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We present an analysis of the quark spectral function above and below the critical temperature for

deconfinement performed at zero and nonzero momentum in quenched lattice QCD using clover improved

Wilson fermions in Landau gauge. It is found that the temporal quark correlation function in the

deconfined phase near the critical temperature is well reproduced by a two-pole ansatz for the spectral

function. This indicates that excitation modes of the quark field have small decay rates. The bare quark

mass and momentum dependence of the spectral function is analyzed with this ansatz. In the chiral limit

we find that the quark spectral function has two collective modes corresponding to the normal and

plasmino excitations in the high-temperature limit. Over a rather wide temperature range in the deconfined

phase the pole mass of these modes at zero momentum, which corresponds to the thermal mass of the

quark, is approximately proportional to temperature. With increasing bare quark masses the plasmino

mode gradually disappears, and the spectral function is dominated by a single pole. We also discuss

quasiparticle properties of heavy quarks in the deconfined phase. In the confined phase, it is found that the

pole ansatz for the spectral function fails completely.
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I. INTRODUCTION

The asymptotic freedom of QCD tells us that matter at
extremely high temperature (T) becomes a simple thermo-
dynamic system composed of weakly interacting quarks
and gluons. Thermodynamic quantities approach the
Stefan-Boltzmann limit for massless quarks and gluons
in the high-temperature limit. Deviation from this limit
that arise from the temperature-dependent running gauge
coupling g can be calculated perturbatively [1,2]. The
excitation properties of quarks and gluons in this region
can also be analyzed using perturbative techniques. The
fact that T dominates over all other scales allows to adopt
the hard-thermal loop (HTL) approximation [3], which
enables us to calculate propagators of these fields in a
gauge independent way. It is known that in leading order
of HTL-resummed perturbation theory mass gaps arise in
the excitation spectra of these degrees of freedom, which
are proportional to gT. They are called thermal masses [2].
These excitations acquire decay widths owing to medium
effects, which are proportional to g2T. At sufficiently high
T these widths thus are parametrically negligible compared
to the thermal masses. In addition, a novel excitation, the
plasmino, appears in the quark propagator, which has a
minimum in its dispersion relation at nonzero momentum
[4]. Various discussions addressed the origin of such a
peculiar mode [5–10] and its phenomenological conse-
quences [11].

As T is lowered, the gauge coupling g grows and per-
turbation theory eventually breaks down. At the same time,
other scales, which are not negligible compared to T
emerge, and make the problem more complicated. This
is, in particular, the case for the quark-gluon plasma (QGP)
phase near the critical temperature of deconfinement, Tc,
which is analyzed experimentally in heavy ion collision
performed currently with the Relativistic Heavy Ion
Collider (RHIC) [12]. To analyze the highly nonperturba-
tive properties of strongly interacting matter in the tem-
perature range accessible to the RHIC experiments, a
nonperturbative approach to QCD, such as lattice-QCD
Monte Carlo simulation, is needed.
Since the leading order HTL-resummed perturbative

calculations predict that the decay widths of quarks and
gluons grow faster than the thermal masses as T is lowered,
one may naı̈vely expect that for temperatures near Tc the
peaks in spectral functions of these degrees of freedom
disappear. In other words, a quasiparticle description of
these excitations would be inappropriate near Tc. There
are, however, several arguments supporting the existence
of quasiparticles with the quantum numbers of quarks in
this region. For example, quasiparticles have been used
successfully to describe lattice-QCD results on the equa-
tion of states and susceptibilities [13]. The existence of
quark quasiparticles near Tc is also suggested by results
from lattice simulations on baryon number, electric charge,
and strangeness fluctuations [14,15]. It is also notable that
quark number scaling of the elliptic flow observed in the
RHIC experiments [16] suggests the existence of quark
degrees of freedom in the hot and dense matter created at
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RHIC. Direct studies of excitation properties of quarks
based on first principle lattice calculations may therefore
help to clarify the physics behind these findings.

After some pioneering work on thermal properties of the
quark propagator in lattice-QCD simulations [17], in [18]
the authors of the present paper investigated the spectral
properties of quarks at zero momentum for two values of
temperature in the deconfined phase, T ¼ 1:5Tc and 3Tc,
in quenched lattice QCD in Landau gauge. In this work, we
use a two-pole ansatz for the quark spectral function,
�ð!;pÞ, motivated by the structure of �ð!;pÞ in the
high-temperature limit. This ansatz includes contributions
of the normal and plasmino modes and allows to analyze
the importance of thermal widths of these modes. It is
found that the Euclidean correlation function for quarks
on the lattice is well reproduced by this ansatz. The result
indicates that excitation modes of quarks form sharp peaks
in �ð!;pÞ even near Tc. In this temperature range close to
Tc it also is found that the form of �ð!;pÞ is similar to that
in the perturbative region. It clearly is quite different from
that at T ¼ 0, which is given by field strength renormal-
ization ZðpÞ and mass function MðpÞ [19].

At temperatures close to Tc, the appearance of scales
that are not negligible compared to T invalidates the simple
picture provided by the HTL approximation, in addition to
the failure of the perturbative treatment. From the analysis
of simpler models, composed of fermions and bosons, it is
known that the structure of �ð!;pÞ has a nontrivial depen-
dence on the masses of fermions and bosons when these
masses are comparable to T [6,9,10,20]. Examples are the
spectrum of fermions with a mass m in QED or a Yukawa
model with a massless boson [6]. In these models �ð!;pÞ
is given by the HTL approximation and, in particular,
receives contributions from the plasmino mode whenever
T=m is large enough. On the other hand, �ð!;pÞ ap-
proaches a free quark spectral function without the plas-
mino mode in the low temperature T=m ! 0 limit. As
discussed in [6], and summarized in Appendix A in the
present paper, the numerical result, which has been obtain
at the one-loop order, shows that �ð!;pÞ changes contin-
uously as a function of T=m between these two limits. In
[18], we analyzed the dependence of �ð!;pÞ on the bare
quark mass, m0, for each T and found that the lattice result
are in accordance with these findings.

The main purpose of the present study is to extend the
analysis of [18] to lower temperatures, closer to Tc, and to
nonzero momentum. In addition to the temperature values
analyzed before, we performed the simulations at three
lower temperatures above and below Tc. We show that
the results obtained in [18] do not change qualitatively
even at T ¼ 1:25Tc. On the other hand, we find that the
two-pole approximation completely fails below Tc, which
indicates that excitations of quark fields with a narrow
width do not exist in the confined phase. We also analyze
the momentum dependence of �ð!;pÞ and show that the

dispersion relations of the normal and plasmino modes
behave reasonably at finite momentum. Furthermore, we
discuss the spectral properties of the light and charm
quarks.
An important aspect of the analysis of the quark spectral

function is that these spectral functions directly reflect the
symmetries of the thermal system and are sensitive to their
explicit or spontaneous breaking. One can, for example,
clearly observe the effect of chiral symmetry breaking in
the scalar channel of the quark propagator. We show that
the behavior of scalar channel is quite different between
below and above Tc; while the scalar contribution to the
spectral function becomes vanishingly small in the chiral
limit above Tc, such a behavior is not observed below Tc.
The behavior of the quark correlation function on excep-
tional configurations [21] is reported in detail in
Appendix. B.
This paper is organized as follows: In the next section,

we review the general properties of the quark spectral
function and discuss its structure for some special cases.
The setup of the numerical simulation is summarized in
Sec. III. We then discuss the numerical results for the
spectral function for T > Tc in Secs. IV and V. In
Sec. IV, we consider the bare quark mass dependence of
the spectral function at zero momentum. This analysis is
extended to finite momenta in Sec. V. Section VI is devoted
to a discussion of the quark correlation function below Tc.
We give a brief summary in Sec. VII. In Appendix A, we
review the fermion spectral function in a Yukawa model. In
Appendix B, the behavior of the quark propagator on
exceptional configurations is presented.

II. GENERAL PROPERTIES OF QUARK
PROPAGATOR AND SPECTRAL FUNCTION

In this section, we summarize the definition and proper-
ties of the quark propagator and the quark spectral func-
tion. While the content of this section may be familiar to
many readers, this section also serves to introduce the
notation used in subsequent sections. We also review the
forms of the spectral function in some limiting cases which
are of relevance in later sections.

A. Definitions

The excitation properties of quarks in a thermal medium
can be extracted from the imaginary-time (Matsubara)
quark propagator, which is defined as,

Sbc��ð�; x; 0; yÞ ¼ hT�c
b
�ð�; xÞ �c c

�ð0; yÞi; (1)

where � is the imaginary time restricted to the interval 0 �
� < 1=T. Here, T� denotes the time-ordering along the
imaginary time, and c b

�ð�; xÞ is the quark operator, with

Greek subscripts denoting the Dirac indices, and b and c
representing colors. The thermal average hOi is defined by
hOi ¼ ð1=ZÞTr½e��HO�, where the trace is taken over a
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complete set of quantum states and Z ¼ Tr½e��H�. In the
following analysis, we use the propagator in momentum
space,

S��ð�;pÞ ¼ 1

VNc

X
b

Z
d3xd3yeip�ðx�yÞSbb��ð�; x; 0; yÞ;

(2)

where V denotes the volume of the system and Nc ¼ 3 is
the number of colors. Equation (2) is referred to as the
correlation function in the following. Since S��ð�;pÞ is a
gauge covariant quantity, gauge-fixing conditions are re-
quired to obtain nonzero expectation values. Equation (2)
satisfies antiperiodic boundary condition along the imagi-
nary time,

S��ð�;pÞ ¼ �S��ð�� 1=T;pÞ: (3)

For zero quark chemical potential, the thermal ensemble
has a charge conjugation symmetry. The thermal average
thus satisfies hOi ¼ hCOCi, with C representing the unitary
operator for charge conjugation. This symmetry leads to
the following identity of the correlation function:

S��ð�;pÞ ¼ ½CSTð��;�pÞC�1���

¼ �½CSTð1=T � �;�pÞC�1���; (4)

where C is the charge conjugation matrix; Cc C ¼ Cc T . In
the last equality of Eq. (4), we used Eq. (3).

The Fourier transform of Eq. (2) with respect to � is
given by

S��ð�;pÞ ¼ T
X
n

e�i!n�S��ði!n;pÞ; (5)

with the Matsubara frequencies for fermions !n ¼ ð2nþ
1Þ�T. The retarded propagator in real time is obtained by
the analytic continuation of Eq. (5) as SR��ð!;pÞ ¼
S��ði!n;pÞji!n!!þi�.

The spectral function is related to the retarded and
Matsubara propagators as

���ð!;pÞ ¼ �ð1=�Þ ImSR��ð!;pÞ
¼ �ð1=�ÞðSRð!;pÞ � �0SRð!;pÞy�0Þ��;

(6)

and

S��ði!n;pÞ ¼
Z

d!0 ���ð!0;pÞ
!0 � i!n

: (7)

From Eqs. (7) and (5), one obtains the relation between
���ð!;pÞ and S��ð�;pÞ;

S��ð�;pÞ ¼
Z 1

�1
d!

eð1=2��TÞ!=T

e!=2T þ e�!=2T
���ð!;pÞ: (8)

Using the charge conjugation symmetry, one can show that
���ð!;pÞ obeys the following relation:

���ð!;pÞ ¼ ½C�Tð�!;�pÞC���: (9)

B. Dirac structure

Owing to parity and rotational symmetries, the Dirac
structure of the quark spectral function at finite tempera-
ture is in general decomposed as

���ð!;pÞ ¼ �0ð!;pÞð�0Þ�� � �vð!;pÞðp̂ � �Þ��

þ �sð!;pÞ1��; (10)

where p ¼ jpj and p̂ ¼ p=p. Here,

�0ð!;pÞ ¼ TrD½�ð!;pÞ�0�=4; (11)

�vð!;pÞ ¼ TrD½�ð!;pÞp̂ � ��=4; (12)

�sð!;pÞ ¼ TrD½�ð!;pÞ�=4; (13)

with TrD denoting the trace over Dirac indices. Using
Eq. (9), it is shown that �0ð!;pÞ is an even function and
�v;sð!;pÞ are odd functions of !;

�0ð!;pÞ ¼ �0ð�!;pÞ; (14)

�vð!;pÞ ¼ ��vð�!;pÞ; (15)

�sð!;pÞ ¼ ��sð�!;pÞ: (16)

In some special cases, the Dirac structure of the spectral
function can also be decomposed by using projection
operators [7,22]. Two such examples, which are of rele-
vance in the subsequent sections, are the spectral function
at zero momentum and that having chiral symmetry. For
the former case, �vð!;pÞ vanishes and �ð!;p ¼ 0Þ can be
decomposed with the projection operators L� ¼
ð1� �0Þ=2 as

�ð!; 0Þ ¼ �Mþð!ÞLþ�0 þ �M�ð!ÞL��0; (17)

where

�M�ð!Þ ¼ 1

2
TrD½�ð!; 0Þ�0L�� ¼ �0ð!; 0Þ � �sð!; 0Þ:

(18)

We note that gamma matrices (�0) in Eq. (17) come
directly from the definition of the quark propagator;
Sð�Þ ¼ hT�c ð�Þ �c ð0Þi ¼ hT�c ð�Þc yð0Þi�0.
If the system is chirally symmetric, the quark propagator

must anticommute with �5, and thus �sð!;pÞ vanishes in
Eq. (10). In this case, �ð!;pÞ can be decomposed using the
projection operators P�ðpÞ ¼ ð1� �0p̂ � �Þ=2 as

�ð!;pÞ ¼ �Pþð!;pÞPþðpÞ�0 þ �P�ð!;pÞP�ðpÞ�0; (19)

where
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�P�ð!;pÞ ¼ 1

2
TrD½�ð!;pÞ�0P�ðpÞ�

¼ �0ð!;pÞ � �vð!;pÞ: (20)

We note that in general �M�ð!Þ and �P�ð!;pÞ are neither
even nor odd functions. Instead, the charge conjugation
symmetry, Eq. (9), requires the following relations for
�M�ð!Þ and �P�ð!;pÞ:

�M�ð!Þ ¼ �M�ð�!Þ; (21)

�P�ð!;pÞ ¼ �P�ð�!;pÞ: (22)

Finally, the chirally symmetric spectral function at zero
momentum is simply written as �ð!; 0Þ ¼ �0ð!; 0Þ�0.
This function can be decomposed into the forms given by
Eq. (17) as well as Eq. (19) with �M�ð!Þ ¼ �P�ð!; 0Þ ¼
�0ð!; 0Þ. Only in this case do �M�ð!Þ and �P�ð!; 0Þ become
even functions of !.

The spectral functions, �M�ð!Þ and �P�ð!;pÞ, which
arise in the decomposition of the spectral function
�ð!;pÞ, represent excitations having definite quantum
numbers corresponding to each projection. Therefore, the
excitation properties of quarks are more apparent in these
channels rather than in Eqs. (11)–(13). Moreover, using the
definition of the spectral function, one can prove that they
are non-negative, �M�ð!Þ � 0 and �P�ð!;pÞ � 0. In the
analyses presented in later sections, we therefore mainly
refer to �M�ð!Þ and �P�ð!; 0Þ instead of Eqs. (11)–(13). One
can also show that �0ð!;pÞ � 0, while the signatures of
�vð!;pÞ and �sð!;pÞ are not determined from the
definition.

The correlation function S��ð�;pÞ is also decomposed

similarly to Eq. (10),

S��ð�;pÞ ¼ S0ð�; pÞð�0Þ�� � Svð�; pÞðp̂ � �Þ��

þ Ssð�; pÞ1��: (23)

Using the charge conjugation symmetry, one can show that
S0ð�; pÞ ¼ S0ð1=T � �; pÞ, Sv;sð�; pÞ ¼ �Sv;sð1=T �
�; pÞ. For zero momentum and in the chiral limit, the
correlation function reduces to

Sð�; 0Þ�0 ¼ SMþð�ÞLþ þ SM�ð�ÞL�; (24)

Sð�;pÞ�0 ¼ SPþð�; pÞPþðpÞ þ SP�ð�; pÞP�ðpÞ; (25)

respectively. The charge conjugation symmetry requires
that

SM�ð�Þ ¼ SM�ð1=T � �Þ; SP�ð�; pÞ ¼ SP�ð1=T � �; pÞ;
(26)

while SM�ð�Þ and SP�ð�; pÞ are neither symmetric nor anti-
symmetric. Only if the system is chirally symmetric, SMþð�Þ
becomes a symmetric function,

SMþð�Þ ¼ SMþð1=T � �Þ: (27)

C. Spectral functions in some special cases

1. Free quarks

The retarded propagator of a free quark with Dirac mass
m is given by

SRfreeð!;pÞ ¼ 1

P6 �m
¼ �þðp;mÞ�0

!þ i�� Ep

þ ��ðp;mÞ�0

!þ i�þ Ep

;

(28)

where P� ¼ ð!þ i�;pÞ, and ��ðp;mÞ ¼ ðEp � �0p �
�Þ=ð2EpÞ are the projection operators for the free quark

with Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. The corresponding spectral function

is given by �ð!;pÞ ¼ �freeþ ð!;pÞ�þðp;mÞ�0þ
�free� ð!;pÞ��ðp;mÞ�0, with

�free� ð!;pÞ ¼ 	ð!� EpÞ: (29)

The projection operators��ðp;mÞ satisfy��ð0;mÞ ¼ L�
and ��ðp; 0Þ ¼ P�ðpÞ. Therefore, �M�ð!Þ of the free
quark with zero momentum reads

�M�ð!Þ ¼ 	ð!�mÞ; (30)

and �P�ð!;pÞ with zero quark mass

�P�ð!;pÞ ¼ 	ð!� pÞ: (31)

2. High-temperature limit

The quark propagator at asymptotically high tempera-
ture can be calculated perturbatively. The validity of HTL
approximation allows to obtain gauge independent result
within this approach [3]. The quark propagator at leading
order in perturbation is given by

SRHTLð!;pÞ ¼ ½P6 ��HTLð!;pÞ��1; (32)

where

�HTLð!;pÞ ¼ m2
T

p
Q0

�
!

p

�
�0 þm2

T

p

�
1�!

p
Q0

�
!

p

��
p̂ � �;
(33)

is the quark self-energy with thermal mass m2
T ¼

ð1=6Þg2T2 and Q0 ¼ ð1=2Þ lnðxþ 1Þ=ðx� 1Þ [2]. Since
Eq. (32) is chirally symmetric, SRHTLð!;pÞ and the corre-
sponding spectral function can be decomposed using the
projections operators P�ðpÞ. The spectral functions
�P�ð!;pÞ then read

�P�ð!;pÞ ¼ ZNðpÞ	ð!� ENðpÞÞ
þ ZPðpÞ	ð!� EPðpÞÞ þ �contð�!;pÞ; (34)

where �contð!;pÞ represents the contribution of the con-
tinuum taking nonzero values in the spacelike region.
�Pþð!;pÞ has two poles in the timelike region at ENðpÞ>
0 and EPðpÞ> 0, which are called normal and (anti-)
plasmino modes, respectively [2]. For zero momentum,
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ENð0Þ ¼ EPð0Þ ¼ mT and the residues satisfy ZNðpÞ ¼
ZPðpÞ ¼ 0:5. The spectral functions for zero momentum
thus are given by,

�P�ð!; 0Þ ¼ �M�ð!Þ ¼ �0ð!; 0Þ
¼ 1

2½	ð!�mTÞ þ 	ð!þmTÞ�: (35)

3. Effect of a nonzero Dirac mass

In the derivation of Eq. (32), it is assumed that not only
g � 1 but also T dominates over all other scales, where the
latter condition is required for the validity of the HTL
approximation. If T is not large enough compared to other
scales, the effect of the latter shows up, which leads to
modifications of the form of the quark propagator even if
perturbation theory is still valid. An example for such a
scale is the Dirac mass of the quark,m. The effect ofm has
been first investigated in [6] for the case of QED and for a
Yukawa model composed of a massive fermion and a
massless boson. In these models, the fermion spectral
functions for zero momentum �M�ð!Þ take simple forms
in the massless and infinite mass limits: For m=T ! 0, T
dominates over other scales, and �M�ð!Þ should approach
Eq. (35),

�M�ð!Þ ’ 1
2½	ð!�mTÞ þ 	ð!þmTÞ�: (36)

However, in the opposite limit, m=T ! 1, the Dirac mass
dominates over T and the spectral function approaches that
of a free quark

�M�ð!Þ ’ 	ð!�mÞ: (37)

By comparing Eqs. (36) and (37), it is obvious that the
number of poles in �M�ð!Þ is different in these limits. The
analysis performed in [6] in the one-loop approximation
showed that these two limits are nevertheless connected
continuously; as m=T becomes smaller, the peak corre-
sponding to the plasmino gradually manifests itself in
�M�ð!Þ. In Appendix A, the numerical results for this
feature in the Yukawa model and details of the formalism
are summarized. Also in QCD, if the temperature is high
enough so that the one-loop approximation for the quark
self-energy is valid, we find the same limiting behavior as
in Eqs. (36) and (37). At intermediate values of m=T a
similar behavior of �M�ð!Þ as found in the model calcula-
tions is therefore also expected. Using lattice simulations,
wewill show in the following that the two limiting forms of
the spectral function are observed even in the nonperturba-
tive region near Tc [18] in Sec. IV.

III. SIMULATION SETUP

In this study, we analyze the quark correlation function,
Eq. (2), using lattice-QCD simulations in the quenched
approximation, where vacuum excitations of the quark-
anti-quark pairs are neglected. For the lattice fermion, we

use nonperturbatively improved clover Wilson fermions
[23,24].
We use gauge field ensembles that have been generated

and used previously by the Bielefeld group to study screen-
ing masses and spectral functions [25,26]. The simulation
parameters are summarized in Table I. We calculate the
fermion correlation function for five values of the tempera-
ture, three of which are above Tc and the others are below
Tc. The simulation for T > Tc is performed on lattices of
three different volumina, N3


 	 N� and lattice spacing a, in
order to check the dependence of the numerical result on
volume and lattice spacing. A column labeled cSW in
Table I gives the parameter for the clover coefficient. For
configurations above Tc, we have checked that the average
of the Polyakov loop on every configuration is closest to
the Zð3Þ root on the real axis.
To estimate the value of the lattice spacing at which our

calculations for a given T=Tc have been performed we use
Tc ’ 300 MeV. This results from determinations of Tc in
units of the square root of the string tension Tc=

ffiffiffiffi



p ’ 0:64
[27–29] and a value for the string tension

ffiffiffiffi



p ’ 465 MeV,
which is extracted from studies of the heavy quark poten-
tial in QCD with light quarks [30,31]. We note that the
resulting estimate for the lattice cutoff has to rely on a
physical scale that needs to be taken from a physical, i.e.
unquenched QCD, calculation.
Quark propagators have been calculated after fixing

each gauge field configuration to Landau gauge @�A
� ¼

0. For this we used conventional and stochastic minimiza-
tion algorithms with a stopping criterion,
ð1=3Þ trj@�A�j2 <� with � ¼ 10�11. By comparing the

correlation functions calculated with stopping criteria � ¼
10�11, 10�9, and 10�7, we have checked that the numerical
result converges well at � ¼ 10�11.
In the Wilson fermion formulation the quark mass is

controlled by the hopping parameter �. As the quark mass
also receives an additive renormalization, the limit of
vanishing quark mass is reached at some ‘‘critical’’ value
of the hopping parameter �c. For temperatures above Tc,

TABLE I. Simulation parameters on lattices of size N3

 	 N�.

The last column labeled Nexcp gives the number of exceptional

configurations (see text).

T=Tc N� N
 � cSW a [fm] Nconf Nexcp

3 16 64 7.457 1.3389 0.014 51 0

16 48 7.457 1.3389 0.014 51 0

12 48 7.192 1.3550 0.019 51 0

1.5 16 64 6.872 1.4125 0.027 44 7

16 48 6.872 1.4125 0.027 51 0

12 48 6.640 1.4579 0.037 51 3

1.25 16 64 6.721 1.4404 0.033 48 31

16 48 6.721 1.4404 0.033 58 0

0.93 16 48 6.499 1.4579 0.038 50 0

0.55 16 48 6.136 1.6530 0.075 60 1
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we determine �c from the � dependence of the quark
propagator, as will be described more precisely in Sec. IV.

The quark mass is controlled by the deviation of � from
�c,

m0 ¼ 1

2a

�
1

�
� 1

�c

�
: (38)

In the free field limit the pole of the free Wilson fermion
propagator at zero momentum is given by

mp ¼ 1

a
logð1þ am0Þ: (39)

In the following, we use Eq. (39) to define a bare quark
mass, which we use to compare calculations performed at
different values of the cutoff.

For temperatures T=Tc � 1:5 and values of the hopping
parameters close to �c we observe on some gauge field
configurations an anomalous behavior of the quark propa-
gator. The appearance of such exceptional configurations
in calculations with light quarks in quenched QCD is a
well-known problem in calculations with Wilson fermions
[21]. We discuss the behavior of the quark correlation
function on these configurations in Appendix B. As sum-
marized there, the behavior of the quark propagator on
these configurations is clearly unphysical, and it is easy to
introduce a reasonable criterion to distinguish them from
the normal ones. The number of configurations identified
to be exceptional is given in the last column of Table I
labeled Nexcp. We excluded these configurations from our

analysis. The number of configurations analyzed, Nconf ,
which does not include the exceptional ones, is also given
in Table I. One sees from this table that the number of the
exceptional configurations tends to increase as T is lowered
and as spatial volume is larger. In particular, we did not
observe any exceptional configurations for T=Tc ¼ 3. On
lattices for 643 	 16 and T ¼ 1:25Tc, on the other hand,
almost 40% configurations are identified to be the excep-
tional ones. As discussed in Appendix B, this large number
is attributed to a strong correlation in the appearance of
exceptional configurations against the gauge update. We
thus consider that the analysis with remaining 60% con-
figurations still makes sense; see Appendix B.

The quark correlation function, Eq. (1), is the inverse of
the fermion matrixK ¼ 6D�m. To evaluate it numerically
on the lattice, we solve the linear equation

c source ¼ Kc result; (40)

for a given source vector c source. In this study, we use a
wall source with momentum p

c sourceð�; xÞ ¼ 1

V
	�;0 expð�ip � xÞ; (41)

and construct the quark propagator, Eq. (2), from the
solution of Eq. (40), c result ¼ K�1c source, as

Sð�;pÞ ¼ X
x

eip�xc resultð�; xÞ ¼ 1

V

X
x;y

eip�ðx�yÞSð�; x; 0; yÞ;

(42)

where the Dirac and color indices are suppressed for
simplicity. The point source c sourceð�; xÞ ¼ 	�;0	x;0, on

the other hand, is the simplest choice for the source term,
which leads to a different formula for the correlation
function

Sð�;pÞ ¼ X
x

eip�xc resultð�; xÞ ¼
X
x

eip�xSð�; x; 0; 0Þ: (43)

Translational invariance requires that the two definitions
for Sð�;pÞ, Eqs. (42) and (43), should give the same result.
We have confirmed that this is indeed the case within
statistical error. It is, however, found that the statistical
error obtained with Eq. (42) is notably smaller than that
with Eq. (43), while the numerical costs are almost the
same for both definitions. The advantage of the wall source
becomes more prominent on lattices with larger spatial
volume. This behavior is understood intuitively: In
Eq. (42), the propagators of the quark field starting from
various points at � ¼ 0 are averaged; this does suppress
fluctuations arising from the local structure of gauge
configurations.
In the subsequent sections we limit our analyses to two

cases; (1) zero momentum correlators with nonzero values
of the mass,mp, and (2) finite momentum correlators in the

chiral limit and above Tc. The correlation function for each
case is decomposed as given in Eqs. (24) and (25), respec-
tively. In order to reduce the statistical error of SMþð�Þ and
SPþð�Þ optimally we make use of their periodicity in
Euclidean time, Eq. (26), and define these correlation
functions on the lattice, for example SMþð�Þ, as

SMþð�Þlatt ¼ 1
2½SMþð�Þ þ SM�ð1=T � �Þ�: (44)

IV. QUARK PROPAGATOR ABOVE Tc AT ZERO
MOMENTUM

In this section, we analyze the quark spectral function
above Tc for zero momentum but with finite bare quark
mass. As discussed in Sec. II, the quark spectral function at
zero momentum is decomposed into �M�ð!Þ as in Eq. (18).
In the following, we consider �Mþð!Þ, since �M�ð!Þ is then
immediately obtained with Eq. (21).

A. Lattice correlation function and fitting ansatz

In order to extract the spectral function �Mþð!Þ from the
lattice correlation function using Eq. (8) we assume a
simple ansatz for the shape of �Mþð!Þ including a few
fitting parameters. For the fitting function, we have tried
four ansätze, two of which are single- and two-pole ones,

�Mþð!Þ ¼ Z1	ð!� E1Þ; (45)
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�Mþð!Þ ¼ Z1	ð!� E1Þ þ Z2	ð!þ E2Þ: (46)

Here, Z1;2, and E1;2 > 0, are fitting parameters, which

represent the residues and positions of poles, respectively.
The pole at ! ¼ �E2 in Eq. (46) corresponds to the
plasmino mode at high temperatures, while the pole at! ¼
E1 is the normal one. We have also used fitting functions
that allow for a Gaussian widths,

�Mþð!Þ ¼ Z1ffiffiffiffi
�

p
�1

exp
�ð!� E1Þ2

�2
1

; (47)

�Mþð!Þ ¼ Z1ffiffiffiffi
�

p
�1

exp
�ð!� E1Þ2

�2
1

þ Z2ffiffiffiffi
�

p
�2

	 exp
�ð!þ E2Þ2

�2
2

; (48)

where �1;2 are additional fitting parameters corresponding

to the width of each peak.
Comparing the values of 
2=dof in correlated fits based

on Eqs. (45) and (46), we found for all parameter sets
analyzed in the present study that 
2=dof in a fit based
on Eq. (46) is more than 1 order of magnitude smaller than
fits based on the single-pole ansatz, Eq. (45). The pole
corresponding to the plasmino mode at! ¼ �E2 therefore
is an intrinsic feature of the quark propagator above Tc and
is needed to describe the numerical results. A single-pole
ansatz Eq. (45) is clearly ruled out. Using correlated fits
based on Eqs. (47) and (48), the minimal 
2 always is
found at �1 ¼ �2 ¼ 0, i.e. the ansätze reduce to Eqs. (45)
and (46), respectively. The extension to include the
Gaussian widths therefore does not modify the fit at all.
In the following analysis, we thus use the two-pole ansatz
Eq. (46).

Here, we note that the above result on the Gaussian
widths is obtained in correlated fit. We checked that if
we use uncorrelated fits, which neglect correlations be-
tween different �’s, the Gaussian ansätze can improve the

2=dof especially for large bare quark masses. The nu-
merical result shows that for large bare quark masses even
the single-pole ansatz with nonzero width, Eq. (47), in-
cluding three parameters can give smaller 
2=dof than the
four parameter fit based on Eq. (46). This shows that there
exist strong correlations between different time slices on
the lattice, which of course is expected.

In Fig. 1, we show the numerical results for SMþð�Þlatt on a
lattice of size 643 	 16 at T ¼ 3Tc for several values of �.
From the figure one sees that the shape of SMþð�Þlatt ap-
proaches a single exponential function for small �, while it
becomes flat and symmetric as � becomes larger. In the
vicinity of the source, i.e. at small and large �, we see
deviations from this generic picture, which can be attrib-
uted to distortion effects arising from the presence of the
source. In fact, by comparing the correlation functions on
the lattices with N� ¼ 12 and 16, we find that such a

distortion is clearly seen only at the � value closest to the
source. It is thus expected that this deviation arises only in
the vicinity of the source and hence is negligible in the
continuum limit.
In order to get control over distortion effects close to the

source, we have performed fits using points �min � � �
N� � �min with �min ¼ 2, 3, 4 and 5 for N� ¼ 16, and
�min ¼ 2, 3 and 4 for N� ¼ 12. We have checked that the
dependence of the fitting parameters on �min are small; the
fit results obtained with different �min coincide within the
statistical error. In the following analysis, we use �min ¼ 4
and 3 for N� ¼ 16 and 12, respectively.
The resulting correlation functions in the two-pole an-

satz, Eq. (46), obtained from correlated fits are shown in
Fig. 1 as solid lines. One sees that SMþð�Þlatt is well repro-
duced by our fitting ansatz. In Fig. 2, we show the bare
quark mass dependence of the 
2=dof on lattices of size
643 	 16 and T=Tc ¼ 1:25, 1.5, and 3, where the critical
hopping parameter �c in Eq. (38) will be defined in the next
subsection. The figure shows that 
2=dof is of order unity
around mp ¼ 0, which means that our fitting ansatz can

describe the lattice correlation function well for light
quarks. In particular, 
2=dof is less than unity formp=T &

0:3 with T=Tc ¼ 1:5 and 3. For large bare quark masses
and close to Tc, on the other hand, the two-pole ansatz
eventually becomes worse.
The success of two-pole ansatz for the quark correlation

functions indicates that the excitation modes of quarks near
but above Tc are good quasiparticles with small decay rates
similar to those found in the perturbative region. In terms
of the complex pole of the propagator, the results suggest

FIG. 1 (color online). Lattice correlation function SMþð�Þlatt at
T ¼ 3Tc for the lattice of size 64

3 	 16with various values of �.
The solid lines represent the fitting result with the two-pole
ansatz, Eq. (46). Note that the upper panel shows correlation
functions for the heavier quarks on a logarithmic scale and also
includes the correlation function for the lightest quark mass,
which also is shown again in the lower panel on a linear scale.
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that the positions of the poles would be near the real axis at
! ¼ E1 and �E2 with small imaginary parts. Provided
that the positions of poles of the quark propagator are
gauge independent [32], this also suggests that our results
on the fitting parameters E1 and E2 have small gauge
dependence.

B. Pole structure

In Fig. 3, we show the dependence of E1, E2, and
Z2=ðZ1 þ Z2Þ on the bare quark mass for T=Tc ¼ 1:25,
1.5, and 3 obtained from calculations on lattices of size
643 	 16. Error bars have been estimated from a jackknife
analysis. The bare quark mass mp is defined in Eq. (39)

with �c determined by the � dependence of �Mþð!Þ as
described below.

The figure shows that the ratio Z2=ðZ1 þ Z2Þ becomes
larger with decreasing mp and eventually reaches 0.5 irre-

spective of T. The numerical result for each T shows that

E1 ¼ E2 is satisfied within statistical errors at this point.
These results show two important features of the structure
of �Mþð!Þ at this point. First, since �Mþð!Þ becomes an even
function, the quark propagator is chirally symmetric at this
point within the statistical error (see Sec. II B). Because of
this feature, it is natural to define the hopping parameter
satisfying Z1 ¼ Z2 ¼ 0:5 to be the critical hopping pa-
rameter, �c. The values of �c defined in this way is given
in the second column of Table II.1 We have checked that
these values are consistent with those obtained in [25,26]
from the vanishing of the isovector axial current. The
second observation is that �Mþð!Þ at � ¼ �c has the same
form as the spectral function in the high-temperature limit,
Eq. (35). We therefore define the thermal mass of the quark
on the lattice as mT 
 ðE1 þ E2Þ=2 at � ¼ �c. The value
ofmT for each T withN
 ¼ 64 is given in the third column
of Table II. One finds that the ratiomT=T is insensitive to T
in the range analyzed in this work, although it becomes
slightly larger with decreasing T, which would be in ac-
cordance with the expected parametric form at high tem-
perature, mT � gT.
Figure 3 also shows that the relative strength of the

plasmino pole Z2=ðZ1 þ Z2Þ decreases with increasing
values of the bare mass mp. The spectral function �Mþð!Þ
thus will eventually be dominated by a single pole. This
result agrees with the generic observations discussed in
Sec. II C, i.e. �Mþð!Þ approaches the spectral function of
free quarks, Eq. (37), as the bare quarks mass becomes
larger (see also Appendix A). The quark mass dependence
of the fitting parameters at large mp thus is reasonable. We

also note that E1 has a minimum at mp > 0, while E2 is a

monotonically increasing function. This is in contrast to
the one-loop result in the Yukawa model, summarized in
Appendix A, where the position of the peak in �Mþð!Þ at
positive energy corresponding to E1 is a monotonically

FIG. 3 (color online). Bare quark mass dependence of fitting
parameters E1;2 and the relative strength of the plasmino mode,

Z2=ðZ1 þ Z2Þ, at T=Tc ¼ 1:25, 1.5, and 3 obtained from calcu-
lations on lattice of size 643 	 16.

TABLE II. The second column shows the critical hopping
parameter �c determined from � dependence of the fitting
functions for lattices of size 643 	 16. The values of the thermal
massmT analyzed on lattice with N
 ¼ 64, and that extrapolated
to the infinite volume limit N
 ¼ 1 are also presented in the
right columns.

mT=T
T=Tc �c N
 ¼ 64 N
 ¼ 1
3 0.133 997(13) 0.875(8) 0.771(20)

1.5 0.134 999(10) 0.906(8) 0.800(18)

1.25 0.135 248(10) 0.899(12) 0.803(24)

FIG. 2 (color online). Bare quark mass dependence of the

2=dof obtained for two-pole fits at T=Tc ¼ 1:25, 1.5, and 3
on lattices of size 643 	 16.

1Clearly, our definition of �c introduced above is not unique.
Possible alternative definitions are, for example, the value of � at
which (1) E1 ¼ E2, or at which (2) the correlation function in the
scalar channel Ssð�; 0Þ becomes smallest. We have checked that
the systematic error on �c arising from these different definitions
is of the same order as the statistical error on �c given in Table II.
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increasing function of m=T, while the absolute value of
that at negative energy, E2, decreases monotonically. The
mp dependence of E1 and E2 determined from our lattice-

QCD calculations therefore is qualitatively different from
the perturbative result. The nonperturbative nature of the
gluon field could be responsible for this behavior. Indeed,
the minimum of E1 becomes shallower with increasing
temperature and the slope of E2 decreases, as can be seen
in Fig. 3. The perturbative behavior thus may well be
recovered in the perturbative high-temperature limit.

Finally, we shall briefly discuss the T dependence of the
magnitude of the residues Z1 and Z2. In Fig. 4 we show the
correlation function SMþð�Þ near the chiral limit, mp=T ’
0:08, for T=Tc ¼ 1:25, 1.5, and 3. The figure shows that the
magnitude of SMþð�Þ is insensitive to T. This result indicates
that the magnitude of both residues, Z1 and Z2, does not
have a strong T dependence for T=Tc * 1:25.

C. Beyond the chiral limit

On the lattices above Tc, one can solve Eq. (40) in and
even beyond the chiral limit, since chiral symmetry is not
spontaneously broken above Tc and the numerical calcu-
lation does not suffer from the light Nambu-Goldstone
mode. From Eq. (39), the hopping parameter for � > �c

corresponds to the negative Dirac mass. In Fig. 5, we show
mp dependence of the fitting parameters near the chiral

limit for T=Tc ¼ 3.2 We plot the numerical results only for
mp * �0:2, since the convergence of the inversion routine

to solve Eq. (40) based on the BiCGStab algorithm starts
failing there.

If the system possesses a charge conjugation symmetry,
the sign of the Dirac mass does not affect any observables.
One can, however, show that the roles of �Mþð!Þ and �M�ð!Þ
are exchanged when the sign of the Dirac mass is reversed;

�Mþð!Þjmp¼�m ¼ �M�ð!Þjmp¼m: (49)

This formula is shown by the fact that �0ð!;pÞ and
�sð!;pÞ are even and odd, respectively, as functions of
the bare quark mass, and Eqs. (14) and (16). In terms of the
fitting parameters in the two-pole ansatz Eq. (46), this
requires that

E1ð�mÞ ¼ E2ð�mÞ; and Z1ð�mÞ ¼ Z2ð�mÞ: (50)

In Fig. 5, E1 and E2 as functions of�mp and Z1=ðZ1 þ Z2Þ
are shown by the dotted lines. One sees from the figure that
Eq. (50) is approximately satisfied within the statistical
error. This result shows that our numerical result behaves
reasonably around the chiral limit. The similar result is
obtained on lattices for T ¼ 1:5Tc.

D. Volume and lattice spacing dependence

In order to check the dependences of our results on the
lattice spacing and finite volume, we analyzed the quark
propagator at T=Tc ¼ 3, 1.5, and 1.25 on lattices with
different a and N
 as shown in Table I. Results for E1,
E2, and Z2=ðZ1 þ Z2Þ obtained at T=Tc ¼ 3 for two differ-
ent values of the lattice cutoff and two different physical
volumina are shown in Fig. 6. Comparing the results
obtained on lattices with different lattice cutoff, a, but
same physical volume, i.e. 643 	 16 and 483 	 12, one
sees that any possible cutoff dependence is statistically not
significant in our analysis. On the other hand we find a
clear dependence of these quantities on the spatial volume;
when comparing lattices with aspect ratiosN
=N� ¼ 3 and
4 we find that the energy levels E1 and E2 drop signifi-
cantly near the chiral limit as the volume is increased. For
larger values of the bare mass mp the volume dependence

of E1 becomes small. A similar behavior is observed for
T=Tc ¼ 1:5 and 1.25.

FIG. 4 (color online). Lattice correlation functions near the
chiral limit for T=Tc ¼ 1:25, 1.5, and 3. The value of mp is

mp=T ’ 0:1, 0.05, and 0.08 for each T, respectively.
FIG. 5 (color online). Fitting parameters E1;2 and Z2=ðZ1 þ
Z2Þ near the chiral limit for T=Tc ¼ 3. The dotted lines are E1;2

as functions of �mp, and Z1=ðZ1 þ Z2Þ.

2We have checked that correlators other than those in the
vector and scalar channels vanish within statistical errors even
for � > �c.
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The presence of a strong volume dependence of the
quark propagator is not unexpected. In fact, for the emer-
gence of the thermal mass hard gluons having momenta
p ’ T play a crucial role [2,3]. However, the lowest non-
vanishing gluon momentum on the lattice is, pmin=T ¼
2�ðN�=N
Þ, which still is larger than unity on lattices with
aspect ratio N
=N� ¼ 4. In fact, at present one cannot rule
out that the discretization of low momenta can also be
responsible for the success of the two-pole ansatz for
�Mþð!Þ, since scattering processes giving rise to the width
of quasiparticles can be suppressed due to the discretiza-
tion of momentum. An analysis of quark spectral functions
on lattices with even larger spatial volume, or other than
periodic boundary conditions, is needed in the future to
properly control effects of small momenta.

In the present study, we estimate the thermal massmT in
the V ! 1 limit by extrapolating the results obtained for
two different volumina withN� ¼ 16. The extrapolation of
mT with the ansatz for the volume dependence
mTðN�=N
Þ ¼ mTð0Þ expðcN3

�=N
3

Þ for each temperatures

is shown in Fig. 7. This extrapolation suggests that finite
volume effects may still be of the order of 15% in our
current analysis of mT=T. The value of mTð0Þ determined
from this extrapolation is depicted in the far right columns
of Table. II.

E. Quark mass dependence

Here we want to discuss quasiparticle properties of the
physical quarks, i.e. up, down, and charm. So far we have
treated the bare quark mass as a free parameter. Clearly one

can discuss the properties at physical values of the quark
masses by choosing the bare mass mp appropriately. Such

information may be exploited for the understanding of the
QGP phase near Tc.
In order to discuss properties of the quark propagator for

physical quark mass values, we first show the bare quark
mass, mp, dependences of the fitting parameters E1, E2,

and Z2=ðZ1þZ2Þ in physical units (GeV) in Fig. 8.
Throughout this subsection, we use lattices of size 483	
12 for T=Tc¼1:5 and 3; these sets of gauge configurations
are exactly those used also in the analysis of charmonia at
finite T in [26]. They are therefore most suitable for the
comparison between properties of quarks and charmonia
analyzed there. As discussed before, the lattice spacing
dependences of these results are small and the figure hardly
changes even if we employ the finer lattices of size 643	
16.
Let us first investigate the quasiparticle property of the

charm quark. For this purpose we can use the values of �
corresponding to the charm quark evaluated in [26], which
are shown in Table III. In Fig. 8, the value of mp corre-

sponding to these � values is shown for each T by a vertical

FIG. 7 (color online). Extrapolation of the thermal mass of the
quark to the infinite volume limit for T=Tc ¼ 3, 1.5, and 1.25.

FIG. 6 (color online). Bare quark mass dependence of parame-
ters E1, E2, and Z2=ðZ1 þ Z2Þ at T ¼ 3Tc for lattices of size
643 	 16, 483 	 16, and 483 	 12.

FIG. 8 (color online). Dependences of E1, E2, and Z2=ðZ1 þ
Z2Þ on bare quark massmp on 483 	 12 lattice for T=Tc ¼ 3 and

1.5 in the physical unit. The value of mp corresponding to the

charm quark employed in [26] are shown by the vertical lines.
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line. One sees that the values of Z2=ðZ1þZ2Þ on these
lines, which are shown in the far right column of Table III,
are small, Z2=ðZ1þZ2Þ�1. This means that the strength
of the plasmino mode is weak and the structure of the quark
spectral function is close to that of free quarks, Eq. (30),
with a single pole at !¼E1. Therefore, it should be rea-
sonable to regard the charm quarks at these temperatures as
free Dirac particles with a Dirac mass mD¼E1. The value
ofmD for each T is shown in the fourth column of Table III.

When one refers to the values of mD in Table III, how-
ever, it should be remembered that 
2=dof is rather large
formp corresponding to the charm quark, as one can expect

from Fig. 2. This means that our fitting ansatz has less pre-
dictive power for heavy quarks. As discussed in Sec. IVA,
however, the single-pole ansatz, Eq. (45), as well as those
including Gaussian widths, Eqs. (47) and (48), do not
improve 
2. In order to check the stability of the value of
mD, we have analyzed the lattice correlator with single-
pole ansatz using points ~�min � � � ~�max with various
combinations of ~�min and ~�max. Through this analysis, we
have found that when the fitting gives a relatively small

2=dof, the difference in mD from that in Table III is less
than 5%. We therefore expect that mD in Table III is safely
interpreted as the mass of the charm quark within 5%
systematic error. The fact that the 
2=dof is rather large
in our two-pole analysis suggests that there exists addi-
tional structure in the heavy quark spectral function. This
also has been noted recently in a perturbative analysis [33]
and deserves further investigation.

The lattice simulations suggest the existence of sharp
peaks in the spectral function of �c and J=c even above Tc

up to T¼1:5�2Tc [26,34]. It is interesting to compare the
Dirac mass of the charm quark obtained here with the
spectral functions of charmonia. In particular, twice the
Dirac mass, 2mD, gives a threshold for the decay process of
the charmonia, provided that the potential between a quark
and an antiquark vanishes at long distances. The numerical
result in [26] shows that the energies of the peaks corre-
sponding to �c and J=c for T=Tc¼1:5 are m�c

’3:4GeV

and mJ=c ’3:8GeV.3 These values are clearly larger than

2mD’3:1GeV.

If the confinement potential is screened completely, m�c

and mJ=c thus are resonance states inside the continuum.

At least at T=Tc & 1:5 the heavy quark free energy still has
a complicated structure, which still shows a linear rise over
the distance range relevant for quarkonium physics [35].
This needs to be taken into account in any further quanti-
tative discussion.
Here, we note that the values of � employed in [26] are

not accurately corresponding to the physical charm quark:
With these parameters the masses corresponding to �c in
the vacuum are about 3.4 GeV and 4.1 GeVon each lattice
for T=Tc ¼ 1:5 and 3, respectively. They are therefore
slightly larger than the experimental value. These parame-
ters therefore should be interpreted as a guide for the charm
quark. In particular, the values of mD in Table III are not
the exact values for the charm quark. It should, however, be
emphasized that the above arguments about the compari-
son between 2mD and masses of charmonia make sense,
because the same hopping parameter is employed in both
analyses.
Finally, we turn to a discussion on the light quarks.

Figure 8 shows that the conditions Z2=ðZ1 þ Z2Þ ’ 0:5
and E1 ’ E2 are satisfied at mp corresponding to the light

quark masses, say mq ’ 0:01 GeV, for each temperature.

This shows that the effect of a nonzeromp is negligible and

the quasiparticle picture for light quarks is close to that
obtained in the high-temperature limit, Eq. (35), i.e. light
quarks have a thermal massmT . This quasiparticle property
of the light quarks suggests that the effect of the thermal
mass of light quarks should be taken into account when one
consider quark quasiparticles as the basic ingredients in the
studies of thermodynamics [13], quarkonia, and the chiral
transition [36] of the QGP phase near Tc. The value of the
bare mass for the strange quarks mq ’ 0:08 GeV, on the

other hand, is in the intermediate region between the two
simple limits for these temperatures.

V. QUARK PROPAGATOR AT FINITE
MOMENTUM

In this section, we analyze the quark spectral function at
finite momentum on lattices with size 643 	 16 for
T=Tc ¼ 1:5 and 3. Throughout this section we consider
the quark propagator in the chiral limit by fixing � ¼ �c,
where �c is the critical hopping parameter determined in
the previous section. The correlation function on the lattice
is calculated using a wall source, Eq. (42), with momentum
p. The quark propagator in the chiral limit is decomposed
into �P�ð!;pÞ according to Eq. (20). Following the same
approach used in Sec. IV at zero momentum, we adopt the
two-pole ansatz

�Pþð!;pÞ ¼ Z1	ð!� E1Þ þ Z2	ð!þ E2Þ; (51)

and determine four parameters from a correlated fit with
�min ¼ 4. The 	 functions at ! ¼ E1 and �E2 correspond

TABLE III. Pole mass of the charm quark mD ¼ E1 and the
strength of the plasmino mode Z2=ðZ1 þ Z2Þ on 483 	 12 lattice
for T=Tc ¼ 3 and 1.5. The parameter � for the charm quark is
those employed in [26].

T=Tc � �c mD [GeV] Z2=ðZ1 þ Z2Þ
3 0.131 14 0.134 54(3) 1.625(5) 0.057(2)

1.5 0.1290 0.135 40(3) 1.534(6) 0.042(2)

3We note that the parameters used to determine the physical
scale used in [26] and the present study are slightly different. The
masses in physical unit quoted here take this difference into
account for comparison, i.e. we use our value for Tc to set the
scale.
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to the normal and plasmino modes, respectively. We found
that 
2=dof with this ansatz is always smaller than 1.5 for
all momenta analyzed in this study. This result means that
the two-pole ansatz again reproduces the lattice correlation
function well.

In Fig. 9, we show the momentum dependence of the
fitting parameters E1, E2, and Z2=ðZ1 þ Z2Þ for T=Tc ¼
1:5 and 3. The horizontal axis represents the momentum on
the lattice p̂ ¼ ð1=aÞ sinpa. The figure shows that for large
momentum Z2=ðZ1 þ Z2Þ rapidly decreases and E1 ap-
proaches the light cone. The spectral function at large
momentum therefore approaches that of a free quark, con-
sistent with the perturbative result. One also finds that E2 is
always smaller than E1, in contrast to the results in Sec. IV.
This behavior qualitatively agrees with the behavior of
poles in the high T limit [2]. One also observes from
Fig. 9 that E2 enters the spacelike region at high momen-
tum. While in one-loop perturbation theory the plasmino
mode always exists in the timelike region, higher order
corrections could give rise to such behavior of the plasmino
mode. At least, such behavior does not contradict causality.

An interesting property of the quark propagator in the
high-temperature limit Eq. (32) is that the dispersion rela-
tion of the plasmino has a minimum at finite momentum. In
Fig. 9, one sees that the value of E2 at lowest nonzero
momentum on our lattice, pmin ¼ 2�TðN�=N
Þ ’ 1:5T, is
slightly larger than that at zero momentum, and the exis-
tence of such a minimum is suggested but not yet con-
firmed in the present analysis. A more detailed analysis at
smaller momenta would clearly be needed, which requires
calculations on lattices with a larger aspect ratio N
=N�.

The quark spectral function at high temperatures,
Eq. (34), has a continuum �contð!;pÞ in the spacelike

region, which physically originates from the Landau damp-
ing. At leading order, the spectral weight of �contð!;pÞ,R
p
�p d!�contð!;pÞ, becomes 0.2 at most. The success of

the two-pole fit for �Pþð!;pÞ without the continuum there-
fore seems inconsistent with the perturbative result. A
possible reason for this feature is the discretization of
momenta on the lattice, since the Landau damping giving
rise to �contð!;pÞ can be suppressed due to the missing
momenta p & T in our current analysis. Lattices with
much larger spatial volume are required to clarify this
problem as well as the detailed properties of the dispersion
relations including the minimum of the plasmino mode.
So far, we discussed the spectral functions �P�ð!;pÞ,

assuming that the scalar channel �sð�; pÞ vanishes. In order
to check the validity of this assumption, we show in Fig. 10
the momentum dependence of the correlation function in
the scalar channel, Ssð�; pÞlatt, for T=Tc ¼ 1:5. The figure
shows that the absolute values of Ssð�; pÞlatt are smaller
than 0.005 up to p=pmin ’ 3 except for � values next to the
source where they suffer from lattice artifacts. These val-
ues are more than two orders smaller than the typical
values of SPþð�; pÞlatt, and thereby being negligibly small,
indeed. The figure shows that deviations of Ssð�; pÞlatt from
zero become statistically significant as p increases. This is
a lattice artifact and is expected to arise from the momen-
tum dependence of the mass term in the Wilson formula-
tion; for free Wilson fermions the mass term is given by
MðpÞ ¼ m0 þ rð1� cospaÞ=a with r being the Wilson
parameter. The fact that Ssð�; pÞ is still small even at p ¼
3pmin ’ 4:5T shows that our lattice is fine enough so that
the effect of explicit chiral symmetry breaking, which
arises from the Wilson term, is well suppressed.

VI. QUARK PROPAGATOR BELOW Tc

Next, we analyze the quark correlation function below
Tc. In this section, we restrict the analysis to the lattices of
size 483 	 16 for simplicity. In the upper two panels of

FIG. 10 (color online). Scalar channel of lattice correlation
function Ssð�; 0Þlatt at � ¼ �c for T=Tc ¼ 1:5 with several values
of p.

FIG. 9 (color online). Dependences of the fitting parameters
E1 and E2 and the ratio Z2=ðZ1 þ Z2Þ on the lattice momentum
p̂ ¼ ð1=aÞ sinðpaÞ for T=Tc ¼ 1:5 and 3.
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Fig. 11, we show the correlation function at zero momen-
tum, SMþð�Þlatt, for T=Tc ¼ 0:55 and 0.93 and for several
values of �. The critical hopping parameter �c for each T
determined in [25] is 0.135 66 and 0.135 58, respectively.
For comparison, SMþð�Þlatt above Tc for T=Tc ¼ 1:25 and
1.5 is shown in the lower two panels.

Before starting the discussion of results obtained below
Tc, we first recapitulate the qualitative behavior of S

Mþð�Þlatt
above Tc. As we have seen in Sec. IV, the following two
qualitative features are observed above Tc: (1) S

Mþð�Þlatt is

well reproduced by the two-pole ansatz Eq. (46). The
fitting results are shown by solid lines in the lower two
panels. (2) SMþð�Þlatt approaches a symmetric function,
Eq. (27), as � ! �c, which means that chiral symmetry
of the quark propagator is recovered there.
The upper two panels in Fig. 11 clearly show that the

behavior of SMþð�Þlatt below Tc is qualitatively different
from those above Tc. First, S

Mþð�Þlatt is concave in the
log-scale plot at �=T & 0:6 for any value of �. Such
structure can never be reproduced by the two-pole ansatz
Eq. (46). In fact, we have checked that the fit with Eq. (46)
always gives unacceptably large 
2=dof below Tc.
Moreover, this behavior of SMþð�Þlatt cannot be reproduced
even if we use more than three poles with positive residues.
Our result thus indicates the violation of positivity of
�Mþð!Þ below Tc, which is found also in the Schwinger-
Dyson approach below Tc [37].
The failure of the two-pole ansatz for �Mþð!Þ indicates

the absence of quasiparticles corresponding to sharp peaks
in �Mþð!Þ, and this result seems consistent with a naı̈ve
picture that quark excitations are confined below Tc.
In the last sections, we discussed that the gauge depen-

dence of our result is expected to be small, due to the
success of the two-pole approximation and the argument
that the position of poles of propagators is gauge indepen-
dent. This argument breaks down below Tc, since we no
longer conclude anything about the position of poles. The
violation of positivity of spectral functions could be an
artifact of a specific choice of gauge-fixing condition [6].
The calculation of SMþð�Þlatt with different gauge-fixing
conditions may provide us with further clues to understand
this problem.
From Fig. 11, one also finds that SMþð�Þlatt below Tc does

not approach a symmetric function as � ! �c in contrast to
those above Tc. This means that the quark propagator does
not become chirally symmetric even in the chiral limit,
which is consistent with spontaneous chiral symmetry
breaking below Tc. To see this behavior more clearly, we
show in Fig. 12 the correlation function in the scalar
channel, Ssð�; 0Þlatt, for several values of �, for T ¼
0:55Tc and 1:5Tc. The figure shows that Ssð�; 0Þlatt for T ¼
0:55Tc indeed stays finite in the limit � ! �c, while that
for T ¼ 1:5Tc is vanishingly small in this limit.
Since the difference between the correlation functions

below and above Tc is quite remarkable, we conclude that
the thermal modification of gluon fields during the decon-
finement transition strongly affects also the excitation
properties of quarks propagating in this background field.
Since our fit ansatz fails in the confined phase, however, the
detailed structure of the quark propagator is less clear. The
comparison with the quark propagator at T ¼ 0 calculated
in lattice simulations [19] and the Schwinger-Dyson equa-
tion [37] will give us insights to understand the present
results. Such study, however, is beyond the scope of the
present work.

FIG. 11 (color online). Lattice correlation functions SMþð�Þlatt
for several values of T below and above Tc on 483 	 16 lattices.
In each panel, SMþð�Þlatt is depicted for four values of �; two of
which are close to �c. In the lower two panels for T > Tc, the
correlation functions obtained by the two-pole ansatz is also
shown by solid lines.
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VII. SUMMARY

In this publication, we analyzed the dependence of the
quark spectral function on temperature T, bare quark mass
m, and momentum p in quenched lattice QCDwith Landau
gauge fixing. Above Tc, we found that the two-pole ap-
proximations for the spectral functions in the projected
channels, �M�ð!Þ and �P�ð!;pÞ, can well reproduce the
lattice correlation functions. Although further studies on
the volume dependence are needed, this result indicates
that the excitations of quarks have small decay width even
near Tc. Below Tc, on the other hand, the two-pole ansatz
fails completely, and the behavior of quark correlation
functions indicates the violation of positivity of the spectral
function.

By analyzing them and p dependence of these poles, we
confirmed that above Tc two poles, the normal and plas-
mino excitations, appear in the quark propagator. The mass
gaps of these excitation spectra should be interpreted as
thermal masses, rather than Dirac mass. It is found that the
ratio mT=T ’ 0:8 is insensitive to T in the range analyzed
in this study. As the bare quark mass is increased, the
spectral function eventually changes its form from that
having a thermal mass to the free quark form. We found
that the bare quark mass of the charm quark is close to the
latter, having a single mode with a Dirac mass.

All analyses of the present study are based on the
quenched approximation. Although this approximation in-
cludes the leading contribution in the high-temperature
limit [2] and thus is valid at sufficiently high T, the validity
of this approximation near Tc is nontrivial. For example,
screening of gluons due to the polarization of the vacuum
with virtual quark antiquark pairs is neglected in this
approximation. The coupling to possible mesonic excita-

tions [26,34,38], which may cause interesting effects in the
spectral properties of the quark [9,10], are not incorpo-
rated, either. The comparison of the quark propagator
between quenched and full lattice-QCD simulations would
tell us the importance of these effects near Tc. It also would
be interesting to calculate perturbatively higher order cor-
rections to the quasiparticle properties of quarks [20]. Such
a calculation will help to clarify the origin of differences in
the mass and momentum dependence of the quark propa-
gator found in our lattice calculation in comparison to
leading order perturbation theory.
There are many open questions that need to be analyzed

in more detail in future calculations. A numerical simula-
tion with a large spatial volume is an important subject
among them. As discussed in the text, the influence of
momenta smaller than the temperature is not properly
included in the present simulations; the smallest nonzero
momentum possible on our lattices with aspect ratio 4 and
periodic boundary conditions is larger than T. Lattices
allowing for momenta less than T will be necessary to
systematically analyze the importance of low momentum
excitations. The existence of a minimum in the plasmino
mode could also be confirmed in such a study. The calcu-
lation of the quark propagator in a different gauge is also
important. It will allow to check directly the gauge depen-
dence of the present results. These subjects will be studied
elsewhere. Although we have seen that the lattice correla-
tor is in general well reproduced by the two-pole ansatz
Eq. (46), fits with this ansatz gradually become worth as
the bare quark mass is increased. Other fitting ansätze,
Eqs. (45), (47), and (48) used by us do not improve the

2. Clarifying the spectral properties of heavy quarks and
introducing a more reliable ansatz are interesting subjects
for further studies. Recent analytic studies performed
within perturbation theory may provide here useful guid-
ance [33].
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APPENDIX A: QUARK SPECTRAL FUNCTION IN
YUKAWA MODEL

In this appendix, we review the spectral function of
massive fermions coupled to a massless scalar boson via
the Yukawa coupling at finite temperature T. While the
results given in this appendix are essentially the same as
those first discussed in [6], we recapitulate them to make

FIG. 12 (color online). Scalar channel of lattice correlation
function Ssð�; 0Þlatt for T=Tc ¼ 0:55 and 1.5.
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this paper self-contained. The details of the analysis in the
Yukawa models at finite T are found, for example, in
[6,9,10].

We start from the Lagrangian of a Yukawa model,

L ¼ �c ði@6 �mÞc þ 1
2@��@��� gy� �c c ; (A1)

where c and� denote the fermion and boson operators,m
is the fermion mass, and gy represents the Yukawa cou-

pling. We neglect the mass term of the scalar boson, since
the purpose of this analysis is a study of quarks coupled to
massless gauge bosons. It is argued in [6] that the qualita-
tive result about the fermion spectral function hardly
changes even if we promote the scalar field in Eq. (A1)
to the Uð1Þ gauge field. In the following, we call the
fermion field c the quark.

The quark self-energy in the imaginary-time formalism
at one-loop order is given by

~�ði!m;pÞ ¼ �g2yT
X
n

Z d3k

ð2�Þ3 S0ði!n; kÞ

	D0ði!m � i!n;p� kÞ; (A2)

where S0ði!n;pÞ ¼ ½i!n�
0 � p � ��m��1 and

D0ði�n;pÞ ¼ ½ði�nÞ2 � p2��1 are the Matsubara propaga-
tors for the free quark and the free scalar boson, respec-
tively, with !n ¼ ð2nþ 1Þ�T and �n ¼ 2n�T. After
summation over n and analytic continuation, one obtains

the self-energy in the real time, �ð!;pÞ ¼
~�ði!n;pÞji!n!!.

The self-energy �ð!;pÞ has an ultraviolet divergence,
which can be removed with a standard renormalization
[6,9,10]. Here, we simply neglect the T-independent part,
�T¼0ð!;pÞ 
 limT!0�ð!;pÞ, which includes the diver-
gence. This approximation is justified if the temperature is
high enough, since the T-dependent part, �T�0ð!;pÞ 

�ð!;pÞ ��T¼0ð!;pÞ, grows rapidly and dominates over
�T¼0ð!;pÞ as T is raised. The T-dependent part
�T�0ð!;pÞ does not suffer from any divergences and can
be calculated without renormalization. The spectral func-
tion at one-loop order is then given by

�ð!;pÞ ¼ � 1

�
Im

1

ð!þ i�Þ�0 � p � ��m� �ð!;pÞ :
(A3)

In our formalism, m and T are the only dimensionful
parameters and thus they control all properties of the
system with a fixed Yukawa coupling gy. In particular,

the dimensionless spectral function, ~� ¼ T�ð!=T;p=TÞ,
is determined uniquely for a given ratio T=m. The limit
T=m ! 0 corresponds to low temperature, where �ð!;pÞ
approaches the spectral function of free quarks, Eq. (29).
The opposite limit, T=m ! 1, represents the high-
temperature limit. If we take gy ! 0 in this limit,

�ð!;pÞ becomes that calculated in the HTL approximation

Eq. (34) with mT ¼ gyT=4. With a fixed nonzero gy, the 	

functions in �ð!;pÞ become peaks having a nonzero width
of order g2yT. One can, however, check numerically that the

qualitative structure of �ð!;pÞ hardly changes with a small
Yukawa coupling gy & 1.

To compare the spectral function in the Yukawa model
with the results in Sec. IV, we limit our attention to zero
momentum. In this case, �ð!; 0Þ is decomposed as in
Eq. (17) with projection operators L�. In the following
we also regard m=T as the external parameter, instead of
T=m, since this is much more convenient for the compari-
son with the lattice result. From the above argument, one
expects that the spectral function �Mþð!Þ in the limit
m=T ! 1 approaches the free quark form, Eq. (30),

lim
m=T!1

�Mþð!Þ ’ 	ð!�mÞ; (A4)

while in the opposite limit m=T ! 0, �Mþð!Þ should ap-
proach Eq. (35),

lim
m=T!0

�Mþð!Þ ’ 1

2
ð	ð!�mTÞ þ 	ð!þmTÞÞ: (A5)

We show the numerical result for �Mþð!Þ for several
values of m=T in Fig. 13. A fixed Yukawa coupling gy ¼
1 is employed in this calculation: We have checked that the
qualitative feature of the numerical result does not change
with a variation of gy over a rather wide range. The figure

shows that �Mþð!Þ for m=T ¼ 0:01 qualitatively reprodu-
ces Eq. (A5), having two peaks around ! ¼ �gT=4. As
m=T increases, the peak at negative energy corresponding
to the plasmino ceases to exist, and �Mþð!Þ is eventually
dominated by a single peak at positive energy ! ’ m.
Although in the figure the width of the peak at positive
energy, �, grows as m=T increases, one can check numeri-
cally and analytically that �=m vanishes in the limit
m=T ! 1. The width of the peak therefore is negligible
in this limit, and �Mþð!Þ reproduces Eq. (A4).
The numerical result presented in Fig. 13 shows that the

two limits given by Eqs. (A4) and (A5), respectively, are
connected continuously at the one-loop order. It is also
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FIG. 13 (color online). Spectral function �Mþð!Þ in the Yukawa
model Eq. (A1) for several values of m=T with a Yukawa
coupling gy ¼ 1.
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seen that the absolute value of the position of the peak at
positive (negative) energy is a monotonically increasing
(decreasing) function ofm=T. As discussed in the text, this
feature is qualitatively different from that observed on the
lattice near but above Tc.

APPENDIX B: EXCEPTIONAL CONFIGURATIONS

As mentioned in Sec. III, we found that the quark
correlation functions Sð�;pÞ on some gauge configurations
for T=Tc � 1:5 behave anomalously near the chiral limit
and at zero momentum. In this appendix, we summarize
the behavior of Sð�;pÞ on such exceptional configurations
(EC). A criterion to determine the EC used in the present
analysis is also described.

For the moment, we consider the correlation function at
zero momentum in the chiral limit � ¼ �c on the lattice of
size 643 	 16 for T=Tc ¼ 1:5 (� ¼ 6:872). The Dirac
structure of Sð�; 0Þ is decomposed as

SSð�Þ ¼ TrD½Sð�; 0Þ�=4; (B1)

SV;�ð�Þ ¼ TrD½��Sð�; 0Þ�=4; (B2)

ST;��ð�Þ ¼ TrD½
��Sð�; 0Þ�=4; (B3)

SA;�ð�Þ ¼ TrD½���5Sð�; 0Þ�=4; (B4)

SPð�Þ ¼ TrD½�5Sð�; 0Þ�=4: (B5)

In Fig. 14, we show SV;0ð�Þ, SSð�Þ, SPð�Þ, and ST;12ð�Þ on
all 51 configurations. Among them, seven configurations
are specified as the EC, which are depicted by the bold
lines. The numbers 1–7 are also assigned to these lines for
better identification of each configuration. The correlation
functions obtained on the other 44 configurations are
shown by thin light-blue lines, which are, however, almost
degenerated in the lower three panels. From the figure, one
clearly sees that the behavior of SSð�Þ, SPð�Þ, and ST;12ð�Þ
on the EC is qualitatively different from other normal
configurations, which are approximately zero in these
channels. As discussed in Sec. II, the chiral, parity, and
rotational symmetries require that the correlation functions
in these channels vanish. The behavior of these functions
on the EC therefore is obviously unphysical. On the other
hand, SV;0ð�Þ tends to behave moderately even on the EC.

Since the anomalous behavior of SSð�Þ, SPð�Þ, and
ST;12ð�Þ on the EC is quite evident, it is easy to introduce

a criterion to identify the EC. Here, we introduce

�� ¼ XN���min

�¼�min

jS�ð�Þj2; (B6)

for each configuration where � defines different channels
Eqs. (B1)–(B5), and regard the configurations satisfying

�� >D; (B7)

as the exceptional ones with D being the threshold to be
determined empirically. We show �P and �T;12 with

�min ¼ 3 on all configurations in Fig. 15. The horizontal
axis represents the different gauge configurations, which
are ordered according to Monte Carlo time. One sees that
�P and �T;12 on the EC take values more than 2 orders of

magnitude larger than the typical ones on the normal
configurations. This result means that there is a wide range
for the choice of D in Eq. (B7), and hence this criterion
works well in practice. Our numerical result shows that the
criterion Eq. (B7) is most successfully applied to the
pseudoscalar channel, �P, and successively �T;ij with 1 �
i, j � 3. Here, we notice that our formula for Sð�;pÞ with
the wall source Eq. (42), instead of Eq. (43), plays a crucial
role for this clear separation between the normal and ex-
ceptional configurations. In fact, with the correlation func-
tion calculated with Eq. (43), the quark correlation
functions have large fluctuations and the range ofD, which
separates the EC with Eq. (B7), becomes narrower.
Figure 15 also shows that the EC on this set of gauge

configurations are strongly correlated. They correspond to
subsequent configurations in Monte Carlo time, although
the separation between these gauge configurations is a few

FIG. 14 (color online). Quark correlation functions in the
vector, scalar, pseudoscalar, and tensor channels, SV;0ð�Þ,
SSð�Þ, SPð�Þ, and ST;12ð�Þ (from top to bottom) on all configu-

ration for a lattice of size 643 	 16 for T=Tc ¼ 1:5. The excep-
tional configurations are shown by the bold lines.
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times larger than the autocorrelation length measured in
terms of the plaquette and Polyakov loop correlation func-
tions [25]. This shows that the correlation among EC is
significantly stronger and leads to a much larger autocor-
relation length. A similar result is obtained for T=Tc ¼
1:25, although in this case we observed several groups of
such successive EC.

Next, in Fig. 16 we show the correlation function rep-
resenting the propagation between right and left handed
quarks, c R;L ¼ ð1=2Þð1� �5Þc ,

SRLð�Þ ¼ hT�c Rð�Þ �c Lð0Þi ¼ TrD

�
1þ �5

2
Sð�; 0Þ

�

¼ 1

2
ðSSð�Þ þ SPð�ÞÞ: (B8)

The figure shows that SRLð�Þ is close to zero as it should be
even on the EC. On the other hand, the opposite channel
SLRð�Þ ¼ TrD½Sð�; 0Þð1� �5Þ=2� ¼ ðSSð�Þ � SPð�ÞÞ=2
behaves anomalously on the EC, as expected from the
behavior of SS;Pð�Þ in Fig. 14. Although on the gauge

configurations for T=Tc ¼ 1:5 we observed the anomalous
behavior only on SLRð�Þ for all configurations, we checked
that for T=Tc ¼ 1:25 there appear anomalous behaviors in
both SLRð�Þ and SRLð�Þ. For T=Tc ¼ 1:25, however, only
one of them tends to behave anomalously on each EC with

a few exceptions. It is also found that the channel having
the exceptional behavior tends to be common in a group of
configurations appearing successively. The results pre-
sented above indicate that there exist topological objects
on the EC that cause the anomalous behavior of the quark
correlation functions. To check this speculation, it would
be interesting to directly measure the topological charge on
each configuration.
Finally, we remark on a relation between EC observed in

the quark correlation function and those in the hadronic
channels. By measuring the pion correlation function con-
structed from the quark correlation function with the point
source, Eq. (43), we confirmed that the appearance of
anomalous behavior in the pion correlation function is
limited on the EC determined with the criterion Eq. (B7).
We, however, also found that the behavior of pion propa-
gator seems moderate on some configurations satisfying
Eq. (B7). The latter behavior may be attributed to the form
of the lattice correlation function: As mentioned above, the
wall source, Eq. (42), for the quark propagator drastically
reduces the statistical fluctuations compared to the point
source, and hence allows the clear separation of EC with a
criterion like Eq. (B7). For the same reason, the fluctua-
tions in the pion channel can be large when calculated with
a point source and such fluctuations make the identification
of the EC difficult. We thus expect that if we would
calculate the pion correlation function with a wall source
operator similar to that used in Eq. (42) for the quarks,
there would be a perfect correspondence in the appearance
of the exceptional behavior in both correlation functions.
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