matter source (24)
can be written in the form

�2e2 ¼ ðm2 � 2!2ÞfR; (27)

�2p ¼ 1

2
ð2!2 �m2ÞfR þ f

2
; (28)

�2� ¼ 1

2
ð6!2 �m2ÞfR � f

2
; (29)

where f is an arbitrary function of the Ricci scalar (with

fR � 0), and both f and fR are evaluated at R ¼ 2ðm2 �
!2Þ. A causal Gödel-type class of solutions of these equa-
tions that satisfies the condition fR > 0 is given by

m2 ¼ 4!2; (30)

fR ¼ �2e2

2!2
; (31)

�2p ¼ ��2� ¼ �!2fR þ f

2
; (32)

where from Eqs. (8) and (30) one clearly has that the
critical radius rc ! 1. Hence, for this combination of
matter fields, there is no violation of causality of Gödel
type (Gödel’s circles) for any fðRÞ gravity that satisfies the
conditions fR > 0.
As an illustration, we shall now concretely examine

whether the theory described by (22) admits this type of
causal solution. For this theory, Eq. (31) gives rise to a
quadratic equation in the variable m2=R� whose roots are
given in terms of e2=R� by

m2�
R�

¼ 1

3

�
1þ 3

�2e2

R�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 18

�2e2

R�
þ 9

�
�2e2

R�

�
2

s �
;

(33)

where we have taken � ¼ 2 (see Ref. [16] for details).
Clearly, the positivity of the density parameter � [as given
by (32) for f evaluated at R ¼ 6!2 ¼ 3m2=2 and fR given
by (31)] is assured by �2e2 � f � 0 for each root of
Eq. (33). Regarding the first root m2þ=R� the positivity of
� gives

0 � �2e2

R�
& 0:8 and 0:7 &

m2

R�
& 2:7: (34)

Thus, for values �2e2=R� andm2=R� within these intervals
there are causal solutions of the fðRÞ gravity of Ref. [16]
generated by the combination of a perfect fluid with a
scalar field such that � � 0.6

B. Scalar field

For the scalar field�ðzÞ as the single source component,
and fR � 0, the field Eqs. (27)–(29) give rise to the unique
class of Gödel-type solutions

m2 ¼ 4!2; (35)

fR ¼ �2e2

2!2
; (36)

5We note that the presence of a single closed timelike curve as,
for example, a Gödel’s circle, is an unequivocal manifestation of
violation of causality. However, a space-time may admit non-
causal curves other than Gödel’s circles. Therefore, throughout
this paper by causal solutions we mean solutions with no
violation of causality of Gödel-type, i.e., no Gödel’s circles.

6For completeness, we mention that the second root of (33),
i.e., m2�=R� along with the positivity of � furnishes �2e2=R� *
2:5 and m2=R� < 0. Negative values of m2 are known to lead to
violation of causality with alternating causal and noncausal
Gödel’s circles [23,26].
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f ¼ k2e2; (37)

where f is an arbitrary function of R (with fR � 0), and
both f and fR are evaluated at R ¼ 2ðm2 �!2Þ. This
clearly defines a class of solutions with no violation of
causality of Gödel type (rc ! 1) for an arbitrary fðRÞwith
fR � 0.

As an illustration, we note that for this source, the fðRÞ
theory described by (22) also permits a causal solution.
Indeed, as Eq. (36) is identical to Eq. (31) it clearly has two
roots given by Eq. (33). Inserting the first root,m2þ=R�, into
(37) one finds the following values:

�2e2

R�
	 0:82 and

m2

R�
	 2:7; (38)

making apparent that the theory of Ref. [16] accommo-
dates the solution given by (35)–(38), which has no viola-
tion of causality of Gödel type.7

V. CONCLUDING REMARKS

The so-called fðRÞ gravity theory provides an alternative
way to explain the current cosmic acceleration with no
need of invoking either the existence of an extra spatial
dimension or a dark energy component. If gravity is gov-
erned by a fðRÞ theory instead of general relativity, various
issues should be reexamined in the fðRÞ framework. This
includes the breakdown of causality. In fðRÞ gravity theo-
ries the causal structure of four-dimensional space-time
has locally the same qualitative nature as the flat space-
time of special relativity—causality holds locally. The
nonlocal question, however, is left open, and violation of
causality can occur.

In this paper, we have examined the question as to
whether the fðRÞ gravity theories permit space-times in

which the causality is violated or not, and generalize the
results of Refs. [22,23]. For physically well-motivated
perfect-fluid matter sources, we showed that every perfect
fluid (with p � �) Gödel-type solution of an arbitrary fðRÞ
gravity that satisfies the the condition fR > 0 is necessarily
isometric to the Gödel geometry, making explicit that the
violation of causality is unavoidable feature of any fðRÞ
gravity. This results is a generalization of the Bampi-
Zordan theorem [18], which has been established in the
context of Einstein’s theory of gravitation. We have de-
rived an expression for the critical radius rc (beyond which
the causality is violated) for an arbitrary fðRÞ theory (with
fR � 0), making apparent that the functional character of
the violation of causality depends on both the fðRÞ gravity
theory and the matter content.
We have also examined the question as to whether other

matter sources could give rise to Gödel-type causal solu-
tions by considering a combination of perfect fluid with a
scalar field, and simply a single scalar field. We have
shown that in both cases Gödel-type solutions of an arbi-
trary fðRÞ theory (with fR � 0) with no violation of cau-
sality are permitted. We have also found a general class of
such causal solution for an arbitrary fðRÞ theory that
satisfies the condition fR > 0. As an illustration, we have
concretely considered a recent fðRÞ gravity theory that is
free from singularities of the Ricci scalar and is cosmolog-
ically viable [16], and showed that this theory accommo-
dates both noncausal and causal Gödel-type solutions.
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