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We discuss the tension between discrete flavor symmetries and extended scalar sectors arising from

lepton flavor violation experiments. The key point is that extended scalar sectors will generically lead to

flavor changing neutral currents, which are strongly constrained by experiments. Because of the large

parameter space in the scalar sector such models will, however, usually have no big problems with

existing and future bounds (even though the models might be constrained). This changes considerably

once a flavor symmetry is imposed in addition: Because of the symmetry, additional relations between the

different couplings arise and cancellations become impossible in certain cases. The experimental bounds

will then constrain the model severely and can easily exclude it. We consider two examples which show

how these considerations are realized. The same logic should apply to a much wider class of models.
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I. INTRODUCTION

The standard model (SM) is a very successful theory.
Apart from only describing the phenomena observed, it has
even made predictions of new particles such as the Z boson
or the t quark. There is only one missing piece, namely, the
well-known neutral scalar Higgs boson, that will hopefully
be found at the LHC.

Apart from this success there are, however, some obser-
vations which indicate that the SM is incomplete, among
them, e.g., the observation of dark matter [1], the baryon
asymmetry [2], and the hierarchy problem [3]. An exten-
sion of the SM is therefore necessary [this is usually called
physics beyond the SM (BSM)]. The various possible
extensions of the SM very often contain extended scalar
sectors. Other extensions address the flavor problem and
introduce new flavor symmetries to explain the apparent
regularities of masses and mixings.

In this paper we study the difficulties arising when one
tries to combine a model with an extended scalar sector
with a discrete flavor symmetry. The key point is that there
are actually quite strong constraints on models with ex-
tended scalar sectors. Since, however, the scalar sector of a
theory is in most of the cases poorly known (meaning that
there are a lot of free parameters), such a model can usually
not be excluded easily, because of internal cancellations
between several of the parameters that may cause some
observables to nearly vanish. If, on the other hand, some
additional structure is imposed on the model (by, e.g., a
discrete flavor symmetry), then additional relations be-
tween some of the parameters can easily rule out the
corresponding model or at least restrict its parameters to
very narrow ranges.

The paper is organized as follows: In Sec. II, we intro-
duce the argumentation which leads us to our statement
that models with extended scalar sectors may get into
trouble by the introduction of an additional flavor symme-
try. This is exemplified in Sec. III, where we present two
particular models for which our logic clearly works. The
numerical results that we have obtained are presented and
discussed in Sec. IV, and we finally conclude in Sec. V. The
basic properties of the discrete groups that we use are given
in the Appendixes A (A4) and B (D4).

II. THE GENERAL ARGUMENTS

A natural way to extend the SM is to add further scalar
particles, which have not yet been discovered. These could,
e.g., be additional SUð2Þ singlets [4], doublets (‘‘two Higgs
doublet model,’’ THDM), or triplets [5]. Depending on the
model, it can then be the case that more than one Higgs
field contribute to the masses of all particles or that certain
Higgses only give masses to a particular choice of particles
[6]. These models will then, however, generically lead to
flavor changing neutral currents (FCNCs) [7] and hence to
lepton flavor violation (LFV) processes [8], which are quite
strongly constrained [9]. It is, however, also not easy to rule
them out that way, since they will in general yield complex
3� 3 Yukawa coupling matrices, which hold a lot of free-
dom in their 18 parameters. So, in most of the cases, such a
model will be able to fit all neutrino data without any
problems, even if it is strongly constrained.
On the other hand, there are also ways to impose more

structure onto the SM in order to get an understanding of
quantities like mixing angles, or so. This is usually done by
so-called (discrete) ‘‘flavor symmetries’’ under which the
SM fermions [and, depending on the model, also (addi-
tional) scalars] are charged in a certain way. If, e.g., two
generations of SUð2ÞL doublets are components of the
same doublet representation of a discrete flavor symmetry
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(such as the dihedral groups D3 ’ S3 [10] or D4 [11–13]),
then this property will generically lead to �-� symmetry
[14] by which two mixing angles are predicted, �23 ¼ �=4
and �13 ¼ 0. Moreover, in order to increase the predictiv-
ity, one can also assign all three generations of SUð2ÞL
doublets to form a triplet of a discrete flavor symmetry
(such as A4 [15–19]). This can lead to tribimaximal mixing

[20], in which also �12 is fixed to be tan�12 ¼ 1=
ffiffiffi
2

p
.

Imposing such symmetries adds more structure to the
model in the sense that one obtains relations between
different entries of the Yukawa matrices. By that way,
one can obtain the neutrino oscillation parameters as well
as the charged lepton masses as functions of only a few
parameters, which can then be checked on whether they are
in accordance with data, or not. However, such models
generically need a lot of scalars in order to break the flavor
symmetry in a valid way. In case the normal Higgses are
not charged under the flavor symmetry, these are additional
SM-singlet scalars (‘‘flavons’’), which are only charged
under the discrete symmetry and can hence break it by
obtaining a vacuum expectation value (VEV). These sca-
lars will, again, lead to horribly large FCNCs, which
crashes with phenomenology.

One way out is to decouple the flavons by giving them
masses associated with the breaking scale of the flavor
symmetry, which can be much higher then the electroweak
scale. This is, of course, somehow only hiding the problem,
but it will make the model fit better.

We now apply the following logic:
(1) We impose a flavor symmetry and decouple the

flavons in order to end up with an effective low
energy model with a scalar sector that is slightly
extended compared to the SM. This could, e.g., be a
THDM or something similar.

(2) This procedure should make the model fit better,
because the possible problems that could arise by
the flavons are avoided.

(3) Since we have gained predictivity by imposing the
flavor symmetry, we can fit the model to neutrino
data, which allows us to extract certain ranges for
the model parameters.

(4) The model, however, still has additional scalars
compared to the SM, which will be able to mediate
LFV processes, whose branching ratios can be pre-
dicted using the fitted parameter values.

(5) If this prediction does not fit with present (future)
LFV bounds, we are (will be) able to exclude the
particular flavor symmetry imposed (in a certain
scenario). Note that this logic will also hold in the
nondecoupling case if no extreme fine-tuning is
involved.

In principle, this could work for any model with a
slightly extended scalar sector. If the structure of the model
is not extremely peculiar, which is rarely the case in the
scalar sector of a theory, the additional scalars (compared

to the SM) will unavoidably lead to LFV processes, which
are already strongly constrained. The key point is that these
constraints are so strong that imposing somemore structure
by adding a flavor symmetry can easily destroy the con-
sistency of the model with all data.
Here, we want to present such an analysis for one

particular example, namely, for Ma’s scotogenic model
[21], as this consists of a very minimal extension of the
SM. Furthermore, it does not have too many possible LFV
diagrams, so that our logic is not shadowed by a heavy
calculational apparatus. In this model, one can see imme-
diately the effect of certain symmetries: Without imposing
a flavor symmetry, one constrains quantities like

jh�11h21 þ h�12h22 þ h�13h23j (1)

by LFV processes like � ! e� [22], where h is the
Yukawa coupling matrix involved. Such a combination
can easily become zero for unfortunate values of some
phases, exactly as the effective neutrino mass in neutrino-
less double beta processes [23]. Imposing relations be-
tween certain elements of h hinders such cancellations to
appear, and the term in Eq. (1) will generically be much
larger than zero.
We want to stress, however, that this particular model is

just an example and that our idea may work for a much
wider class of models.

III. CONSTRAINING PARTICULAR MODELS

A. One possible example: The scotogenic model

There are a lot of different models for neutrino mass
generation on the market [24]. A difficult task for all of
them is to explain the smallness of neutrino masses com-
pared to other particles we know in nature.
One way is to forbid a tree-level mass term for neutrinos

and generate neutrino masses only by radiative corrections,
as done in several models [21,24–28]. Out of those, Ma’s
‘‘scotogenic’’ model [21] (that we call ‘‘Ma model’’ for
simplicity) is particularly attractive: By adding only one
additional Higgs doublet and heavy right-handed neutrinos
to the SM, as well as imposing an additional Z2 symmetry,
it allows for sufficiently small neutrino masses. These
masses are generated radiatively, because the additional
neutral Higgs does not obtain a VEV that could lead to a
tree-level neutrino mass term. Furthermore, due to the Z2

symmetry, this model also provides a stable dark matter
candidate, namely, the lightest of the heavy neutrinos [29]
or the lightest neutral scalar [30]. Constraints on the model
arise from various different sources as, e.g., lepton flavor
violation or the dark matter abundance [22]. In that sense,
this model is very ‘‘complete.’’
The basic ingredients apart from the SM are
(i) Three heavy right-handed (Majorana) neutrinos Nk,

which are singlets under SUð2Þ and have no
hypercharge,
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(ii) a second Higgs doublet � with SM-like quantum
numbers that does not obtain a VEV, and

(iii) an additional Z2 parity under which all SM parti-
cles are even, while Nk as well as � are odd.

The corresponding Higgs potential looks like

V ¼ m2
1�

y�þm2
2�

y�þ �1

2
ð�y�Þ2 þ �2

2
ð�y�Þ2

þ �3ð�y�Þð�y�Þ þ �4ð�y�Þð�y�Þ
þ �5

2
½ð�y�Þ2 þ H:c:�; (2)

where� is the SM Higgs. Ifm2
1 < 0 andm2

2 > 0, then only
�0 will obtain a VEV v ¼ 174 GeV, while h�0i ¼ 0.
Then, the Yukawa Lagrangian is given by

LY ¼ fijð��	i þð�0Þ�liÞecj þ hijð�0	i ��þliÞNj þH:c:;

(3)

which does not lead to a tree-level neutrino mass term due
to the vanishing VEV of �0. The neutrino masses can,
however, be generated radiatively, which gives a natural
suppression of the neutrino mass eigenvalues and can
exploit the heaviness of the Nk (with masses Mk) as well.
The mass matrix of the light neutrinos reads

ðM	Þij ¼
X3
k¼1

hikhjk�k; (4)

where

�k ¼ Mk

16�2

�
m2ðH0Þ

m2ðH0Þ �M2
K

ln

�
m2ðH0Þ
M2

K

�

� m2ðA0Þ
m2ðA0Þ �M2

K

ln

�
m2ðA0Þ
M2

K

��
: (5)

Note that we have named the Higgses like in the general
THDM, with
 ¼ � ¼ m12 ¼ �6;7 ¼ 0 [31]. The resulting
Higgs masses are given by

m2ðh0Þ ¼ 2�1v
2;

m2ðH0Þ ¼ m2
2 þ ð�3 þ �4 þ �5Þv2;

m2ðA0Þ ¼ m2
2 þ ð�3 þ �4 � �5Þv2;

and m2ðH�Þ ¼ m2
2 þ �3v

2:

(6)

B. The flavor symmetries considered

In the following, we will present two models which
constrain the structure of the Yukawa coupling matrix h
in Eq. (3), without discussing a particular mechanism for
vacuum alignment.1 The first one, based on Ref. [32],
represents the class of models which predicts tribimaximal

mixing. The second one represents the class which predicts
�-� symmetry.

1. The A4 model (model 1)

The particle content of this model is given in Table I.
The Lagrangian which is invariant under the flavor sym-
metry A4 � Zaux

4 reads2

Ll ¼ ye1
�

�
ðl1’T1 þ l2’T3 þ l3’T2Þec1

þ ye2
�

�
ðl3’T3 þ l1’T2 þ l2’T1Þec2

þ ye3
�

�
ðl2’T2 þ l1’T3 þ l3’T1Þec1

þ �

�
½y1½ð2l1N1 � l2N3 � l3N2Þ’S1

þ ð2l3N3 � l1N2 � l2N1Þ’S3

þ ð2l2N2 � l1N3 � l3N1Þ’S2�
þ y2ðl1N1 þ l2N3 þ l3N2Þ��
þMðN1N1 þ N2N3 þ N3N2Þ: (7)

Let us assume that the flavons obtain their VEVs as fol-
lows,

h’S1i
h’S2i
h’S3i

0
@

1
A ¼ wS

1
1
1

0
@

1
A;

h’T1i
h’T2i
h’T3i

0
@

1
A ¼ wT

1
0
0

0
@

1
A; and h�i ¼ u;

(8)

and the SM Higgs gets the VEV h�i ¼ v. Then, the
Yukawa coupling matrix and the right-handed neutrino
mass matrix for model 1 can be written as

h ¼
2aþ b �a �a

�a 2a b� a

�a b� a 2a

0
BB@

1
CCA and

MR ¼ M

1 0 0

0 0 1

0 1 0

0
BB@

1
CCA; (9)

where a ¼ y1
wS

� and b ¼ y2
u
� .

The charged lepton mass matrix in this model is diago-
nal,

me ¼ v

�
ye1wT; m� ¼ v

�
ye2wT; m� ¼ v

�
ye3wT:

(10)

1In general, the vacuum alignment can be achieved by a
minimization of the scalar potential.

2Here, we neglect the antisymmetric part of the coupling
between l and N or assume that the antisymmetric coupling
vanishes, which is done similarly in Refs. [32,33].
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Here, the hierarchies in the charged lepton masses are
determined by the Yukawa couplings. Assuming that the
Yukawa coupling of the �, ye3, is of Oð1Þ and the Higgs

VEV v is 174 GeV, we can determine the ratio of the flavon

over the cutoff scale �ðhfi� Þ as being of the order of the

Cabibbo angle squared, �2 � 0:04.
In order to make the discussion easier, we go to the basis

where the right-handed neutrino mass matrix is diagonal.

The matrixMRM
y
R is diagonalized by the unitary matrixUr

Ur ¼
0 0 1
0 1 0
1 0 0

0
@

1
A: (11)

Note that the right-handed neutrino masses are degenerate,
M1;2;3 ¼ M. The Yukawa coupling in this basis reads

h0 ¼ hUr ¼
�a �a 2aþ b
b� a 2a �a
2a b� a �a

0
@

1
A: (12)

Using Eq. (4), the neutrino mass matrix can be written as

M	 ¼ �1;2;3

ð6a2 þ 4abþ b2Þ �að3aþ 2bÞ �að3aþ 2bÞ
�að3aþ 2bÞ ð6a2 � 2abþ b2Þ að�3aþ 4bÞ
�að3aþ 2bÞ að�3aþ 4bÞ ð6a2 � 2abþ b2Þ

0
B@

1
CA; (13)

where �1;2;3 ¼ �1 ¼ �2 ¼ �3, and the neutrino masses
are given by the eigenvalues of M	M

y
	 :

m2
1 ¼ ð3aþ bÞ4�2

1;2;3;

m2
2 ¼ b4�2

1;2;3; and m2
3 ¼ ð�3aþ bÞ4�2

1;2;3;
(14)

which correspond to the eigenvectors ð�2; 1; 1ÞT= ffiffiffi
6

p
,

ð1; 1; 1ÞT= ffiffiffi
3

p
, and ð0;�1; 1ÞT= ffiffiffi

2
p

, respectively. In this
model, the neutrino masses obey normal mass ordering.

The neutrino mixing observables look like

�m2� ¼ ðb4 � ð3aþ bÞ4Þ�2
1;2;3;

�m2
A ¼ �24abð9a2 þ b2Þ�2

1;2;3;

tan�12 ¼ 1ffiffiffi
2

p ; �13 ¼ 0; and �23 ¼ �

4
:

(15)

In this model, we have only three free parameters ða; b;MÞ
to fit all observables. Therefore, this model is quite pre-
dictive (and hence harder to fit).

2. The D4 model (model 2)

The particle content of this model is given in Table II.
The Lagrangian which is invariant under the flavor sym-
metry D4 � Zaux

2 reads

Ll ¼ ye1l1e
c
1

�

�
’e þ ye2ðl2ec2 þ l3e

c
3Þ
�

�
’e

þ ye3ðl2ec2 � l3e
c
3Þ
�

�
�e þ y1l1N1

�

�
’	

þ y2ðl2c 1 þ l3c 2ÞN1

�

�
þ y3ðl2c 2 � l3c 1ÞN2

�

�

þ y4ðl2c 1 � l3c 2ÞN3

�

�
þ 1

2
M1N1N1 þ 1

2
M2N2N2

þ 1

2
M3N3N3: (16)

Let us assume that the flavons obtain their VEVs as fol-
lows:

TABLE II. The particle content of model 2: Th SM particles are the three left-handed lepton SUð2ÞL doublets li, the right-handed
charged leptons eci , and the SM Higgs �. The BSM particles are the right-handed neutrinos Ni, second Higgs doublet � (which does
not obtain a VEV), and the flavons ’e, �e, ’	, and c i, that only transform under D4 � Zaux

2 .

Field l1 l2;3 ec1 ec2;3 N1 N2 N3 � � ’e �e ’	 c 1;2

D4 11 2 13 2 13 12 14 11 11 13 14 13 2
Zaux
2 1 1 1 1 �1 �1 �1 1 1 1 1 �1 �1

TABLE I. The particle content of model 1: The SM particles are the three left-handed lepton SUð2ÞL doublets li, the right-handed
charged leptons eci , and the SM Higgs �. The BSM particles are the right-handed neutrinos Ni, the second Higgs doublet � (which
does not obtain a VEV), and the flavons ’S, ’T , and �, that only transform under A4 � Zaux

4 .

Field l1;2;3 ec1 ec2 ec3 N1;2;3 � � ’S ’T �

A4 3 1 100 10 3 1 1 3 3 1
Zaux
4 i i i i �1 1 1 i �1 i
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h’ei ¼ ue; h�ei ¼ �we;

h’	i ¼ u; and
hc 1i
hc 2i

� �
¼ w

1
�1

� �
;

(17)

and the SM Higgs gets the VEV h�i ¼ v. Then, the
Yukawa coupling matrix for model 2 can be written as

h ¼
a 0 0
b �c d
�b �c d

0
@

1
A; (18)

where a ¼ y1
u
� , b ¼ y2

w
� , c ¼ y3

w
� , and d ¼ y4

w
� .

The charged lepton and right-handed neutrino mass
matrices in this model are diagonal,

me ¼ v

�
ye1ue; m� ¼ v

�
ðye2ue � ye3weÞ;

m� ¼ v

�
ðye2ue þ ye3weÞ:

(19)

Here, the hierarchy between the masses of e and ð�; �Þ
arises from the smallness of the Yukawa coupling ye1. As

we did for model 1, we assume that the ratio ðhfi� Þ is of order
�2 � 0:04.
Using Eq. (4), the neutrino mass matrix can be written as

M	 ¼
a2�1 ab�1 �ab�1

ab�1 b2�1 þ c2�2 þ d2�3 �b2�1 þ c2�2 þ d2�3

�ab�1 �b2�1 þ c2�2 þ d2�3 b2�1 þ c2�2 þ d2�3

0
B@

1
CA: (20)

The neutrino masses are given by the eigenvalues of
M	M

y
	 ,

m2
1 ¼ 0;

m2
2 ¼ ða2 þ 2b2Þ2�2

1; and m2
3 ¼ 4ðc2�2 þ d2�3Þ2;

(21)

which correspond to the eigenvectors

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða2 þ 2b2Þp ð2b=a;�1; 1ÞT;

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða2 þ 2b2Þp ð�b=a; 1; 1ÞT; and ð0; 1; 1ÞT= ffiffiffi

2
p

;

(22)

respectively.
In this model, the neutrino masses will obey normal

ordering.
The neutrino mixing observables look like

�m2� ¼ ða2 þ 2b2Þ2�2
1; �m2

A ¼ 4ðc2�2 þ d2�3Þ2;
tan�12 ¼ affiffiffi

2
p

b
; �13 ¼ 0; and �23 ¼ �

4
: (23)

In this model, we have 7 free parameters
ða; b; c; d;M1;M2;M3Þ to fit all neutrino observables.
This makes model 2 much easier to fit, but we of course
pay the price of losing predictivity.

C. Phenomenological analysis

1. The general procedure

In this section, we describe the analysis procedure we
have applied. The first thing to say is that there are con-
straints that are required for a THDM like in Eq. (2) (�1 >
0, �2 > 0, �3 >� ffiffiffiffiffiffiffiffiffiffiffi

�1�2

p
, and �3 þ �4 � j�5j>� ffiffiffiffiffiffiffiffiffiffiffi

�1�2

p
;

they keep the potential stable) as well as consistency con-
ditions for a Ma-like model (m2

1 < 0 and m2
2 > 0; these are

necessary in order for�0 to obtain a VEV, while�0 obtains

none). Furthermore, there are limits from direct searches at
collider experiments [34]: mðh0Þ> 112:9 GeV and
mðH�Þ> 78:6 GeV, both at 95% confidence level.3

Further constraints arise from the W- and Z-boson decay
widths, namely, mðH�Þ þmðH0Þ, mðH�Þ þmðA0Þ>MW

and 2mðH�Þ, mðH0Þ þmðA0Þ>MZ, as well as from the
requirement of perturbativity for the Higgs potential, �2 <
1 and �2

3 þ ð�3 þ �4Þ2 þ �2
5 < 12�2

1 [30].

Strong constraints also come from the correction to the 
parameter [35]. The explicit formula for this correction
reads

� ¼ 
ðMZÞ
16�s2WM

2
W

� ½Fðm2
2; m

2ðH0ÞÞ þ Fðm2
2; m

2ðA0ÞÞ

� Fðm2ðH0Þ; m2ðA0ÞÞ�; (24)

where

Fðx; yÞ ¼
� xþy

2 � xy
x�y ln

x
y ; for x � y;

0; for x ¼ y;
(25)

and 
ðMZÞ ¼ 1=127:9. The experimental constraint is [36]

� ¼ �0:0006� 0:0008; (26)

which cuts the allowed parameter space for the Ma model.
Since we want to focus on neutrino physics and lepton
flavor violation, we do not try to fit the Higgs sector as
well, but rather use four different benchmark scenarios that
all fulfill the consistency conditions, as well as the experi-
mental bounds from direct searches and from the measure-
ment of the correction to the  parameter (at 3�). In the
form ðm1; m2; �1; �2; �3; �4; �5Þ, these scenarios are

3Note that these constraints do not apply to the ‘‘inert’’
Higgses H0 and A0. They are constrained much less severely
by the current limits, differently from a normal THDM.
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: ð100i GeV; 75 GeV; 0:24; 0:10; 0:10;�0:15;�0:10Þ;
�: ð100i GeV; 98:5 GeV; 0:24; 0:30; 0:09;�0:18;�0:11Þ;
�: ð100i GeV; 950 GeV; 0:24; 0:50; 0:02;�0:12;�0:10Þ;
�: ð100i GeV; 550 GeV; 0:24; 0:30; 0:02;�0:05;�0:01Þ:

(27)

The corresponding Higgs masses are given in Table III. We
have chosen these four scenarios such that they are con-
sistent with the 3� range of WMAP data for H0 being the
dark matter candidate, which cuts the allowed parameter
space significantly [30]. This leads to some more consis-
tency conditions, as H0 has to be the lightest of all scalars
and it also has to be lighter than the heavy right-handed
neutrinos.

For all these scenarios, we do the following:
(1) First, the models are fitted to neutrino oscillation

data, i.e., mixing angles and mass square differences
[37]. This is done by the �2 function

�2 ¼ XN
i¼1

ðqi � qexpi Þ2
�2

i

; (28)

where qi are the observables obtained from neutrino
oscillations ð�12; �13; �23;�m2

A;�m
2�Þ, which are

calculated in terms of the model parameters
(cf. Sec. III B). qexpi are their measured counterparts
and �i are the corresponding (symmetrized) stan-
dard deviations. The best-fit model parameters are
determined by a minimization of the �2 function. By
projection on the different directions in the parame-
ter space, we determine the 1� and 3� ranges of the
model parameters.

(2) Next, we calculate the maximum and minimum
values of the quantities measured in different LFV
experiments (� ! e�, � ! ��, � ! e�, and �-e
conversion for four different nuclei) by varying the
model parameters within their 1� and 3� ranges.

(3) Finally, we compare how well different past and
future LFV experiments are able to constrain or
exclude the particular model in the four scenarios.

2. The �2 fit

After outlining the general points, we will explain the
procedure in more detail using scenario 
 [cf. Eq. (27)] in
connection with model 1 (cf. Sec. III B 1) as example.
The �2 function has already been given in Eq. (28) and

the experimental values and errors of the neutrino observ-
ables are summarized in Table IV. These observables in
terms of model parameters have been given in Eq. (15).
The minimization of the �2 function then yields the fol-
lowing best-fit values for the three parameters:

a ¼ 0:0189; b ¼ �0:691;

M ¼ 2:42� 106 GeV:
(29)

Note that the parameter b is negative to fit the normal mass
ordering; cf. Eq. (15). In the minimization we have re-
quired M1;2;3 >mðH0Þ and M1;2;3 >MZ=2 for consistency

reasons.
The 1�-ð3�-Þ values for the model parameters are ob-

tained by inserting all values from Eq. (29) into the �2

function, except for the one parameter that is to be con-
strained, and by determining the intersections of the re-
maining one-dimensional function ��2 	 �2 � �2

min with

1(9). For the above parameters, this yields in the form
þ1�;þ3�
�1�;�3� :

a:
þ0:0003;þ0:0009

�0:0003;�0:0009
;

b:
þ0:003;þ0:009

�0:003;�0:009
;

M:
þ0:02;þ0:05

�0:02;�0:05
� 106 GeV:

(30)

These are the ranges that we will use in the subsequent
analysis. Note that in this model, they are already quite
narrow, which is a manifestation of the fact that this model
holds a lot of structure.

3. Predictions for various LFV experiments

The most important types of LFV experiments are rare
lepton decays, ei ! ej�, as well as conversions of a bound

muon to an electron for some nucleus N, �N ! eN. In a
Ma-like model, the decisive quantities for both types of

TABLE III. The Higgs masses (in GeV) for the different
scenarios defined in Eq. (27).

Scenario mðh0Þ mðH0Þ mðA0Þ mðH�Þ

 120.0 32.9 84.5 93.0

� 120.0 60.4 101.5 111.5

� 120.0 946.8 950.0 950.3

� 120.0 548.9 549.4 550.6

TABLE IV. The neutrino mixing parameters (best-fit values and symmetrized 1� ranges)
obtained by a global fit [37].

Quantity �m2� ð�m2
AÞnor �12 �13 �23

Best-fit 7:67� 10�5 eV2 2:46� 10�3 eV2 34.5
 0.0
 42.3

1� 2:15� 10�6 eV2 0:15� 10�3 eV2 1.4
 7.9
 4.2
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processes are [38] (ij ¼ ei ! ej�=ei-ej-conversion):

�ij 	 �i

2m2ðH�Þ
X3
k¼1

h�jkhik
�
ðmi þmjÞIa

�
M2

k

m2ðH�Þ
�

þMkIb

�
M2

k

m2ðH�Þ
��

; (31)

where

IaðtÞ ¼ 1

16�2

�
2t2 þ 5t� 1

12ðt� 1Þ3 � t2 lnt

2ðt� 1Þ4
�

and

IbðtÞ ¼ 1

16�2

�
tþ 1

2ðt� 1Þ2 �
t lnt

ðt� 1Þ3
�
:

(32)

Using these, the branching ratios for the processes are
given by

Brðei ! ej�Þ ¼ m3
i

8�

j�ijj2
�ðei ! ej	i �	jÞ and

Brð�N ! eNÞ ¼ �2

25m2
�

D2
N

!captðNÞ j��ej2:
(33)

In the first formula, we have neglected the final state lepton
mass. The quantities DN and !captðNÞ, as well as a general
expression for the second formula are given in Ref. [39].

4. Past and future LFV experiments for model 1

We then use the parameter ranges from Eq. (30) to make
predictions with Eq. (33). The result is included in Fig. 1.
Furthermore, we have put in the limits/sensitivities of
several past/future experiments, all listed in Table V. A
further discussion of the results will be given in the next
section.

IV. RESULTS

Wewill now discuss how the general conflict between an
extended scalar sector and flavor symmetries looks in our
example models. Let us first start with model 1. The
numerical results can be seen in Fig. 1: On the left panel,
we present the 1� (black) and 3� (gray) predictions of
model 1 for the processes � ! e�, � ! ��, and � ! e�,
as well as different present and future bounds from several
experiments; cf. Table V. The right panel shows the same
for �-e conversion on the elements Al, Ti, Au, and Pb.
Model 1 is the prime example that our logic works: As

explained in Sec. III B 1, there are only 3 free parameters in
the model. Still, it is able to fit the neutrino data well.
Actually, the only deviations from a perfect fit arise from

FIG. 1 (color online). The numerical results of our analysis for model 1.

TABLE V. Limits on the branching ratios for several past and
future LFV experiments [9].

Experiment Status Process BR Limit/Sensitivity

MEGA Past � ! e� 1:2� 10�11

MEG Future � ! e� 1:0� 10�13

BELLE Past � ! �� 4:5� 10�8

BABAR Past � ! e� 1:1� 10�7

MECO Cancelled �Al ! eAl 2:0� 10�17

SINDRUM II Past �Ti ! eTi 6:1� 10�13

PRISM/PRIME Future �Ti ! eTi 5:0� 10�19

SINDRUM II Past �Au ! eAu 7:0� 10�13

SINDRUM II Past �Pb ! ePb 4:6� 10�11
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the very accurate prediction of the mixing angles [e.g., the
experimental best-fit value of �23 is not exactly maximal;
cf. Eq. (15) and Table IV]. The obtained parameter ranges
are, however, quite narrow, as can be seen from the ex-
ample given in Sec. III C 2. This is exactly the point, where
the experimental limits on LFV processes get really power-
ful: Because of the stiffness in the model parameter space,
the prediction of, e.g., the branching ratio � ! e� is so
clear, that only a very narrow window is left for parameter
variations. Accordingly, this model is actually already
excluded by the past MEGA experiment (cf. Figure 1)
for all four Higgs scenarios from Eq. (27). We want to
stress again, that these four scenarios belong to the few
regions in parameter space that are indeed consistent with
all the data and constraints mentioned in Sec. III C 1. The
branching ratios for �-e conversion are in general lower,
and pass all current constraints. However, in this sector
PRISM/PRIME will provide another future bound that will
be able to exclude this model.

The remaining questions is how far we can stretch this
logic for models with less and less predictivity. As example
for that case we can use model 2, which has seven free
parameters to fit the data (cf. Sec. III B 2). This more than
doubles the degrees of freedom in the fit.

The numerical results for this model are given in Fig. 2.
First of all, it may look odd that here, all 1� and 3� regions
are somehow narrow, except for � ! ��. This is simply
because all branching ratios are essentially functions of the
product jabj (where a and b are model parameters), while
the one for � ! �� is given by the sum of three contribu-
tions, which are proportional to jbj2, jcj2, and jdj2, respec-
tively. This numerical example nicely shows how more
freedom blows up the regions which are predicted by a
certain model. Turning this argumentation round, a certain

limit on some observable is weaker the more free parame-
ters there are that influence the observable in question.
However, even this model with much less predictivity

than the one before can be excluded for some scenarios:
Scenario � has already been excluded by the
MEGA experiment and scenario � can be tested by
MEG. This shows the strength of our considerations:
Even for a model that has a lot of freedom our logic still
applies in suitable settings, which are here given by the
scenarios � and �. Actually, even the scenarios
 and� are
not that far below the future MEG bound, and especially a
hypothetical future experiment aiming at � ! �� might
be very suitable to exclude this particular model.

V. CONCLUSIONS

In this paper we have studied the conflict arising in
models with an extended scalar sector and discrete flavor
symmetries when confronted with LFV bounds. We have
illustrated this using two examples based on the Ma model,
one with an A4 and with a D4 symmetry. Since the first
model exhibits a relatively rigid structure (only three free
parameters), it is already excluded for all four scenarios by
existing bounds. Even though the second model has more
than twice as many free parameters, it can still be strongly
constrained and two of the scenarios can either be excluded
or tested in the near future.
We want to stress, however, that our considerations are

not at all restricted toMa-like models, but should apply to a
much wider class of theories. Models with a lot of structure
(meaning few parameters) may easily be excluded by
existing or future LFV bounds although they have no
problems without the flavor symmetry. Even models with
many parameters can at least be strongly constrained, if not
excluded as well.

FIG. 2 (color online). The numerical results of our analysis for model 2.
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APPENDIX A: GROUP THEORY OF A4 [18]

The group A4 is a group which describes even permuta-
tions of four objects. It has two generators, S and T, that
fulfill the relations

S2 ¼ ðSTÞ3 ¼ T3 ¼ 1: (A1)

The group has four inequivalent irreducible representa-
tions, 1, 10, 100, and 3, which transform under the gener-
ators, S and T as follows:

1: S ¼ 1; T ¼ 1; 10: S ¼ 1; T ¼ !2;

100: S ¼ 1; T ¼ !;
(A2)

3: T ¼
1 0 0
0 !2 0
0 0 !

0
@

1
A; S ¼ 1

3

�1 2 2
2 �1 2
2 2 �1

0
@

1
A;

(A3)

where ! ¼ ei2�=3 (which implies !4 ¼ !).
The product rules for the singlets are the following:

10 � 10 ¼ 100; 10 � 100 ¼ 1; 100 � 100 ¼ 10;

1� 1 ¼ 1; 1� 10 ¼ 10; 1� 100 ¼ 100: (A4)

Consider now two triplets:

a ¼ ða1; a2; a3ÞT; b ¼ ðb1; b2; b3ÞT: (A5)

The product of these two triplets can be decomposed as

3� 3 ¼ 1þ 10 þ 100 þ 3s þ 3a; (A6)

where

1 ¼ ðabÞ ¼ a1b1 þ a2b3 þ a3b2;

10 ¼ ðabÞ0 ¼ a3b3 þ a1b2 þ a2b1;

100 ¼ ðabÞ00 ¼ a2b2 þ a1b3 þ a3b1;

(A7)

and

3s ¼ ðabÞs
¼ 1

2
ð2a1b1 � a2b3 � a3b2; 2a3b3 � a1b2

� a2b1; 2a2b2 � a1b3 � a3b1ÞT;
3a ¼ ðabÞa

¼ 1

2
ða2b3 � a3b2; a1b2 � a2b1; a1b3 � a3b1ÞT:

(A8)

APPENDIX B: GROUP THEORY OF D4 [13,40]

The group D4 is a group which describes the symmetry
of a square. It has two generators, A and B, that fulfill the
relations

A4 ¼ B2 ¼ 1 and ABA ¼ B: (B1)

The irreducible representations consist of four singlets, 11,
12, 13, 14, and one doublet 2, which transform under the
generators, A and B as follows:

11: A ¼ 1; B ¼ 1; 12: A ¼ 1; B ¼ �1;

13: A ¼ �1; B ¼ 1; 14: A ¼ �1; B ¼ �1;
(B2)

2: A ¼ i 0
0 �i

� �
; B ¼ 0 1

1 0

� �
: (B3)

The product rules for 1i are

1i � 1i ¼ 11; 11 � 1i ¼ 1i for i ¼ 1; . . . ; 4;

12 � 13 ¼ 14; 12 � 14 ¼ 13; and 13 � 14 ¼ 12:

(B4)

For si � 1i and ða1; a2ÞT � 2 we find

s1a1
s1a2

� �
� 2;

s2a1
�s2a2

� �
� 2;

s3a2
s3a1

� �
� 2; and

s4a2
�s4a1

� �
� 2:

(B5)

For ða1; a2ÞT , ðb1; b2ÞT �2, the product 2� 2 decomposes
into the four singlets which read

a1b2 þ a2b1 � 11; a1b2 � a2b1 � 12;

a1b1 þ a2b2 � 13 and a1b1 � a2b2 � 14:
(B6)
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