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The accelerating expansion of the Universe at recent epochs has called into question the validity of

general relativity on cosmological scales. One probe of gravity is a comparison of expansion history of the

Universe with the history of structure growth via gravitational instability: general relativity predicts a

specific relation between these two observables. Here we show that the mean pairwise streaming velocity

of galaxy clusters provides a useful method of constraining this relation. Galaxy cluster velocities can be

measured via the kinetic Sunyaev-Zeldovich distortion of the cosmic microwave background radiation.

Future surveys can provide large enough catalogs of cluster velocities to discriminate between general

relativity and other proposed gravitational theories.
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The most perplexing observation in physics today is the
accelerating expansion of the Universe (for a review, see
[1]). While such an acceleration can be brought about by a
constant energy density of the vacuum, the associated
energy scale is a small fraction of an electron volt. This
energy scale is not, as far as we know, a natural fundamen-
tal scale in physics, and skepticism is warranted about new
fundamental physics at room-temperature energy scales
which only manifests itself in cosmological phenomena.

The standard hot big bang model of cosmology assumes
that the Universe is statistically homogeneous and iso-
tropic, and that its dynamics are determined by general
relativity. The Einstein equation describing the evolution
of the metric then reduces to the Friedmann equation,
which can be written in the form

€aðtÞ
aðtÞ ¼ � 4�G

3
ð�ðtÞ þ 3pðtÞÞ; (1)

where �ðtÞ and pðtÞ are the mean energy density and
pressure of the Universe at a time t, and aðtÞ is the scale
factor, giving the ratio of the separation between two
objects in the cosmic rest frame at time t to their separation
today. The scale factor is the function which describes the
expansion history of the Universe, and the Friedmann
equation is its dynamical equation. It is clear from
Eq. (1) that, if general relativity is correct, we must have
w � p=� <�1=3 for the expansion of the Universe to be
speeding up at some particular epoch. Hypothetical stress-
energy components obeying this relation have been termed
‘‘dark energy.’’ Current observations show that w today is
near �1.

The only logical alternative to dark energy which can
explain the observational data is a modification of general

relativity, so that the dynamics of aðtÞ are determined by an
equation different from Eq. (1). A variety of attempts have
been made so far in this direction (see, e.g., [2–4]),
although modifying general relativity on cosmological
scales while still preserving successes on solar system
scales and also matching available cosmological data on
structure formation is challenging. Modified gravitation
theories also tend to be more difficult to solve than general
relativity, so detailed cosmological predictions for a given
theory are often lacking.
How can we distinguish between general relativity plus

dark energy and modified gravity in a model-independent
way? A number of papers have explored the fact that in
general relativity, a specific relationship exists between
two basic gravitational phenomena in cosmology: the ex-
pansion history of the Universe and the growth of cosmic
structure [5–9]. For scales well inside the cosmological
horizon, the linear-theory growth factorDðaÞ is determined
by the differential equation (see, e.g., [10])
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where the Hubble parameter HðaÞ � ð1=aÞðda=dtÞ, H0 is
the present value ofH, and�mðaÞ � 8�G�mðaÞ=ð3HðaÞ2Þ
is the ratio of the matter density �m to the critical density.
(This equation assumes that any energy density compo-
nents besides matter and radiation have negligible density
variations.) The solution to this equation can be described
to a very good approximation by

d lnD

d lna
’ �mðaÞ� (3)

for a wide range of realistic models [5]. The point behind
this useful parametrization is the separation of the effect of
expansion history, encapsulated in the function �mðaÞ,
from the growth rate, conveniently described by the single
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exponent �. For standard cosmological models with dark
energy, � ’ 0:55þ 0:05½1þ wða ¼ 0:5Þ� (reducing to the
familiar � ¼ 0:6 for w ¼ 0). Sophisticated and general
parametrizations of the evolution of the scale factor and
structure formation in theories different than general rela-
tivity have been constructed [11,12], but Eq. (3) provides a
simple, single-parameter relation valid for general relativ-
ity that can be observationally tested in principle. While a
given modified gravity theory is not guaranteed to have a
substantially different value for � than general relativity
with dark energy (see [13] for an example), generically this
will be true. Linder and Kahn, for example, calculate that
DGP gravity [14] gives � ’ 0:68 [15] and give � for
various scalar-tensor theories.

Testing Eq. (3) observationally is not an easy task,
however. It requires an observable which measures the
growth rate of structure with good precision over a large
range of redshifts. Directly measuring galaxy clustering as
a function of redshift can in principle give the linear growth
factor if the bias factor between galaxy clustering and the
underlying mass distribution is understood well enough
and if surveys complete to high enough redshift are avail-
able. Weak gravitational lensing is a promising route pro-
vided challenging measurement and theoretical systematic
errors can be controlled [16]. Linder has advocated using
redshift-space distortions, which are a measure of the
internal velocity dispersions of bound objects like galaxy
clusters [17]: up to a bias factor relating the galaxy distri-
bution to the underlying mass distribution, the redshift-
space distortion is proportional to the left side of Eq. (3).
This technique is promising, but relies on dynamics in the
nonlinear regime, and requires spectroscopic redshifts of
many galaxies. All of these optical observation methods
become increasingly difficult at high redshift.

We advocate a different approach to testing Eq. (3):
velocities of galaxy clusters obtained from the kinematic
Sunyaev-Zeldovich (kSZ) effect. The microwave back-
ground radiation has its blackbody temperature shifted as
it passes through a galaxy cluster, with the temperature
shift being proportional to the line-of-sight velocity of the
cluster and to its total optical depth for Compton scattering
of the microwave radiation [18]. For typical masses and
velocities of large galaxy clusters, the temperature shift
will be on the order of a few micro-Kelvin, on an angular
scale of around 1 arcmin. The Sunyaev-Zeldovich effect is
a powerful probe of cosmology because it is essentially
independent of cluster distance. Also, the kSZ effect di-
rectly measures velocities with respect to the cosmic rest
frame, unlike redshift-based velocity measurements which
generally must contend with cosmological redshifts that
are much larger than the redshift due to velocities. The kSZ
effect, a temperature shift on the order of 1 part in a million
of the mean background temperature, has not yet been
detected (see [19,20] for upper limits), but a new genera-
tion of experiments [21–25] is now making measurements

at these angular scales and has the potential to detect the
kSZ effect in clusters.
Here we simply assume that future Sunyaev-Zeldovich

surveys will result in a galaxy cluster velocity catalog, with
each cluster having its sky position and redshift known
exactly and its line-of-sight velocity determined with some
characteristic error. From such a catalog, a number of
different velocity statistics can be formed which are useful
for cosmology. We have previously demonstrated the util-
ity of cluster velocity statistics for constraining properties
of dark energy [26,27]. Consider, in particular, the mean
pairwise cluster relative velocity [28,29], which can be
estimated from only observed line-of-sight velocity com-
ponents [27]. Using a pair conservation equation, an ana-
lytic approximation for the mean relative velocity for two
clusters separated by a comoving distance r and at an
average scale factor a is [30]

vijðr; aÞ ¼ � 2

3
aHðaÞ d lnD

d lna

r ��ðr; aÞ
1þ �ðr; aÞ ; (4)

where �ðr; aÞ is the cluster two-point correlation function
and ��ðr; aÞ is the correlation function averaged over a
sphere of radius r. Both of these correlation functions
can be computed from the matter power spectrum and a
bias giving the average number of clusters which form in a
given overdensity. We assume that this bias is given by the
standard �CDM cosmology [27], which may not be pre-
cisely valid for alternate theories of gravity. However,
numerical simulations [31] suggest that deviations in the
large-scale bias for alternate theories of gravity are only a
few percent, so we expect this assumption to have little
effect on our results.
Notice that the amplitude of Eq. (4) is proportional to

d lnD=d lna, given by Eq. (3). So clearly this galaxy cluster
velocity statistic can be used to measure the structure
growth index �. To quantify this assertion, we have com-
puted the constraints on a 5-parameter standard �CDM
cosmological model from a cluster velocity catalog with a
given number of clusters and a given mean velocity error,
combined with priors on each parameter expected from the
Planck satellite’s upcoming measurement of the primary
microwave background temperature fluctuations [32], and
a measurement of H0 ¼ 74:2� 3:6 km=s=Mpc from the
SHOES team [33]. We perform a standard Fisher matrix
estimate [34] of the constrained region in the multidimen-
sional parameter space consisting of the amplitude of
density fluctuations �8, the power-law index of the primor-
dial density perturbations n, the Hubble parameter today
H0, the present matter density�m, and the growth index �.
For simplicity we assume the Universe is spatially flat, as
indicated by current observations; the fiducial model for
the scale factor evolution is standard �CDM. Note that
cluster velocities are independent of the other standard
cosmological parameters, like baryon density or reioniza-
tion optical depth.
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We assume a fiducial cosmological model which is the
current best-fit �CDM cosmology, and a cluster velocity
catalog with 4000 cluster velocities and a given velocity
error, corresponding to measuring a velocity for all clusters
with masses larger than 2� 1014M� in around 400 square
degrees of sky. We compute the likelihood of models with
different cosmological parameters by estimating the
Poisson error for pairwise cluster velocities in z and r
bins for our assumed survey and fiducial cosmological
model, and comparing this estimated measurement in
each bin with the value of Eq. (4) for a different model.
(See [27] for a detailed discussion of estimators and like-
lihoods.) The resulting constraint on the growth index �,
marginalized over the other parameters, is shown in Fig. 1.
The horizontal axis gives the standard error for measuring
each cluster line-of-sight velocity and the vertical axis
gives �ð�Þ, the 1-� standard error on the resulting mea-
surement of �. We only use pairs of clusters with r >
20 Mpc=h in estimating vijðr; aÞ to minimize any errors

due to nonlinear gravitational effects for nearby cluster
pairs: linear theory is quite accurate in this regime.

The assumed cluster mass limit of 2� 1014M� is near
the anticipated cluster detection threshold for current
Sunyaev-Zeldovich experiments, although they are still a
ways from having the sensitivity to measure the smaller
kinematic SZ signal. If we measure the cluster velocities
with an error of 400 km=s via their kinematic SZ distor-
tion, this will provide a measurement of � to 0.07, a level
which is interesting for discriminating various modified
gravity theories from dark energy.

This simple calculation likely gives a conservative esti-
mate of �ð�Þ, for a number of reasons. The error is
statistics dominated, so it can be decreased by measuring
velocities for clusters in a larger sky region, with �ð�Þ
scaling like the inverse square root of the sky area.
Measuring velocities more precisely can also somewhat
increase the precision in measuring �, although internal
motions of cluster gas provide an astrophysical limit of
around 100 km=s to how well cluster velocities can be
measured with the kSZ effect [35]. The prior on cosmo-
logical parameters used here also does not account for
correlations between various parameters constrained by
the microwave background power spectrum; a more de-
tailed parameter space investigation will likely result in
smaller errors on �. Including additional velocity statistics
or other measures of structure formation also may decrease
the error on �, provided correlations between the various
statistics are correctly accounted for. Finally, including �
as an extra parameter generally does not substantially
degrade the simultaneous constraints on other cosmologi-
cal parameters [36], indicating little correlation between
the effects of � and the other parameters.
Our calculation here assumes a linear-theory growth

factor when calculating cluster velocities. Since we only
use cluster pairs with separations larger than 20 Mpc, this
approximation is quite good, and accurately represents the
actual variation of the velocity statistic with cosmological
parameters. When comparing with real data, more accurate
theory predictions can be obtained from large-volume
numerical simulations with relatively low resolution.
Simulation results will be presented elsewhere.
The Atacama Cosmology Telescope (ACT) and the

South Pole Telescope (SPT) are currently mapping large
portions of the sky at arcminute resolution in multiple
microwave frequency bands. Such measurements will con-
strain certain linear combinations of gas temperature, line-
of-sight gas mass, and line-of-sight gas velocity, depending
on frequencies and noise level [37]. The addition of a gas
temperature determination from x-ray measurements often
greatly improves the precision of cluster velocity determi-
nations. While no cluster peculiar velocities have yet been
measured, velocity catalogs for hundreds or thousands of
clusters are clearly within reach as the noise level of
microwave maps decreases. Correlated foregrounds or
backgrounds are a potential problem, which is one ration-
ale for considering a wide range of cluster velocity errors.
Source modeling suggests that the range of velocity errors
considered here will encompass the actual error range
when foregrounds are included [38].
The kinematic SZ effect for galaxy clusters provides a

uniquewindow into the growth of structure in the Universe.
Like its thermal SZ counterpart, it is essentially indepen-
dent of cluster distance, so it can probe structure growth
over all epochs and over huge volumes. But in contrast to
thermal SZ cluster detection to measure the evolution of

FIG. 1. The 1-� constraint on the growth index � in a seven-
parameter spatially flat cosmological model, constrained by a
galaxy cluster velocity survey of 4000 clusters chosen via the
Sunyaev-Zeldovich effect, as a function of assumed velocity
errors. Prior parameter constraints anticipated from the Planck
satellite measurement of the primary microwave background
power spectrum [32], plus the current Hubble parameter con-
straint H0 ¼ 74:2� 3:6 km=sMpc�1 [33] are included.
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cluster number density, cluster velocities derived from the
kinematic SZ signal depend only weakly on cluster mass
[39] (since the gravitational field causing cluster peculiar
velocities provides the same acceleration to all masses),
sidestepping systematic uncertainties related to the con-
nection of cluster mass to observed SZ signal. The experi-
mental challenge is daunting: detection of the tiny
blackbody kinematic SZ distortion at arcminute resolution
in multiple frequency bands, and disentangling this signal
from other larger contributions including the thermal SZ

distortion, dust emission, and submillimeter galaxy emis-
sion (e.g., [40] for a recent measurement). But progress has
been rapid, and the payoff is one of the few reliable
methods available for probing the fundamental properties
of gravitation on cosmological scales, perhaps shedding
light on the accelerating expansion of the Universe.
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