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We suggest that the solution to the cosmological vacuum energy puzzle is linked to the infrared sector

of the effective theory of gravity interacting with standard model fields. We propose a specific solvable

two dimensional model where our proposal can be explicitly tested. We analyze the 2d Schwinger model

on a 2-torus and in curved 2d space, mostly exploiting the properties of its topological susceptibility, its

links with the nontrivial topology or deviations from spacetime flatness, and its relations to the real 4d

world. The Kogut-Susskind ghost (which is a direct analogue of the Veneziano ghost in 4d) on a 2-torus

and in curved 2d space plays a crucial role in the computation of the vacuum energy. The departure from

Minkowski flatness, which is defined as the cosmological constant in our framework, is found to scale as

1=L, where L is the linear size of the torus. Therefore, in spite of the fact that the physical sector of 2d

QED is represented by a single massive scalar particle, the deviation from Minkowski space is linear in L

rather than exponentially suppressed as one could naı̈vely expect.
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I. INTRODUCTION

This paper is the companion of our paper [1] on the
cosmological constant in four dimensions, where we
compute the vacuum energy �vac in terms of QCD parame-
ters and the Hubble constant H with the result �vac �H �
mqh �qqi=m�0 � ð3:6� 10�3 eVÞ4, which is amazingly

close to the observed value today ð2:3� 10�3 eVÞ4.
The Veneziano ghost in the 4d scenario bears close

resemblance with the Kogut-Susskind ghost in 2d QED.
The main goal of this paper is to test the idea that the
vacuum energy esquires�1=L correction to its Minkowski
value, with L being the linear size of the manifold. This
scaling is explicitely obtained in the exactly solvable case
of the Schwinger model, thereby laying robust and firmly
grounded basis for the results of [1]. The key point is that
the corrections due to the very large but finite size L of the
manifold are small, �1=L�H�1 but not exponentially
small, expð�LÞ, as one could naı̈vely anticipate for any
QFT where all physical degrees of freedom are massive.
Such a scaling is a result of the Kogut-Susskind ghost in 2d
QED and the Veneziano ghost in 4d QCD.

A vacuum puzzle—The Universe is accelerating away
from us. Or so is what a decade of experiments appeared to
be at first suggesting, and now strongly confirming. Indeed,
since over ten years ago we have been accumulating ex-
perimental evidence supporting a nonzero cosmological
energy density which appears to be nonclustered, homoge-
neously and isotropically distributed across the Universe
[2–4] (see also [5,6] for more up-to-date references).
Although there persists room for different explanations
[7–10], and the observational data may need to be taken
with some precautions [6], the so called ‘‘concordance
model’’ (or �CDM for cold dark matter), despite its dis-
quieting implication that we do not know what the great
majority of the Universe is made of, is nowadays widely
accepted.

In numbers, what observational results tell us is that the
Universe is permeated with an unknown form of energy
density which makes up for about 75% of the total energy
density, which appears to be exactly the critical ratio for
which the three-dimensional spatial curvature is zero, i.e.,

��h
2 � 0:36: (1)

Explaining this number has proven to be an especially
sturdy problem to attack, for particle theorists and cosmol-
ogists alike. Indeed, in spite of the mass of models that
have been thought out (see [5] for a comprehensive re-
view), the picture is still blur, as most models encounter
some sort of conceptual or observational obstacle. It is
customary to associate the ‘‘dark’’ energy density with
vacuum fluctuations, whose energy density would be pro-
portional to the fourth power of the cutoff scale, linked to
the highest energy wave modes, at which the underlying
theory breaks down. If this argument were true, we would
be faced with a disagreement between theory and obser-
vation varying between 40 to 120 orders of magnitude.
Clearly, this cannot be, and more complex ideas must be
probed. Notice that most models in the literature adopt the
same view, and therefore try to cancel or suppress short
distance vacuum fluctuations in one way or another [5].
Gravity as an effective interaction—The general frame-

work into which this work falls is that of gravity as a low
energy effective field theory, not as a truly fundamental
interaction. In such a case, the corresponding gravitons
should be treated as quasiparticles, which do not feel all
the microscopic degrees of freedom, but rather are sensi-
tive to the ‘‘relevant excitations’’ only. We note that such a
viewpoint represents a standard effective Lagrangian ap-
proach in all other fields of physics such as condensed
matter physics, atomic physics, molecular physics, particle
physics. In particular, in condensed matter physics, a typi-
cal scale of the problem is in the eV range, which has
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nothing to do with the electron mass which is in the MeV,
or the nuclei mass in the GeV. The relevant quasiparticles
simply do not know about MeV or GeV scales as in the
effective Lagrangian approach those scales are effectively
tuned away and never enter the system.

We should say that this philosophy is neither revolution-
ary nor new, rather, it has been discussed previously in the
literature, see some relatively recent papers [11–15] and
references on previous works therein. If we accept the
framework of the effective quantum field theory for grav-
ity, than the basic problem of why the cosmological con-
stant is 120 orders of magnitude smaller than its ‘‘natural’’
Plank scale M4

Pl is replaced by a fundamentally different

problem: which is the relevant scale that enters the effec-
tive theory of gravitation? This effective scale obviously
has nothing to do with the cutoff scale �MPl which is
typically associated with the highest energy ultraviolet
(UV) scale, at which the underlying theory breaks down.
Instead, the relevant effective scale must appear as a result
of a subtraction at which some infrared (IR) scale enters
the physics. What is important is that an effective quantum
field theory (QFT) of gravitation has an IR parameter in its
definition in contrast with the UV parameter which appears
if gravitation is defined as a truly fundamental theory.

According to this logic, it is quite natural to define the
‘‘renormalized cosmological constant’’ to be zero in
Minkowski vacuum with metric ��� ¼ diagð1;�1;

�1;�1Þ wherein the Einstein equations are automatically
satisfied as the Ricci tensor identically vanishes. Thus, the
energy momentum tensor hT��i � ��� in combination

with this ‘‘bare cosmological constant’’ must also vanish
at the specific ‘‘point of normalization’’ to satisfy the
Einstein equations. Once this procedure is performed, the
effective QFT of gravitation must predict the behavior of
the system in any nontrivial geometry of the space time.
From this definition it is clear that all dimensional parame-
ters, such as masses of particles and fields which contribute
to the trace of the energy momentum tensor hT�

� i in
Minkowski vacuum, must cancel with the ‘‘bare cosmo-
logical constant’’ within an appropriate subtraction
scheme, resulting in zero vacuum energy in Minkowski
vacuum. This statement remains valid for classically non-
vanishing contributions to the trace of the energy momen-
tum tensor hT�

� i (due to massive particles) as well as
quantum anomalous contribution such as nonzero gluon
condensate in flat space.

This effect can therefore be understood as a Casimir type
of vacuum energy. Notice that the usual Casimir energies
(e.g., from photons) are all typically irrelevant in under-
standing the observed vacuum energy, for they scale as
ðL2d2Þ�1 �H4 where d the distance between plates, L is
the size of the plates and H the Hubble parameter.

The shape of vacuum energy—The arguments given
above imply that a nonzero contribution to the energy
density emerges only as a result of deviation from flatness,

or, as we shall see below, from a spacetime with bounda-
ries, and therefore must be proportional to some (positive)
power of H in case of a de Sitter spacetime, or 1=L if we
are dealing with a compact manifold of linear size L. The
chief question at this point is: which shape will this cor-
rection come in? It has been known for a long time [16] that
free massless particles contribute to the stress tensor
through the conformal anomaly with a typical result

hT�
� i �H4: (2)

This is an astonishingly small number which can be
ignored for all imaginable applications, as long as the
curvature is small, which is the case today (see also [15]).
Contributions to the vacuum energy coming from, for

example, scalar fields, have been calculated using a num-
ber of methods and renormalization techniques, the most
well-known results being those coming in the shape of
anomalous H4 as mentioned above, or M2H2 where M is
some grand unification mass [17–22]. Most of these con-
tributions are either hopelessly small or require physics
beyond the standard model. However, there is a combina-
tion whose vicinity to the observed value we think is worth
exploring further; this combination reads

hT�
� i �H�3

QCD � ð10�3 eVÞ4; (3)

instead of hT�
� i �H4. There are a number of arguments

suggesting that the interactions can drastically change the
naı̈ve estimate (2) especially if a nonlocal effective inter-
action (corresponding to an induced long distance interac-
tion) emerges. In that case, see Refs. [11–14] a vacuum
energy of the form (3) may arise. It is quite instructive that
�QCD appears in the problem. Indeed, QCD is the only

fundamental strongly-interacting QFT realized in nature.
The electroweak theory is actually weakly coupled, there-
fore, it is unlikely that the corresponding almost noninter-
acting heavy degrees of freedom contribute to the vacuum
energy with the definition for it stated above. Notice that
covariance seem to require that, holding on to the de Sitter
example for definiteness, only even powers ofH have right
to enter the expression for the vacuum energy [23]; this
may however be not true [24].
This work—The concrete model realizing (3) has been

proposed in the companion paper [1], where we have made
the crucial observations that the Veneziano ghost [25] (see
also [26] for a review) becomes the messenger through
which the information stored at very large distances in our
curved 4d spacetime can propagate and interact with mi-
croscopic particle physics, and vice versa. However, in 4d
most of the calculations cannot be done explicitly, in both
flat and curved spacetime, due to the intrinsic difficulties of
QCD and strongly interacting fields in general. The main
focus of this paper is to turn the discussion to a simpler
(and almost completely solvable) model, the Schwinger
model in 2d [27], where the analogue of the Veneziano
ghost’s pole is the well-known Kogut-Susskind pole [28]
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(which in fact was the starting point of Veneziano in his
proposal), thus providing a solid and reliable basis for the
conclusions drawn in [1].

The paper is organized as follows. First of all (Sec. II), a
brief review of the Kogut-Susskind mechanism will be
presented, including its generalization to curved space,
with an extended discussion on why naı̈ve bosonisation
fails when applied to curved space. In the following
Sec. III, the relevant Ward identities (WI) which provide
the link between the ghost’s propagator and the chiral
condensate will be derived, and the effects of the nonzero
quark masses will be explicitly computed, all in
Minkowski space, making use of the topological suscepti-
bility of the model. Section IV moves on to analyze the
Schwinger model and 2d QED on a 2-torus and in curved
2d spacetime, and shows where and how a linear term inH
(or L�1, L being the torus linear size) arises. The final
section is devoted to a short summary and some comments
on the results obtained, including their translatability to the
4d real world.

II. THE KOGUT-SUSSKIND MODEL

A. Flat space

The original KS model takes off from the 2d massive
Schwinger Lagrangian (that is, 2d QED with one massive
fermion) given by

L ¼ i �c 6@
$
c � q �cA6 c � 1

4FabF
ab �m �c c þ g:f:; (4)

where g.f. stands for gauge-fixing terms, and the Abelian
field strength is given by

Fab ¼ @aAb � @bAa; (5)

see the appendix for the other definitions and conventions.
This model is shown to be equivalent to a bosonic system
whose Lagrangian is

L ¼ 1

2
@a�̂@a�̂þ 1

2
@a�2@a�2 � 1

2
@a�1@a�1

� 1

2

q2

�
�̂2 þ �

�2
N cos½�ð�̂þ�2 ��1Þ�; (6)

where N means normal ordering and the parameters �
and � (and m) are finite. Notice that � ¼ 4� needs no
renormalization in 2d [28–31].

Working in the Lorentz gauge Aa is divergence-free and
can be expressed in the form qAa ¼ �ab@

b’, and it is

related to the KS bosons as ’ ¼ ffiffiffiffi
�

p ð�̂��1Þ. This rela-
tion will come in handy later when it will be used to
calculate the topological susceptibility of this model.

The three bosons satisfy the commutation relations

½�̂; @t�̂� ¼ i	2; ½�1; @t�1� ¼ �i	2;

½�2; @t�2� ¼ i	2;
(7)

from where we evince that�1 is a massless ghost field, and

its propagator will have a negative sign (in Minkowski
space). The masslessness of this ghost is also important
in what follows.
The cosine interaction term includes vertices between

the ghost and the other two scalar fields, but it can in fact be
shown [28] that, once appropriate auxiliary (Gupta-
Bleuler) conditions on the physical Hilbert space are im-
posed, the unphysical degrees of freedom �1 and �2 drop
out of every gauge invariant matrix element, leaving the
theory well defined, i.e., unitary and without negative
normed physical states, just as in the 4d Lorentz invariant
quantization of electromagnetism. Specifically, this is
achieved by demanding that the positive-frequency part
of the free massless combination (�2 ��1) annihilates
the physical Hilbert space:

ð�2 ��1ÞðþÞjH physi ¼ 0: (8)

It is important to notice that the KS ghost �1 explicitly
enters the expression for the topological susceptibility
(without its companion �2). It has important phenomeno-
logical consequences, as will be explained below.

B. Curved space

Now let us turn to a 2d curved spacetime. The task is to
find the boson equivalent lagrangian to a curved Schwinger
model, whose Lagrangian is going to be the covariantized
version of (4). Again we work in the covariant Lorentz
gauge, for which D�A� ¼ 0, which, in 2d, implies

D�A� ¼ @�A� � g���

��A
 ¼ 0 ) qA�

¼ ffiffiffiffiffiffiffi�g
p

���@
�’: (9)

Here the longitudinal degree of freedom of A� is taken to

vanish. This means that

F��F�� ¼ � 2

q2
h’h’: (10)

Notice that, just as it happened for the flat case, the
Jacobian of the transformation is independent of the dy-
namical fields, and can therefore be absorbed into the
normalization constant, and does not appear in the effec-
tive Lagrangian.
Proceeding further, one can rescale the fermion field

according to

�1=2 �c ¼ �� �1=2c ¼ �; (11)

which transforms the kinetic term as
ffiffiffi
g

p
i �c 6Dc ¼

i ���a@a�. The Jacobian in this case is given by the trace
anomalous term for a fermion, and is, in 2d, proportional to
the Ricci scalar R, and therefore, since we are considering
the background fixed, it can again be absorbed in the
normalization constant.
In order to decouple the fermion one performs a chiral

rotation defined by
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� ¼ ei�
5’� �� ¼ ��ei�

5’; (12)

and, consequently, we obtain

i ���a@a� ¼ i ���a@a�� ���a�5�@a’

¼ i ���a@a�þ ���a��ab@
b’; (13)

from which we see that the second term on the right cancels
the interaction term. In this case the transformation has a
nontrivial Jacobian, which in this case is just the same as in
flat spacetime, and is therefore given by

J ¼ exp

�
i

2�

Z
d2x’ ��h’

�
¼ exp

�
i

2�

Z
d2x

ffiffiffiffiffiffiffi�g
p

’h’

�
;

(14)

leading to the effective Lagrangian

ffiffiffiffiffiffiffi�g
p

L ¼ i ���a@a�þ ffiffiffiffiffiffiffi�g
p 1

2
’

�
1

q2
hhþ 1

�
h

�
’

�m� ��e2i�
5’�: (15)

The free Fermi action, that is, when m ¼ 0, can be
bosonized right away (at least as long as we are working
in an infinite 2d spacetime where the gauge field has no
harmonic components [32]). Once the boson identification
has been performed, in order to be able to analyze the
model along the lines of Kogut and Susskind we should
now separate explicitly the degrees of freedom hidden in
the higher derivatives in the Lagrangian. We work with the
effective free Lagrangian

L ¼ � 1

2
�h�þ 1

2
~’

�
�

q2
hhþh

�
~’; (16)

where we have rescaled the field ’ according to
ffiffiffiffi
�

p
~’ ¼

’. From this curved spacetime Lagrangian we easily infer
the form of the propagator for the higher derivative field ~’,
that is

ffiffiffiffiffiffiffi�g
p �

�

q2
hhþh

�
~4F ¼ 	2ðxÞ;

~4F ¼ lim
!0

½4Fðq=
ffiffiffiffi
�

p
; xÞ � 4Fð; xÞ�;

(17)

which is the sum of a massive (mass squared q2=�) scalar,
and a massless ghostlike scalar. We could then substitute
the ~’ field with these two fields obtaining (in the original

KS notation where � ! �2, while the massive scalar is �̂
and the ghost is ��1)

L ¼ � 1

2
�̂h�̂� 1

2
�2h�2 þ 1

2
�1h�1 � 1

2

q2

�
�̂2;

(18)

where everything is in curved space, and the partition
function would be given by

Z ¼ N
Z
½D�̂�½D�2�½D�1� expfiSg; (19)

S ¼
Z

d2x
ffiffiffiffiffiffiffi�g

p
L: (20)

The question now is what happens with the fermion
mass term, which in the flat space bosonized sine-Gordon
Lagrangian becomes precisely the cosine-type interaction

� cos½�ð�̂þ�2 ��1Þ�. In flat spacetime this identifica-
tion is obtained by expanding in a power series in the
fermion mass and in the cosine interaction once the con-
stants appearing in both Lagrangians have been properly
renormalized. Indeed, while the mass of the physical scalar

�̂ is determined independently from renormalization, this
is not so for the equivalence relating the strength of the
cosine interaction in the boson Lagrangian with the mass of
the fermion in the original Schwinger Lagrangian. This is
entirely due to the renormalization properties of these 2d
models [28–31].
In curved spacetime a very similar expansion can be

performed, and one is tempted to naı̈vely identify the
coordinate dependent fermion mass term in (4) with an
equivalent coordinate dependent interaction in the bosonic

Lagrangian, such as k�cos½�ð�̂þ�2 ��1Þ� with k the
usual renormalised sine-Gordon coupling constant [33].
However, such an identification would be wrong because
it is immediate to see that the resulting action would lead to
a nonconserved stress energy tensor, despite the initial
(fermionic) system not exhibiting any such nonconserva-
tion. To rephrase and summarize this last concept, it is
essential to realise that if we identify the coefficient of the
mass term in the Fermi system Eq. (15) with the corre-
sponding one in the interacting sine-Gordon model, we
would leave the � in front of the cosine: this is wrong as
the corresponding energy momentum tensor is patently not
conserved but instead D�T

�
� / @� ln�, in sharp contra-

diction with the initial system [the covariant generalization
of (4)], which has a perfectly well behaved stress tensor.
The solution to this apparent paradox is that in curved
space or on a nontrivial manifold the coefficient of the
cosine interaction is still a constant, but it is numerically
different from its Minkoski counterpart, as we will prove
shortly.
This point is crucial in the discussion outlined here,

because all of the nontrivial interaction between the KS

ghost�1 and the physical degree of freedom �̂ stems from
this term. Without a precise knowledge of what happens in
a general spacetime we are not able to make any definite
computation on the impact of the chiral condensate at
nonzero quark masses. Notice further that this term is not
responsible for the appearance of the condensate itself,
which can be studied very rigorously in the Schwinger
model even in curved space [32], but it is responsible for
the coupling between the ghost’s pole and the physical
field, which is the essence of the Veneziano solution of
the U(1) problem, and which is the most relevant contri-
bution for us here. Indeed, in the chiral limit, the effects of
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curved spacetime to the condensate appear only as correc-
tions in powers of the curvature (that is, proportional to H2

in 2d de Sitter space). We will comment in details this
result in the next sections.

Simple bosonization in curved space therefore does not
predict the value of the chiral condensate mass, and we
must resort to different strategies to be able to extract the
effects of the KS ghost. This is the topic unravelled in the
next section, where the answer will be inferred with the
help of the topological susceptibility for the Schwinger
model.

III. WARD IDENTITIES AND THE TOPOLOGICAL
SUSCEPTIBILITY

The principal tools we will be utilizing in this section are
the chiral anomalous WI for the 2d Schwinger model. This
is so because we need to find a way to overcome the
difficulties encountered in bosonizing the curved model.
The WI are a savior in this case, because they allow one to
link local observables such as the chiral condensate, to
topological quantities, which are therefore independent
on curvature. In this section we will be working in flat 2d
space, turning to curved space and/or nontrivial topologies,
only in Sec. IV.

The 2d WI can be derived in different ways, one of them
being performing a chiral rotation c ! expði�5�Þc with
�ðxÞ an infinitesimal (fictitiously gauged) parameter, and
demanding that the generating functional for the connected
part of the action, customarily defined as W, does not
change. For the derivation see the appendix; here we are
interested only in the final form the WI takes, which is

i

4

Z
d2xhTWQðxÞQð0Þi ¼ mh �c c i�¼0 þOðm2Þ; (21)

where we have defined

Q ¼ q

2�
�abF

ab; (22)

as the topological charge density. In this WI we have
explicitly appended a subscript W in the T-product, stand-
ing for Wick T-product which includes the contribution
from unphysical states, as opposed to the usual Dyson
T-product in which only physical states contribute. The
two definitions in coordinate space differ by a delta func-
tion, which is essential if one has to satisfy the WI (21), as
will be shown explicitly in the chiral limit. The saturation
of the WI is also at the heart of the Veneziano proposal to
solve the notorious U(1) problem of 4d QCD, i.e., the
absence of a partially conserved (in the sense of PCAC
algebra) ninth axial-vector current.

Notice that the WI in the functional form (B5) is valid in
flat and curved spacetimes alike, and only its explicit
realizations will be slightly different. The WI Eq. (21)
provides a very powerful link between a topology-related
quantity on the l.h.s. and the physical value of the (2d)

quark condensate. In order to exploit this relation we first
define the topological susceptibility as a sort of variance
for the topological charge

�ðk2Þ ¼ i

4

Z
d2xeikxhTWQðxÞQð0Þi; (23)

which, according to the WI (21) is related to the chiral
condensate as �ð0Þ ¼ mh �c c i at � ¼ 0. Therefore, if we
are able to compute the topological susceptibility of a
system, we automatically know the value of the chiral
condensate multiply the mass. Notice that the mass coef-
ficient of h �c c i is exactly the coefficient in front of the
cosine term in the bosonized equivalent of the model,
which is the coefficient we are not able to explicitly
calculate following the standard path of bosonization.
The important point is that the WI hands in an entirely
different way to compute the same coefficient, using a
totally different approach, and that is much more easily
generalized (although not fully solved) to curved and/or
topological nontrivial spacetimes.

A. Detour to 4d

Here we make a short review of the relevant 4d results.
First of all, it is useful to notice that the topological charge
densityQ is in fact a total divergence, and as such does not
contribute to any matrix element in perturbation theory,
which means that the solution to the �0 problem must be
sough after in the nonperturbative sector of 4d QCD.
Indeed, in four dimensions,

Q4d ¼ @aK
a
4d ¼

�s

8�
Gab

~Gab; (24)

where Gab ¼ @aAb � @bAa � ig½Aa;Ab� is the gluon
field (denoted as Aa) strength and ~G its dual, and �s the
strong coupling constant. The constant g is the gluon self-
coupling. Note that with this definition ofQ4d the Jacobian
in the 4d equivalent variation (B3) will bear an extra factor
of 2.
One can explicitly write the Chern-Simmons gauge-

variant current Ka
4d as

Ka
4d ¼

�s

4�
�abcd trAb

�
Gcd � g

3
½Ac;Ad�

�
: (25)

Despite its total divergence structure, the (euclidean)
spacetime integral of Q however needs not to vanish, and
it is in fact related to the topological quantity n called
topological charge as

Z
d4xQ4d ¼ n 2 Z; (26)

and it is different from zero for field configurations (in-
stantons) that become pure gauge at infinity. Now, looking
back at the WI (valid in exactly the same form in 4d)
Eq. (21), it is immediate to evince that if we want the
topological susceptibility �ð0Þ to be nonzero, we automati-
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cally need an unphysical massless pole in the zero momen-
tum correlation function hKaKbi in such a way that

kakbhKa
4dK

b
4dik¼0 � 0 ) �ð0Þ � 0: (27)

The Veneziano ghost is exactly this unphysical massless
pole which is needed to saturate the WI, and it physically
corresponds to the periodicity of the 4d QCD potential with
respect to a generalised coordinate related to the � angle
[34].

To conclude, it is essential, especially in view of the
application of this mechanism to curved space and the
problem of the vacuum energy, to understand that the
solution to the U(1) problem is deeply rooted in the infra-
red sector of 4d QCD, and has nothing to do with the
ultraviolet properties of the theory. This fact will prove
to be of fundamental importance when we will see that it is
precisely in this sector that a nonvanishing and small
positive vacuum energy density arises as soon as the space-
time is taken to be curved: a feature that is investigated for
the real 4d world in our paper [1].

B. Explicit calculation with the KS ghost:
The chiral limit

All of the preceding paragraphs discussion translates
almost without changes to two dimensions, the main dif-
ferences being the fact that 2d QED is Abelian and that the
chiral symmetry is not spontaneously broken by the con-
densate but by the anomaly associated with the axial
current ( just as in 4d QCD with only one flavour). The
main motivation for studying this 2d model lies on its
beautiful analytical properties, for it allows for most of
the calculations that in 4d present unsurmountable diffi-
culties, to be done explicitly, and in a few lines. Indeed, the
Schwinger model proper (that is, with a massless fermion)
can be solved exactly, which is equivalent to saying that the
fermionic determinant is known explicitly. These nontri-
vial features made the Schwinger model an important
playground to test and develop most of the ideas that can
be only approximately followed analytically in their 4d
counterparts [35].

Let us be more specific and define the equivalent 2d
quantities. Recall that

Q ¼ @aKa ¼ q

2�
�abF

ab ¼ � q

�
E; (28)

where E is the electric field. This definition leads to the
identification of the 2d Chern-Simmons current as

Ka ¼ q

�
�abA

b: (29)

We choose again to work in the Lorentz gauge, which
allows one to express the gauge potential Aa as divergence
of a scalar field ’. Therefore, the topological charge den-

sity can be written as Q ¼ q=�E ¼ ��h’=�. Moreover, as
it has been shown in Sec. II, the field ’ is identified with 2
degrees of freedom, one of which is the sought after
massless ghost’s pole. We will now proceed on to show
how the KS construction satisfies explicitly the WI.
First of all, we need to compute ihTWEðxÞEðyÞi in coor-

dinate space. This quantity is well known for the
Schwinger model (with a massless fermion), and has
been calculated using instanton solutions on 2d euclidean
compact spaces such as 2-sphere or 2-torus, whose appro-
priate infinite space limits have then been taken [36–38].
The (euclidean) result, which we want to reproduce using
the KS mechanism, is, for zero fermion mass

hTWEðxEÞEð0Þi ¼ 	2ðxEÞ � �2

2�
K0ð�jxEjÞ; (30)

where the subscript E stands for euclidean, and �2 ¼
q2=�. The K0 is the modified Bessel function of order 0,
which describes massive scalars in 2d. Notice the presence
of the 	 function in this expression. withoutwhich it would
be impossible to satisfy the WI for vanishing quark mass,
as its integral over 2d will never be zero. This 	2ðxEÞ is
precisely the contribution of the ghost’s states, which
necessarily tells us that the T-product appearing in (30)
must be intended as Wick T-product.
We want to demonstrate that the KS prescription is what

is needed to obtain the result (30), which had been pre-
viously calculated exploiting the instanton solutions pos-
sessed by the Schwinger model [36–38]. This can be done
explicitly using the splitting of the ’ field in massive and
massless ghost’s degrees of freedom as

’ ¼ ffiffiffiffi
�

p ð�̂��1Þ; (31)

which now can be used in the (euclidean) correlation
function of E to give

hTWEðxEÞEðyEÞi ¼ �

q2

Z d2pE

ð2�Þ2 p
4
Ee

�ipEðxE�yEÞ
�
� 1

p2
E þ�2

þ 1

p2
E

�
¼

Z d2pE

ð2�Þ2 e
�ipEðxE�yEÞ

�
1� �2

p2
E þ�2

�

¼ 	2ðxE � yEÞ � �2

2�
K0ð�jxE � yEjÞ; (32)

which is the result (30), as anticipated. Integrating this equation with yE ! 0 and at zero momentum gives

Z
d2xE

�
	2ðxEÞ � �2

2�
K0ð�jxEjÞ

�
¼ 0: (33)
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Hence, the WI is satisfied when m ! 0, owing to the presence of the ghost’s gapless excitation.
The calculation in Minkowski space goes on exactly in the same way, using (31):

ihTWEðxÞEðyÞi ¼ i

q2
hTW

��hx’
��hy’i ¼ i�

q2

Z d2p

ð2�Þ2 p
4e�ipðx�yÞ

�
i

p2 ��2
� i

p2

�
¼

Z d2p

ð2�Þ2 e
�ipðx�yÞ

�
�1� �2

p2 ��2

�

¼ �	2ðx� yÞ � i
�2

2�
K0ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðx� yÞ2

q
Þ: (34)

Here the 2d massive scalar propagator is �̂F ¼ ði=2�ÞK0, in coordinate space. It is important to notice that had we used the
equations of motion for ’, that is ��h’ ¼ ��̂=

ffiffiffiffi
�

p
(which corresponds to the Dyson T-product), we would have missed the

important 	2ðxÞ factor, without which the WI would not be satisfied.
The next step is to calculate the momentum-space topological susceptibility as

�ðk2Þ ¼ i

4

Z
d2xeikxhTWQðxÞQð0Þi ¼ i

�
q

2�

�
2 Z

d2xeikxhTWEðxÞEð0Þi ¼
�
q

2�

�
2ð�1��2�̂Fðk2ÞÞ; (35)

where �̂Fðk2Þ ¼ ðk2 ��2Þ�1 is the propagator for the
physical massive scalar �̂. The topological susceptibility
goes to zero as it should when k2 ! 0. The physical reason
behind this key result is that the ‘‘would-be Nambu-
Goldstone boson’’ associated with the chiral U(1) symme-
try cancels exactly with the massless ghost. This cancella-
tion is exact as long as the quark has zero mass, but a finite
residue would remain otherwise, as we shall see in what
follows.

C. Explicit calculation with the KS ghost:
Adding a small quark mass m

In order to draw the parallel with the Veneziano ghost in
4d we need to investigate what happens when a nonzero
mass term for the fermion is introduced. In this case the
bosonized flat space Lagrangian contains the cosine inter-
action term, which introduces loop corrections in the ex-
pression for the topological susceptibility (35). These
corrections can be found in complete analogy with the 4d

Veneziano’s computation by ‘‘dressing’’ the �̂ propagator
as

�̂ I
F ¼ �̂F

�
1þ m2

0

p2 ��2
þ . . . . . .

�
¼ 1

p2 ��2 �m2
0

;

(36)

where m2
0 ’ �mh �c c i, m being a small quark mass. This

dressed propagator is the source of the saturation of the WI
at nonzero quark mass, since one immediately see that
upon performing the 2d d2x integration to obtain �, the
two contributions do not cancel but leave a finite, negative,
remnant

�ð0Þ ¼ 1

4
�2

�
�1þ �2

�2 þm2
0

�
’ �m2

0 ’ mh �c c i; (37)

as it should, when the quark mass is small, and the WI (21)
is satisfied. Let us stress once more that the WI is saturated
only thanks to the ghost’s contribution. The ghost, as

clearly stated in the original paper by Kogut and
Susskind, plays no rôle when it comes to compute gauge
invariant matrix elements, because the Gupta-Bleuler con-
ditions imposed on the physical Hilbert space make it
decouple from these observables. Moreover, in this way
the theory is automatically unitary. However, some quan-
tities like the topological susceptibility do depend on the
gauge-variant, and not observable, current Ka in a non-
trivial way, renewing the importance of the decoupled
ghost’s states even in physical observables, in this case
the 2d analogue of the �0 mass.
It is of pivotal importance to realize that the arguments

just laid are robust against perturbation theory. Indeed one
may worry that interactions not only would act on the
physical massive pole, but could also shift the two massless
poles �1 and �2 necessary for the realisztion of the KS
mechanism. However, the KS dipole poles at zero mass
stay there, and are thus ‘‘protected’’ [39].
In the forthcoming section we will repeat these steps for

spacetimes with boundaries, e.g. a 2-torus, and outline the
calculation for a general curved spacetime. In the simple
case of a torus with nontrivial boundary conditions, an
explicit linear dependence on the size of the manifold
will appear.

IV. TOPOLOGYAND CURVATURE

Let us consider now the Schwinger model, and its gen-
eralization allowing for a small quark mass, on a compact
manifold. In what follows we enclose the system in a box
of length L, and, in order to include the effects of the
spacetime curvature, we work with a general 2d metric;
for simplicity, and to facilitate the comparison with the
literature, the metric will have Euclidean signature, see the
appendix.

A. Quantization on a torus

To begin with, we shall show that, in the chiral limit, the
topological susceptibility for the compact 2d flat spacetime
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is still zero, as imposed by the WI (21). To this end, we
notice that the only difference in the previous section’s
calculation is the fact that the integrals run from 0 to L and
that we will need to use the discretized version of the
(Euclidean) scalar massive propagator, which is given by

�̂ FðxEÞ ¼ 1

L1L2

X
n1;n2

e2�iðn1x1E=L1þn2x
2
E=L2Þ

ð2�=L1Þ2n21 þ ð2�=L2Þ2n22 þ�2
:

(38)

Now, if we insert this expression in the (Euclidean and
discretized version of) Eq. (35), with the appropriate limits
of integration, we again find that the topological suscepti-
bility vanishes when k2 ! 0. Indeed:

Z L

0
d2x

ffiffiffiffiffiffi
gE

p ð	2ðxEÞ ��2�̂FðxEÞÞ ¼ 1� 1 ¼ 0; (39)

where
ffiffiffiffiffiffi
gE

p ¼ �0 (see the appendix). More detailed argu-

ments supporting this form for the topological susceptibil-
ity will be given in the next subsection.

Precisely the same calculation can now be performed
when the quark has a small but nonzero mass, as in (36),
with the result

�ð0Þtorus ¼ � �0
4

�2m2
0

�2 þm2
0

; (40)

which is apparently exactly the same one quoted above, a
part from the �0 factor in front. However, there is a very
important subtlety that enters this expression (40), namely,
the fact that the value of m2

0, which is defined as m2
0 ¼

�mh �c c i, is not the same in a compact space and in the
full Minkowski space as the chiral condensate is different
in these two cases.

The magnitudes for the chiral condensates on the finite
torus has been derived a while ago [32], and it reads

h �c c i ¼ 1

Lj�j exp
�
� �

�L�0
coth

�L�0
2j�j

�

þ 1

Lj�j expfFð�; LÞ �Hð�; LÞg; (41)

where

Fð�; LÞ ¼ X
k>0

�
1

k
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ a2
p

�
;

Hð�; LÞ ¼ X
k>0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2

p
�

1

e�2�izþ � 1
þ 1

e2�iz� � 1

�
;

z� ¼ 1

j�j2 ðn�1 � i�0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2

p
Þ;

and a ¼ �Lj�j=2�. If we take the limit for which�L � 1
then the above expression simplifies to

h �c c i ’ 1

Lj�j exp
�
� �

�L�0
þ �

�

þ 1

Lj�j
�
ln
�Lj�j
4�

þ �

�Lj�j þ . . .

�

¼ �

4�
e� exp

�
�

�L

�0 � j�j
�0j�j

�

’ �

4�
e�
�
1þ �

�L

�0 � j�j
�0j�j

�
: (42)

Let us briefly notice that, strictly speaking, the chiral
condensate in Euclidean spacetime should not be written as
h �c c i, but rather hc yPþc i, in the notation of [32], which
has opposite sign compared to its Minkowski counterpart
[this is the reason behind the positive sign in (42)].
Expression (42) shows clearly that, if one is to employ a

nontrivial torus, then automatically a linear correction in
the size L will occur. This expansion for the chiral con-
densate can be used in the previous Eq. (41), and then
expanded at first order in �L to give

�ð0Þtorus ’ �ð0Þ�0
�
1þ �2

�2 þm2
0

�

�L

�0 � j�j
�0j�j

�
: (43)

This is the most important result of this paper, for it shows
how the linear dependence on the size of the manifold
arises. Since the quark mass m is small, this expression
further simplifies to

�ð0Þtorus ’ �ð0Þ�0
�
1þ �

�L

�0 � j�j
�0j�j

�
: (44)

It is very important to notice that the linear correction
obtained in Eqs. (43) and (44) depends crucially on the
existence of both the ghost and the non-masslessness of the
quark, the latter being of fundamental importance in con-
necting the topological susceptibility just obtained with the
vacuum energy of the system.
This result is especially important since, as already

pointed out, it allows one to derive explicitly the exact
coefficient appearing in front of the cosine interaction
term, for any given topology (and curvature, see below),
without having to rely on dubious and ambiguous series
expansions in the mass-interaction term. We are therefore
able to obtain the exact bosonized version of the QED2 for
a given spacetime.
A last note concerning the interpretation of the result

(44) as a finite temperature effect. Having allowed for the
most general � in our computations, one expects to be able
to extract the (small) finite temperature behavior of the
system. This is indeed possible within this framework,
upon substituting � ¼ i�=L where � ¼ 1=T is the inverse
temperature. In doing so we have to switch back to
Minkowski spacetime, and the finite-T condensate would
look like
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h �c c i ¼ �T exp

�
��

�
T þ Fð�; LÞ

�
; (45)

which, in our limit for which T ! 0, gives

h �c c i ! � �

4�
e�; (46)

without linear corrections (notice the overall minus sign),
which would instead appear at high T. This can be seen
using the general � expression Eq. (42) as well, using the
fact that � ¼ i�=L ) j�j ¼ �0.

B. The effect of curvature

When curvature is introduced, very similar effects to
those depicted for a nontrivial compact space appear. In
this section the spacetime will be taken to be infinite.

First of all, the correct definition of the topological
susceptibility needs to be found. In doing this, our guide
will still be the WI (21), which states that in the chiral limit
the spacetime integral of the topological charge correlation
function is zero. The obvious generalization to a general 2d
curved space of this expression is

�ðk2Þcurved ¼ i

4

Z
d2x

ffiffiffiffiffiffiffi�g
p

eikxhTW
~QðxÞ ~Qð0Þi; (47)

where ~QðxÞ is the curved space topological charge density.
It is clear that, being entirely a topological quantity in
nature, this charge density will roughly speaking behave as

Z
d2x

ffiffiffiffiffiffiffi�g
p ~QðxÞ ¼ n ) ~QðxÞ / QðxÞ= ffiffiffiffiffiffiffi�g

p
: (48)

Notice that the topological susceptibility is not, strictly
speaking, a topological invariant, as it depends on the
curvature of the spacetime rather than solely on its topol-
ogy, because the integration is only performed over d2x
and not over d2xd2y.
To show that the definition (47) for the topological

susceptibility is consistent with the WI, we notice that
the curved space propagators which will appear, see
Eq. (32) or (34), are defined by the massive curved space
Klein-Gordon equation

ðhþ�2Þ�̂curved
F ðxÞ ¼ �	2ðxÞffiffiffiffiffiffiffi�g

p ; (49)

and therefore it is normalized, employing sensible bound-
ary conditions on the derivative of the Green’s function, as

�2
Z

d2x
ffiffiffiffiffiffiffi�g

p
�̂curved

F ðxÞ ¼ �1; (50)

which automatically ensures the validity of the WI (21).
The WI must also be satisfied by directly plugging in the
explicit expression for the propagator, which, for instance
in 2d de Sitter spacetime, reads [40]

�̂ curved
F ðx; yÞ ¼ i�ðtÞGþðx; yÞ � i�ð�tÞG	þðx; yÞ; (51)

where the two point function Gþ is given by

Gþðx; x0Þ ¼ 1

2�2

ffiffiffiffiffiffiffiffiffi
��0

p Z þ1

�1
dkeikxK�ðik�ÞK�ð�ik�0Þ

¼ 1

4�
�

�
1

2
� �

�
�

�
1

2
þ �

�
� 2F1

�
1

2
� �;

1

2
þ �; 1; 1þ ð�� �0Þ2 � ðx� x0Þ2

4��0

�
: (52)

Here K� is the Bessel function K of order �, where �2 ¼
1=4��2=H2 (H is the Hubble parameter), while 2F1 is an
hypergeometric function. The propagator is expressed in
conformal coordinates

ds2 ¼ �2ðd�2 � dx2Þ with �2 ¼ 1=H2�2: (53)

Obviously, in this case an explicit computation is much
harder, but as the flat torus example showed us, we should
expect the appearance of a nonzero topological suscepti-
bility as the quark mass becomes nonvanishing, and this
susceptibility is proportional to m2

0, since it must vanish

whenm ¼ 0. Once more, we can borrow the results of [32]
to show that in this case (2d de Sitter spacetime) the first
correction to the condensate is given by

h �c c icurved ¼ � �

4�
e�e�H2=6�2

: (54)

For sufficiently small quark mass m the topological sus-
ceptibility behaves as

�ð0Þcurved ¼ mh �c c icurved ’ �m
�

4�
e�ð1�H2=6�2Þ;

(55)

where we expand the exponent for small H=�, which
shows clearly how in this simple case the first correction
that appears is quadratic inH rather than linear inH � L�1

as we found above (44) for the torus case.

C. Vacuum energy

The topological susceptibility we have just calculated in
Eqs. (44) and (55) bears a close connection with the
vacuum energy of the system. Indeed it is well known
[41] that, in 4d, one can express the topological suscepti-
bility as a second derivative of the zero-point energy with
respect to the � angle of QCD (notice the minus sign):

�ð0Þ ¼ �@2vacð�Þ
@�2

���������¼0
: (56)
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This relation will turn out to be of fundamental impor-
tance when translating the results obtained in this paper to
the real 4d world, because it shows how a constant linear
correction 1=L to the topological susceptibility, in the case
of a torus, automatically filters in the vacuum energy. As
we saturated the topological susceptibility with the KS
ghost, one can interpret this result as the appearance of
the linear correction 1=L in the corresponding ghost’s
matrix elements. In such a formulation it has a direct
analogy with the 4d model where the Veneziano ghost
would return the same answer [1].

The relation (56) is of uttermost relevance because,
given that one knows the � dependence of the vacuum
energy [42,43], one can directly compute the energy mis-
match that would arise between a theory in the ideal
Minkowski spacetime and the actual spacetime of size
H�1 describing the Universe. According to the general
principles stated in the introduction this energy mismatch
in this framework is interpreted as the observed cosmo-
logical constant �.

The vacuum energy of a QFT system is typically asso-
ciated with the highest momenta fluctuations of the field in
a given spacetime, where the physics at the very large
distances �L has no say. However, as it is shown in
Eq. (56), the actual vacuum energy could be related to
the topological charge of the system, which, first of all, is a
topological quantity and as such linked to the global fea-
tures of the spacetime, and secondly, in some cases re-
ceives corrections that are ascribable to the nonlocal IR
properties of the theory, not with the short distance UV.

Comfortingly, if we were now to write down the stress
tensor for the bosonic version of 2d QED on a curved
space, we would find that the coefficient of the cosine
potential is still a constant, but exhibits a small correction
that corresponds to the correction (55)-or Eq. (44) for a flat
torus. This energy momentum tensor is now conserved as it
must be.

V. CONCLUSION

In this work we have addressed the problem of calculat-
ing the vacuum energy in an arbitrary 2d spacetime using
the KS ghost saturation for the topological susceptibility
within the framework of 2d QED. It allows to restore the
�-dependent portion of the vacuum energy itself. At the
same time, the �-independent contribution to the vacuum
energy is not linked to the ghost, and therefore it is not
sensitive to the parameters of the manifold such as L if it is
much larger than any other scales of the problem. In this
case, the cosmological constant, which is defined in our
framework as the difference between the vacuum energy
computed on a nontrivial manifold and flat Minkowski
space, will be entirely determined by the �-dependent
portion of the vacuum energy which is the subject of the
present paper.

In particular, we computed explicitly the dependence of
the vacuum energy on the parameters that define the mani-
fold we are working with, such as curvature, Hubble size,
linear size L, etc. in 2d QED. Ultimately we are interested
in extending these results to the more relevant and actual
case of 4d QCD [1], where no analytical exact results
similar to those discussed above exist. However, a close
analogue of the most important element, the ghost, which
is responsible for all the crucial results in 2d QED, is also
present in 4d QCD. Hence, it is very naturally expect that
the linear corrections we found in 2d QED will be also
present in 4d QCD.
The result (44) is central in our work: it shows how the

linear power of the size of the torus enters the expression
for the topological susceptibility, and therefore how the
first correction to its Minkowski value is, barring degener-
acies among the torus sides, proportional to 1=�Lwhere�
is the ‘‘photon mass’’ in the Schwinger model, the equiva-
lent of the �0 mass in the 4d realization of this mechanism/
system as understood by Veneziano and Witten.
The appearance of the linear (in the torus size) correc-

tion to the topological susceptibility is intimately linked
with the existence of the 2d KS ghost’s pole, for without it
it would be impossible that a local massive scalar theory
carries information about the boundaries of the manifold
onto which it is quantized. The masslessness of the ghost’s
pole, which is unobservable in gauge invariant quantities
but has a deep impact on observables related to gauge-
variant operators, is a key feature of this model and neces-
sary ingredient for this result; the ghost’s pole is the carrier
of the long-distance information stored in the boundary
conditions of the system. Notice that the ghost’s pole is not
lifted by interactions with quarks; however, the corre-
sponding matrix elements are slightly different from their
Minkowski values, which eventually leads to the preemi-
nent result (44).
The second crucial observation to be made about the

linear term is that its existence owes to the presence of the
mass term for the fermion, without which the topological
susceptibility automatically vanishes in every spacetime,
as ensured by the WI. This says that as long as the system
comprises only massless fermions, the linear corrections to
the chiral condensate (42), although still there, will not be
observable.
At last, let us conclude with a few comments on the

relevance of these results for the 2d and 4d vacuum energy.
The linear correction found in Eq. (44) leads directly to a
corresponding correction in the vacuum energy of the
system, as seen in (56). This means that the physical
vacuum energy is not entirely determined by internal prop-
erties of the system under investigation, but, in some cases,
it may depend on the large distances through the macro-
scopic parameters that characterize the manifold, e.g. the
linear length L. It is very different from the simple expec-
tation that the physics must not be sensitive to very large
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distances, and that boundary effects must vanish as
expð��LÞ.

Not only the relevant parameters describing the vacuum
energy are found to be in the IR sector of the quantum
theory, they are the direct expression of the global topo-
logical properties of the embedding spacetime. Therefore,
in this framework, vacuum energy (the cosmological con-
stant in 4d) is a consequence of a nontrivial global topol-
ogy, whose macroscopic properties are carried by the
massless KS ghost’s pole in 2d. Note how this argument
can be generalized immediately to 4d, although in that case
very little can be analytically computed, but some numeri-
cal calculations on the lattice can be done as suggested
in [1].

The first correction to the vacuum energy thereby iden-
tified is hence found to be proportional to the linear cor-
rection 1=�L, which can be rewritten as H=� where the
Hubble parameter is taken as the size of the observable
Universe today. In 2d then, the remnant vacuum energy is
expressed as vac ’ mH; in 4d one would instead find [1]:

� � c � 2H
m�0

� jmqh �qqij � cð3:6� 10�3 eVÞ4; (57)

with c� 1 is a coefficient of order one. This estimate
is to be compared with the observational value � ¼
ð2:3� 10�3 eVÞ4.

The similarity in magnitude between these two values is
very encouraging. In our view, it is a clear indication that
the cosmological vacuum energy, confinement, U(1) prob-
lem, and topology are intertwined and their interrelations
need to be explored further, as they could lead us to the
solution of this intricate cosmological puzzle.

Let us also point out that the result (57) is based on our
understanding of the ghost’s dynamics: it can be analyti-
cally computed in the 2d Schwinger model and hopefully it
can be tested in 4d QCD using lattice QCD computations.
This contribution to the vacuum energy is computed using
QFT techniques in a static nonexpanding universe. As it
stands, it cannot be used for studying its evolution with the
expansion of the universe. In order to do so one needs to
know the dynamics of the ghost field coupled to gravity on
a finite manifold.

A final comment on our definition (or prescription) for
the physical vacuum energy. As we have discussed in the
introductory sections, we define the observable vacuum
energy as the differential stress tensor between infinite
Minkowski and finite compact spacetime. Therefore, with
this prescription, all the usual contributions such as gluon
condensates, or the condensate from the Higgs field, etc.,
will cancel out in the subtraction as they appear with
almost equal magnitude in both compact size L and non-
compact manifolds. The relevant difference will behave as
expð�mLÞ due to their massiveness and can be safely
neglected. The Veneziano ghost’s contribution is unique

in all respects: its masslessness is protected and is therefore
the only field linearly sensible to the global topology.
If the existence of the linear 1=L correction is confirmed

by 4d lattice calculations, it may have profound and far
reaching consequences, some of which (in particular in
cosmological context, directly related to this work) can be
tested in present and future cosmic microwave background
experiments as suggested in [44].
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APPENDIX A: CONVENTIONS

We are working in 2d curved spacetime. The indices
conventions are as follows:

a; b; . . . ¼ Flat space �; �; . . . ¼ Curved space:

The 2d Minkowski metric is given by

�ab ¼ diagð1;�1Þ: (A1)

The 2d Minkowski matrices can be chosen as:

�0 ¼ �2 ¼ 0 �i
i 0

� �
�1 ¼ i�1 ¼ 0 i

i 0

� �
; (A2)

and they satisfy

f�a; �bg ¼ 2�ab: (A3)

The axial matrix is defined as

�5 ¼ �0�1 ¼ �3 ¼ 1 0
0 �1

� �
; (A4)

which gives the following rule in 2d

�a�
5 ¼ �ab�

b; (A5)

with

�ab ¼ 0 1
�1 0

� �
: (A6)

Now let us define the curved 2d spacetime. As any 2d
spacetime it is conformally flat, hence, in standard nota-
tion,

g�� ¼ �ðxÞ2��� ) g ¼ detg�� ¼ �4; (A7)

and

g�� ¼ ea�e
b
��ab

g�� ¼ e
�
a e�b�

ab ) ea� ¼ �	a
�

e
�
a ¼ ��1	

�
a :

(A8)

The curved � matrices are defined through

�� ¼ e�a �a �� ¼ ea��a: (A9)
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Finally, the antisymmetric � becomes

��� ¼ 	a
�	

b
��ab

��� ¼ 	
�
a 	�

b�
ab=g ) ��
�


� ¼ 	�
�=g

�ac�
cb ¼ 	b

a:

(A10)

The spinor covariant (in the GR sense) derivative opera-
tor in the 2d curved QED Lagrangian is defined as

6D ¼ ��D� ¼ ��@
$
� þ ��!�; (A11)

with @
$
� acting only on the spinors, and ! ¼ 0 in 2d; the

vector covariant derivative is instead

D� ¼ @� þ ��; (A12)

so that the curved and flat space box operators are

h ¼ g��D�D� and ��h ¼ �ab@a@b: (A13)

In Sec. IV we also need a compact 2d spacetime with
euclidean signature of length L. This can be parametrized
in the most general way using quasi-isothermal coordinates
as

g�� ¼ e2�
j�j2 �1
�1 1

� �
; (A14)

where � ¼ �1 þ i�0 is the Teichmüller parameter on the 2-
torus, and �ðxÞ ¼ ln�ðxÞ is the gravitational Liouville
field. When studying applications to finite temperature
field theory the identification � ¼ i�=L holds.

APPENDIX B: THE WI AND THE �0 MASS

Wewant to derive the relevant WI appearing in the body
of this paper. One method one can employ is to perform a
chiral rotation c ! expði�5�Þ with �ðxÞ an infinitesimal
(fictitiously gauged) parameter, and then demand that the
generating functional for the connected part of the action,
customarily defined as W does not change. Let us begin
with the Lagrangian

L ¼ LQED2
þ �Qþ S�þ S5�5; (B1)

where

Q ¼ q

2�
�abF

ab; (B2)

is the topological charge density, and we have introduced
sources for the �-term, and the (pseudo)scalar � ¼ �c c ,
�5 ¼ �c�5c . In principle there will be sources for the
vector and axial currents ja ¼ �c�ac and j5a ¼
�c�a�

5c , as well as for the fermion and gauge boson,
but they are not relevant in this derivation.

The effect of the infinitesimal chiral rotation c !
expði�5�Þc is to shift the Lagrangian (at � ¼ 0) by the
amount

	L ¼ �½@aj5a � 2im�5 þQþ 2iS�5 þ 2iS5�� ¼ 0;

(B3)

where the factor Q is due to the Jacobian of the trans-
formation (notice the factor of 2 compared to the finite
transformation Jacobian in Eq. (14). One can rewrite this
equation in terms of functional derivatives of the effective
action W ¼ �i lnZ as

@a
	W

	Va
5

� 2im
	W

	S5
þ 	W

	�
þ 2iS

	W

	S5
þ 2iS5

	W

	S
¼ 0;

(B4)

which can be differentiated again with respect to � or S5,
and the resulting equations combined provide the crucial
zero momentum WI

1

4

	2W

	�2
¼ m

	W

	S
�m2 	

2W

	S25
; (B5)

where all sources have been turned off. This can be written
in a more familiar form as

i

4

Z
d2xhTWQðxÞQð0Þi ¼ mh �c c i�¼0 þOðm2Þ; (B6)

which is formula (21) in the paper. In this WI we have
explicitly appended a subscript W in the T-product, stand-
ing for Wick T-product which includes the contribution
from unphysical states, as opposed to the usual Dyson
T-product in which only physical states contribute. The
two definitions in coordinate space differ by a delta func-
tion, which is essential if one has to satisfy the WI (21), as
will be shown explicitly in the chiral limit.
As mentioned previously, the topological susceptibility

[see (23)] is intimately linked to the celebrated Veneziano
proposal for the �0 problem, which was inspired by the use
of a ghost’s pole in the 2d Schwinger model as pushed
forward by Kogut and Susskind. In short, the problem, and
its solution, can be formulated as follows. 4d QCD pos-
sesses an approximate SUð3Þ � SUð3Þ chiral symmetry
which is spontaneously broken by the chiral condensate,
and as such it generates light pseudoscalar mesons which
are the corresponding almost Goldstone bosons. The dy-
namics of the octet formed by the �, the K, and the � is
well described in terms of this approximation scheme,
including their masses which are light because of the soft
explicit violation of the chiral symmetry. However, just as
for the octet, also the ninth meson �0 should be almost
massless (exactly massless in the chiral limit). Yet, the �0
meson is heavy [45] and it is not possible to ascribe its
mass to the light u, d, and s masses.
One may observe that the axial current is actually

anomalous, and therefore even in the chiral limit, will not
demand the �0 mass to vanish. However, this observation,
albeit true (and essential in what follows), is not sufficient
to explain the large value of the ninth meson mass. One
instead needs a nonzero topological susceptibility of the
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vacuum, as it can be seen from the famous Witten-
Veneziano relation [25,41] (another by-product of the
WI), where the �0 mass is related to the square root of
the condensate term

m2
�0 ¼ �2 ¼ 4

jf�0 j2 �ð0Þ
gauge; (B7)

where, for the Schwinger model, the ‘‘�0’’ decay constant
is given by i=

ffiffiffiffi
�

p
, and the apex ‘‘gauge’’ means calculated

in the pure gauge theory.
A comment on renormalization and theWI. It is possible

to show, using the WI’s, that the topological susceptibility
at zero momentum is a renormalization group equation

(RGE) invariant. This comes about straightforwardly
from the fact that the WI’s we have derived are valid for
bare or renormalized quantities alike; this implies that, for
instance, the conserved and gauge invariant vector current
is not renormalized, and that the anomalous axial current
WI Eq. (B3) is RGE invariant, as it should. Use of these
properties lead to the following RGE for the topological
susceptibility

D�ð0Þ ¼ 0; (B8)

where D is the appropriate RG derivative operator, see
[46,47].
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