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We study the neutron electric dipole moment (EDM) in a five-dimensional SUð3Þ gauge-Higgs

unification compactified on M4 � S1=Z2 space-time including a massive fermion. We point out that to

realize the CP violation is a nontrivial task in the gauge-Higgs unification scenario and argue how the CP

symmetry is broken spontaneously by the vacuum expectation value of the Higgs, the extra space

component of the gauge field. We emphasize the importance of the interplay between the vacuum

expectation value of the Higgs and the Z2-odd bulk mass term to get physically the CP violation. We then

calculate the one-loop contributions to the neutron EDM as the typical example of the CP violating

observable and find that the EDM appears already at the one-loop level, without invoking the three-

generation scheme. We then derive a lower bound for the compactification scale, which is around 2.6 TeV,

by comparing the contribution due to the nonzero Kaluza-Klein modes with the experimental data.
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I. INTRODUCTION

A gauge-Higgs unification scenario proposed a long
time ago [1–4] has attracted recent revived interest as
one of the attractive scenarios solving the hierarchy prob-
lem without invoking supersymmetry. In this scenario, the
Higgs doublet in the standard model is identified with the
extra spatial components of the higher dimensional gauge
fields. A remarkable feature is that the quantum correction
to the Higgs mass is finite and insensitive to the cutoff scale
of the theory, in spite of the fact that higher dimensional
gauge theories are generally nonrenormalizable. The rea-
son is simply that the Higgs mass-squared term as a local
operator is forbidden by the higher dimensional gauge
invariance. The radiatively induced finite Higgs mass
should be understood as to be described by the Wilson
line phase, that is, a nonlocal operator and free from UV
divergence. This fact has opened up a new avenue to the
solution of the hierarchy problem [5]. Since then, much
attention has been paid to the gauge-Higgs unification, and
many interesting works have been done from various
points of view [6–29].

The finiteness of the Higgs mass has been studied and
verified in various models and types of compactification at
the one-loop level [30–33]1 and even at the two-loop level
[35]. It is natural to ask whether any other finite calculable
physical observables exist in the gauge-Higgs unification.
In a paper by the present authors [36], we have found a
striking fact: We have shown that the anomalous magnetic
moment of the fermion in the (Dþ 1)-dimensional QED
gauge-Higgs unification model compactified on S1 be-
comes finite for an arbitrary space-time dimension. The
reason is easily understood by relying on an operator
analysis. In four-dimensional space-time, a dimension six

gauge invariant local operator describes the anomalous
magnetic moment:

i �c L�
��c RF��hHi: (1.1)

However, when included into the scheme of gauge-Higgs
unification, the Higgs doublet should be replaced by an
extra space component of the higher dimensional gauge
field Ay. Then, to preserve the gauge symmetry, Ay should

be further replaced by gauge covariant derivative Dy, and

the relevant gauge invariant operator becomes

i ���MNDL�
L�FMN; (1.2)

where L, M, and N denote (Dþ 1)-dimensional Lorentz
indices. The key observation of our argument is that the
operator (1.2) vanishes because of the on-shell condition
ihDLi�L� ¼ 0, when DL is replaced by hDLi. As the local
operator is forbidden, the anomalous magnetic moment is
expected to be free from the UV divergence. The brane
localized operator is also forbidden for the following rea-
soning. The Higgs field is just an extra component of gauge
field Ay on the brane, not the covariant derivativeDy. Thus,

the fact that the shift symmetry Ay ! Ay þ const is opera-

tive even on the brane forbids the brane localized operator
relevant for the magnetic moment. We might think of other
operators which are obtained by operating ðDMD

MÞn (n:
integer) to � in (1.2), but this operator is easily found not
to yield an independent operator. In fact, for the operator to
be relevant for the magnetic moment, DM should be re-
placed by ghAyi�5 and ðDMD

MÞn just reduces to a constant
ðg2hHiyhHiÞn.
From these observations, we confirmed the finiteness of

the magnetic moment by an explicit diagrammatical cal-
culation [36]. This is a remarkable specific prediction of
the gauge-Higgs unification to be contrasted with the case
of the Randall-Sundrum model [37] or the universal extra1For the case of gravity-gauge-Higgs unification, see [34].
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dimension scenario [38], in which the magnetic moment of
the fermion diverges in the models with more than five
space-time dimensions.

Although this result was quite interesting, the above
model is too simple to be realistic. In particular, the famous
result by Schwinger in ordinary QED could not be repro-
duced as the contribution of zero modes in the simplified
model. Thus, in our subsequent paper [39], we clarified the
issue on the cancellation mechanism of ultraviolet (UV)
divergences in an improved gauge-Higgs unification
model. What we adopted was a (Dþ 1)-dimensional
SUð3Þ gauge-Higgs unification model compactified on an
orbifold S1=Z2 with a massive bulk fermion in a funda-
mental representation, whose gauge group is large enough
to incorporate that of the standard model. The orbifolding
is indispensable to obtain chiral theory and to reduce the
gauge symmetry to that of the standard model. In order to
obtain a realistic Yukawa coupling, we introduced a bulk
mass parameter of the fermion, which should have odd Z2

parity in order to preserve the Z2 symmetry. The bulk mass
causes localization of fermions with different chiralities at
different fixed points of the orbifold. Hence, the overlap
integral of their mode functions yields an exponentially
suppressed Yukawa coupling. In this way, we can freely
obtain the light fermion masses, which are otherwise of
OðMWÞ in the gauge-Higgs unification scenario, by tuning
the bulk mass parameters. We thus have succeeded in
recovering Schwinger’s result, still keeping the nice feature
of the scenario; i.e. the anomalous moment was shown to
be finite even in six-dimensional space-time, where other
higher dimensional theories such as the universal extra
dimension scenario give divergent results. In the most
recent paper [40], we also have performed numerical cal-
culations to obtain the contribution of nonzero Kaluza-
Klein (KK) modes to the muon anomalous magnetic mo-
ment and have derived a useful constraint on the compac-
tification scale by comparing the result with the
experimental data.

In this paper, we focus on the CP violation in the gauge-
Higgs unification scenario. As the concrete example of the
physical observable due to the CP violation, we discuss the
neutron electric dipole moment (EDM) whose computa-
tion has some similarity to that of the anomalous magnetic
moment of fermions. We will work in the same model as in
the previous paper [40], i.e. the five-dimensional SUð3Þ
gauge-Higgs unification model compactified on an orbi-
fold S1=Z2 with a massive bulk fermion in a fundamental
representation.

Let us note that how to break CP symmetry is a non-
trivial question in the gauge-Higgs unification scenario,
since the Higgs field is nothing but a gauge field to start
with and its Yukawa coupling is originally gauge coupling,
which is real. As far as the theory itself having CP sym-
metry, the possible way to break CP is due to the compac-
tification which does not respect the symmetry as in the

case of a Calabi-Yau manifold with nontrivial complex
structure [41] or by the vacuum expectation value (VEV)
of some field which has an odd CP eigenvalue [42]. Both
mechanisms may be understood as (a sort of) spontaneous
CP violation, since the theory itself preserves the CP
symmetry and the way of the compactification is respon-
sible for the determination of the vacuum state. (In fact, the
effect of compactification is accompanied by the compac-
tification scale 1=R, which has a mass dimension, and the
corresponding CP violation is ‘‘soft.’’)
In the present model the compactification itself is too

simple to break CP, since the orbifold is trivially invariant
under a discrete transformation y ! �y (y: extra space
coordinate). Thus the possible unique source to break the
CP symmetry is expected to be the VEVof the Higgs field,
which is the zero mode of Ay, the extra space component of

the gauge field.
To see whether this is really the case or not, we argue

how the space-time coordinates and each field behave
under the P and CP transformations. First, let us note
that the EDM is a P- and CP-odd observable, and therefore
both P and CP have to be broken to get a nonvanishing
EDM. The P and CP transformations in higher dimen-
sional theories need some care. Though we can easily find
P and C transformations in a higher dimensional sense,
they may not reduce to ordinary four-dimensional P or C
transformations when dimensional reduction is performed
[41]. In the five-dimensional space-time, however, the
spinor is a 4-component one just as in the four-dimensional
theory, and P and C transformations may be defined in the
ordinary ways.
First the parity transformation is defined for fermions as

P: � ! �0�; (1.3)

where � denotes the SUð3Þ triplet fermion. To be precise,
the extra space coordinate y turns out to be enforced to
change its sign for the kinetic term to be invariant under
(1.3), and at first glance it does not seem to correspond to
the ordinary four-dimensional P transformation. However,
at least the zero-mode fields corresponding to the ordinary
particles in the standard model are even functions of y, and
the change of the sign is irrelevant for the low-energy
effective theory. Let us note that in our model the P
symmetry is broken anyway by the orbifolding, no matter
whether Ay develops its VEVor not, since the orbifolding is

aimed to realize a chiral theory. This may also be known by
realizing that the orbifold condition for the fermion

�ð�yÞ ¼ P�5�ðyÞ ðP ¼ diagðþ;þ;�ÞÞ (1.4)

is inconsistent with the parity transformation (1.3), since
�0 does not commute with �5.
Next, combining with the C transformation C: � !

i�2��, we can derive the CP transformation:

CP: �ðx�; yÞ ! i�0�2�ðx�; yÞ�: (1.5)

YUKI ADACHI, C. S. LIM, AND NOBUHITO MARU PHYSICAL REVIEW D 80, 055025 (2009)

055025-2



This time, the transformation is consistent with the condi-
tion (1.4), since �0�2 commutes with �5. Hence, CP is not
violated by the orbifolding. The corresponding transforma-
tion properties of the space-time coordinates and the gauge

field are fixed so that ��i�Mð@M � igAMÞ� [�M ¼
ð��; i�5Þ, AM ¼ ðA�; AyÞ (� ¼ 0–3)] is invariant under

(1.5). Namely,

CP: x� ! x�; y ! y;

A�ðx�; yÞ ! �A�ðx�; yÞt;
Ayðx�; yÞ ! �Ayðx�; yÞt:

(1.6)

The Z2-odd bulk mass term in the Lagrangian�M�ðyÞ ���
[�ðyÞ: sign function of y] is also invariant under such a
defined CP transformation, as y remains untouched and
�ðyÞ does not change its sign. Let us note that, if the
fermions are expanded in terms of the orthonormal set of

plane waves as �ðx�; yÞ ¼ P
ne

iðn=RÞy�ðnÞðx�Þ with R
being the radius of the circle (though real mass eigenstates
have different mode functions in the presence of the bulk
mass M), the CP transformation necessitates the exchange
of the KK modes, n $ �n, in addition to the four-

dimensional CP transformation for �ðnÞðx�Þ. Fortunately,
this exchange of the KK modes is irrelevant for the zero-
mode fermions. Thus the transformation given in (1.5) and
(1.6) just reduces to the ordinary four-dimensional CP
transformation for zero-mode fields.

We thus realize that Ay has CP eigenvalue �1. Hence,

the VEVof Ay is the unique source of the CP violation. As

a matter of fact, however, in the case that the Z2-odd bulk
mass term vanishes, the CP violation is found to disappear
even for the nonvanishing VEVof Ay. In fact, in this case,

we can perform a chiral transformation � ! eið�=4Þ�5
�

such that i�5 disappears from the covariant derivative term

i ���5D5�, keeping the other parts of the Lagrangian in-
variant. Now, Ay has a scalar-type coupling with fermions

and therefore is now even under the CP transformation:

CP: x� ! x�; y ! y;

�ðx�; yÞ ! i�0�2�ðx�;�yÞ�;
A�ðx�; yÞ ! �A�ðx�;�yÞt;
Ayðx�; yÞ ! Ayðx�;�yÞt:

(1.7)

The invariance of the action under theCP transformation is
easily checked by the use of the change of the integration
variable y ! �y. Thus the VEV of Ay no longer violates

CP. Let us note that in this case the exchange of the KK
modes is not needed for fermions.

We thus find that, to break CP physically and to get a
nonvanishing EDM, the interplay between the VEV of Ay

and the bulk mass M is crucial, and from such a point of
view both the VEV and the bulk mass are the cause of the
CP violation on an equal footing. The necessity of the

interplay will be shown by an explicit calculation of
Feynman diagrams later in this paper.
Let us note that the VEVof Ay is needed anyway to get

the EDM, since the gauge invariant operator to describe the
EDM in the standard model is

� i

2
�c����5F��hHic ; (1.8)

which vanishes when hHi and therefore the VEV of Ay

vanishes. From the same reasoning to conclude that the
anomalous magnetic moment is finite even for six-
dimensional space-time, we expect by relying on a similar
operator analysis that the EDM is also finite even for 6D
theory, though in this paper we work in the 5D space-time.
The purposes of this paper are twofold. One is to confirm

that the EDM really appears as a finite calculable observ-
able already at the one-loop level, though the EDM has
been shown to appear only at the three-loop level in the
standard model [43]. In addition, in our model we intro-
duce only the first generation, and to get the EDM we do
not need the three-generation scheme, in clear contrast to
the case of the standard model. The other one is to obtain
the lower bound on the compactification scale, i.e. the
upper bound on the size of the extra space, by comparing
the prediction of our model with the experimental data.
In Ref. [42], CP violation in the gauge-Higgs unification

scenario has also been discussed. The gauge group that
they adopt is Uð1Þ, and the extra space is a circle. In our
case, the gauge group is SUð3Þ, and the extra space is
orbifold so that the model can incorporate the chiral theory
of the standard model. The chiral theory clearly violates
the P symmetry, in contrast to the case of the Uð1Þ gauge
theory discussed in [42]. The introduction of the Z2-odd
bulk mass term is also a new feature of our model. By
adopting such a realistic model, we hope that we can derive
a realistic prediction for the neutron EDM to be compared
with the data, which is expected to have various new
ingredients not seen in the prediction in [42], due to the
complexity of our model. Notice that the possibility of the
recovery ofCP symmetry due to theWilson line phase� at
the minimum of the effective potential for Ay pointed out in

[42] has no relevance in our model, as we assume the
realistic situation where the weak scale, i.e. the VEV of
Ay times gauge coupling, is much smaller than the com-

pactification scale 1=R.2

This paper is organized as follows. In the next section,
we briefly summarize our model and discuss the mass

2In the gauge-Higgs unification, the Higgs mass is expressed
by m2

H ’ m2
W=ð16�2a2Þ, where mW is the weak scale. A dimen-

sionless constant a is defined by the (Dþ 1)-dimensional gauge
coupling and the compactification radius as gDþ1hAyi ¼
gDþ1v � a=R. In order to satisfy a lower bound of Higgs
mass mH > 114 GeV, a � 1 is required. Such a tiny VEV a
can be obtained from the potential minimization by tuning
matter content appropriately; see, for instance, [16].
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eigenvalues and corresponding mode functions of fermions
and gauge bosons. In Sec. III, we derive general formulas
relevant for the EDM concerning a few types of Feynman
diagrams where 4D gauge boson A� or 4D scalar Ay are

exchanged or self-interaction of the 4D gauge and scalar
fields is contributing. The coupling constants in the inter-
action vertices are left arbitrary there. Then combining
with the interaction vertices derived in Ref. [40], we obtain
the contribution of each type of Feynman diagram to the
EDM. In Sec. IV, we numerically estimate the contribution
of nonzero KK modes to the EDM as the function of the
compactification scale 1=R. Comparing with the experi-
mental data, we finally obtain a rather meaningful lower
bound for the compactification scale. Section V is devoted
to the summary discussion.

II. THE MODEL

Since we employ the same model as that discussed in
Ref. [39] to calculate the EDM, we briefly summarize it in
this paper. We consider a five-dimensional SUð3Þ gauge-
Higgs unification model compactified on an orbifold S1=Z2

with a radius R of S1. As a matter field, a massive bulk
fermion in the fundamental representation of the SUð3Þ
gauge group is introduced. The Lagrangian is given by

L ¼ �1
2 TrðFMNF

MNÞ þ ��ði 6D�M�ðyÞÞ�; (2.1)

where the indicesM;N ¼ 0; 1; 2; 3; 5, the five-dimensional
gamma matrices are �M ¼ ð��; i�5Þ (� ¼ 0; 1; 2; 3),

FMN ¼ @MAN � @NAM � ig½AM; AN�; (2.2)

6D ¼ �Mð@M � igAMÞ; (2.3)

� ¼ ð�1;�2;�3ÞT; (2.4)

and g denotes a gauge coupling constant in the five-
dimensional gauge theory.M is a bulk mass of the fermion.
�ðyÞ is a sign function of an extra coordinate y which is
necessary to introduce a Z2 odd bulk mass term.
The periodic boundary condition is imposed along S1,

and Z2 parity assignments are taken as

A�ðyi � yÞ ¼ PA�ðyi þ yÞP y;

Ayðyi � yÞ ¼ �PAyðyi þ yÞP y;

�ðyi � yÞ ¼ P�5�ðyi þ yÞ;
(2.5)

where P ¼ diagðþ;þ;�Þ at fixed points yi ¼ 0; �R. By
this Z2 parity assignment, SUð3Þ is explicitly broken to
SUð2Þ �Uð1Þ. The Higgs scalar field is identified with the
off-diagonal block of zero mode Að0Þ

y .
The four-dimensional gauge bosons A� and their scalar

partners Ay can be expanded in KK modes such that the

boundary conditions (2.5) are satisfied:

A�;yðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�R

p Að0Þ
�;yðxÞ þ 1ffiffiffiffiffiffiffi

�R
p X1

n¼1

AðnÞ
�;yðxÞ cos

�
n

R
y

�

ðevenÞ; (2.6)

A�;yðx; yÞ ¼ 1ffiffiffiffiffiffiffi
�R

p X1
n¼1

AðnÞ
�;yðxÞ sin

�
n

R
y

�
ðoddÞ: (2.7)

After electroweak symmetry breaking, quadratic terms
relevant to the gauge boson mass are diagonalized as

Lmass � 1

2

Z �R

��R
dy½@�Aa

� � ð@yAa
y � 2mWf

6abAbyÞ�2 ¼
X1
n¼1

�
1

2
M2

nðBðnÞ
� B�ðnÞ þ hðnÞ� h�ðnÞÞ þ 1

2
ðMn � 2mWÞ2�ðnÞ

� ��ðnÞ

þ 1

2
ðMn þ 2mWÞ2ZðnÞ

� Z�ðnÞ þ ðMn þmWÞ2WþðnÞ
� W��ðnÞ

þ ðMn �mWÞ2XþðnÞ
� X��ðnÞ

�
þ 1

2
ð2mWÞ2Z�Z

� þm2
WW

þ
�W

��

� X1
n¼1

�
1

2
M2

nðBðnÞ
y BðnÞ

y þ hðnÞy hðnÞy Þ þ 1

2
ðMn þ 2mWÞ2�ðnÞ

y �ðnÞ
y

þ 1

2
ðMn � 2mWÞ2ZðnÞ

y ZðnÞ
y þ ðMn �mWÞ2WþðnÞ

y W�ðnÞ
y

þ ðMn þmWÞ2XþðnÞ
y X�ðnÞ

y

�
þ 1

2
ð2mWÞ2ZyZy þm2

WW
þ
y W

�
y ;

(2.8)

where the gauge-fixing term in the ’t Hooft-Feynman gauge is introduced to eliminate the mixing terms between the gauge
bosons and the gauge scalar bosons. Mn ¼ n

R , and mW ¼ 2ghA6
yi ¼ ðg= ffiffiffiffiffiffiffiffiffiffi

2�R
p Þv ¼ g4v. g4 is a four-dimensional gauge

coupling. The KK mass eigenstates and zero-mode mass eigenstates are given by
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BðnÞ ¼ 1

2
ð ffiffiffi

3
p

A3ðnÞ þA8ðnÞÞ; hðnÞ ¼A6ðnÞ; ZðnÞ ¼ 1ffiffiffi
2

p
�
A3ðnÞ � ffiffiffi

3
p

A8ðnÞ

2
�A7ðnÞ

�
; �ðnÞ ¼ 1ffiffiffi

2
p

�
A3ðnÞ � ffiffiffi

3
p

A8ðnÞ

2
þA7ðnÞ

�
;

W�ðnÞ ¼ 1

2
½A1ðnÞ þA5ðnÞ � iðA2ðnÞ �A4ðnÞÞ�; X�ðnÞ ¼ 1

2
½A2ðnÞ þA4ðnÞ � ið�A1ðnÞ þA5ðnÞÞ�; B� ¼ 1

2
½ ffiffiffi

3
p

A3
�þA8

��;

h¼A6ð0Þ
y ; W�

� ¼ 1ffiffiffi
2

p ðA1
�� iA2

�Þ; X� ¼ 1ffiffiffi
2

p ½A4
y� iA5

y�; Z� ¼ 1

2
ðA3

�� ffiffiffi
3

p
A8
�Þ; �¼A7

y: (2.9)

The zero-mode gauge bosons W�
� , Z�, and B� correspond

to the W boson, Z boson, and photon, respectively, and
zero-mode scalar fields X�, �, and h correspond to the
charged Nambu-Goldstone (NG) boson, neutral NG boson,
and Higgs field in the standard model, respectively.

Some comments on this model are in order. First, the
predicted Weinberg angle of this model is not realistic:
sin2�W ¼ 3=4 [44]. A possible way to cure the problem is
to introduce an extra Uð1Þ or the brane localized gauge
kinetic term [10]. Second, the up quark remains massless,
and we have no up-type Yukawa coupling. A possible way
out of this situation is to introduce second-rank symmetric
tensors of SUð3Þ (6-dimensional representation) [16].

On the other hand, we have obtained a quadratic part of
the 4D effective Lagrangian of the fermion

L ¼ X1
n¼1

½ �c ðnÞ
1 ði@6 �mnÞc ðnÞ

1 þ �c ðnÞ
2 ði@6 �m�

n Þc ðnÞ
2

þ �c ðnÞ
3 ði@6 �mþ

n Þc ðnÞ
3 � þ �dði@6 �mÞdþ �uLi@6 uL;

(2.10)

where the mass eigenstates of fermion were obtained as

dL ¼ �ð0Þ
2L þ X1

n¼1

m̂n

mn

�ðnÞ
3L;

dR ¼ �ð0Þ
3R þ X1

n¼1

ð�1Þn m̂n

mn

�ðnÞ
3R;

(2.11)

c ðnÞ
3L ¼ 1ffiffiffi

2
p

�
�ðnÞ

2L þ�ðnÞ
3L þ M2

2m3
n

mWð�ðnÞ
2L ��ðnÞ

3L Þ

� m̂n

mn

�ð0Þ
2L þ X1

l�n

~mnl

m2
n �m2

l

ðml�
ðlÞ
3L �mn�

ðlÞ
2LÞ

�
;

(2.12)

c ðnÞ
2L ¼ 1ffiffiffi

2
p

�
�ðnÞ

2L ��ðnÞ
3L � M2

2m3
n

mWð�ðnÞ
2L ��ðnÞ

3L Þ

þ m̂n

mn

�ð0Þ
2L þ X1

l�n

~mnl

m2
n �m2

l

ðml�
ðlÞ
3L þmn�

ðlÞ
2LÞ

�
;

(2.13)

c ðnÞ
3R ¼ 1ffiffiffi

2
p

�
�ðnÞ

2R þ�ðnÞ
3R � M2

2m3
n

mWð�ðnÞ
2L ��ðnÞ

3L Þ

� ð�1Þn m̂n

mn

�ð0Þ
2L

þ X1
l�n

~mnl

m2
n �m2

l

ðmn�
ðlÞ
3R �ml�

ðlÞ
2RÞ

�
; (2.14)

c ðnÞ
2R ¼ 1ffiffiffi

2
p

�
�ðnÞ

2R ��ðnÞ
3R � M2

2m3
n

mWð�ðnÞ
2R ��ðnÞ

3RÞ

þ m̂n

mn

�ð0Þ
2R þ X1

l�n

~mnl

m2
n �m2

l

ðml�
ðlÞ
3R þmn�

ðlÞ
2RÞ

�
;

(2.15)

uL ¼ �ð0Þ
1L; c ðnÞ

1 ¼ �ðnÞ
1 ; (2.16)

where

m ¼ 2�RMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� e�2�RMÞðe2�RM � 1Þp mW;

m̂n ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�RM

1� e�2�RM

s
1� ð�1Þne��RM

�Rm3
n

MnMmW;

~mn ¼ ð�1Þnm̂n;

~mnl ¼ 4nlð1� ð�1ÞnþlÞ
�Rmnmlðn2 � l2Þ ð1� 	nlÞmWM;

ðm�
n Þ2 ¼ m2

n � 2mW

M2
n

mn

: (2.17)

In deriving the above 4D effective Lagrangian of the
fermion, the following mode expansions are substituted
and integrated out over the fifth coordinate:

�ðx; yÞ ¼ X1
n¼1

�ðnÞ
1L ðxÞfðnÞL ðyÞ þ�ðnÞ

1RðxÞgðnÞðyÞ
�ðnÞ

2L ðxÞfðnÞL ðyÞ þ�ðnÞ
2RðxÞgðnÞðyÞ

�ðnÞ
3L ðxÞgðnÞðyÞ þ�ðnÞ

3RðxÞfðnÞR ðyÞ

0
BB@

1
CCA

þ
�ð0Þ

1LðxÞfð0ÞL ðyÞ
�ð0Þ

2LðxÞfð0ÞL ðyÞ
�ð0Þ

3RðxÞfð0ÞR ðyÞ

0
BB@

1
CCA (2.18)

with the zero-mode wave functions
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fð0ÞL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M

1� e�2�RM

s
e�Mjyj; fð0ÞR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

e2�RM � 1

s
eMjyj

(2.19)

and the nonzero KK mode functions

fðnÞL ¼ Mnffiffiffiffiffiffiffi
�R

p
mn

�
cos

�
n

R
y

�
�MR

n
�ðyÞ sin

�
n

R
y

��
; (2.20)

fðnÞR ¼ Mnffiffiffiffiffiffiffi
�R

p
mn

�
cos

�
n

R
y

�
þMR

n
�ðyÞ sin

�
n

R
y

��
; (2.21)

gðnÞ ¼ 1ffiffiffiffiffiffiffi
�R

p sin

�
n

R
y

�
: (2.22)

Deriving the vertex functions necessary for calculating the
neutron EDM by using the above mass eigenfunctions is
straightforward but complicated. We do not repeat here
their derivation since the necessary vertex functions are the
exact same ones as summarized in Appendix A of our
previous paper [40], except that the muon � should be
replaced by the down quark d.

III. CALCULATION OF THE ELECTRIC DIPOLE
MOMENT

In this section, we calculate the fermion EDM. Various
types of diagrams contributing to the EDM are shown in
Figs. 1 and 2. The fermion electric dipole moment is
described by dimension 6 operator
� i

2
�c Lðp0Þ��
�5F�
hHic RðpÞ. In general, quantum cor-

rections to the photon vertex � e
3B�

�c ðp0Þ��c ðpÞ can be

written as

� i
e

3
B�

�c ðp0Þ½�� þ �̂��c ðpÞ; (3.1)

where B� is a photon field,

�̂ � ¼ ac

p� þ p0�

2mc

þ dc

e=3
ðp� þ p0�Þ�5:

and ac and dc stand for the anomalous magnetic moment

and the electric dipole moment of c , respectively. Since
our interest in this paper is in the electric dipole moment,
the terms proportional to �5ðp� þ p0

�Þ must be extracted.

The diagrams we calculated are shown below.
The upper category of diagrams denotes contributions

by the neutral current and the lower one those by the
charged current. The calculation is straightforward but
lengthy. The detailed calculations are summarized in
Appendix B.
As will be seen in Appendix B, all of the standard model

diagrams have no contributions to the EDM at one-loop
level, which is consistent with the well-known fact that the
EDM in the standard model is generated at least at the
three-loop level [43].
It is very interesting that the neutron EDM is generated

already at one loop as in the case of supersymmetry [45]
although it is generated at three loops in the case of the
standard model. We can see that the EDM contributions
from the neutral current sector are due to the mixing terms
between different nonzero KK modes of the down quark,
which is proportional to ~mnl. On the other hand, the EDM
contributions from the charged current sector are due to the
mixing terms between a zero mode and nonzero KKmodes
of the down quark, which is proportional to m̂n. Since these
two mass parameters ~mnl and m̂n are proportional to both
the bulk mass M and the W-boson mass mW [see (2.17)],
the EDM vanishes if the bulk mass is zero while the Higgs
VEV is nonzero, and vice versa. This is consistent with the
general discussion described in the introduction on how
CP is violated.

IV. NUMERICAL ESTIMATION OF EDM FROM
NONZERO KK MODES

We move to a numerical calculation of the neutron
electric dipole moment. We expect that the up quark elec-
tric dipole moment du vanishes in this model, since there is
no right-handed up quark and the operator describing the
up quark electric dipole moment hHi �uLðRÞ����

5uRðLÞF��

does not exist. Thus, the neutron electric dipole moment dn
in this model is written as follows:

dn ¼ 4
3dd � 1

3du ¼ 4
3dd: (4.1)FIG. 1. The diagrams contributing to the EDM at one loop by

the neutral current.

FIG. 2. The diagrams contributing to the EDM at one loop by
the charged current.
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To reproduce down quark Yukawa coupling, we must set
a bulk mass parameter so as to satisfy the following rela-
tion:

m

mW
¼ 2�RMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� e�2�RMÞðe2�RM � 1Þp 	 4–8 MeV

80 GeV
: (4.2)

Thus, we set the bulk mass as 2�RM ¼ 25:5 (m ¼ 6 MeV
is taken).

Here, only the numerical results are shown. The contri-
butions from the neutral current and the charged current
processes to the EDM are denoted by dðN:C:Þ and dðC:C:Þ,
respectively, and are obtained as follows:

dðN:C:Þ 	 16

9
e3
�
MR

�

�
4
R2mWð�8:3� 10�7Þ;

dðC:C:Þ 	 � 2

9
e3

ðMRÞ3
�3

R2mWð2:12� 10�5Þ

þ 16

9
e3

ðMRÞ4
�4

R2mWð8:0� 10�7Þ: (4.3)

Combining these results, we obtain the final result on the
contribution from nonzero KK mode dðKKÞ as

dðKKÞ ¼ dðN:C:Þ þ dðC:C:Þ
	 �2:3� 10�23ðRmWÞ2½e 
 cm�: (4.4)

We require that the contribution of KK mode 4
3dðKKÞ is

less than the experimental upper bound [46],

4

3

 2:3� 10�23ðRmWÞ2½e 
 cm�< 2:9� 10�26½e 
 cm�;

(4.5)

which gives a lower bound for the compactification scale

1

R
> 33mW ’ 2:6 TeV: (4.6)

V. SUMMARY

In this paper we studied the neutron EDM in a five-
dimensional SUð3Þ gauge-Higgs unification compactified
on M4 � S1=Z2 space-time including massive fermions
belonging to the triplet of SUð3Þ. The smallness of the
quark Yukawa coupling is realized by introducing a Z2-odd
bulk mass M�ðyÞ. We pointed out that to realize the CP
violation is a nontrivial task in the gauge-Higgs unification
scenario where the Yukawa coupling is originally gauge
coupling, which is of course real. We identified the trans-

formation properties of each field under P and CP trans-
formations, since to get the nonvanishing EDM both P and
CP symmetries have to be broken, though P is broken
anyway by the orbifolding. We have found that, since the
theory itself is CP symmetric, the unique source of the CP
violation in our model is the VEV of the Higgs, the extra
space component of the gauge field Ay. In such a sense, CP

is broken spontaneously through the Hosotani mechanism
[3]. We emphasized that, actually to get physically the CP
violating effect, the interplay between the VEV of Ay and

the bulk massM is crucial. In fact, in the hypothetical limit
of M ! 0, it turned out that by suitable chiral transforma-
tion Ay becomes a field with an evenCP eigenvalue, whose

VEV therefore does not break CP symmetry. From such a
point of view both the VEVand the bulk mass are the cause
of the CP violation on an equal footing.
We then calculated the one-loop contributions to the

neutron electric dipole moment as the typical example of
the CP violating observable and found that the EDM
appears already at the one-loop level, without invoking
the three-generation scheme, in clear contrast to the case
of the standard model where the EDM appears only at the
three-loop level. The explicit calculation has shown that
one-loop contributions from nonzero KK modes to the
neutron EDM are generated due to the mixing effects
between different nonzero KK modes and between a zero
mode and nonzero KK modes. Also, the obtained EDM
was proportional to the Higgs VEV and the bulk mass,
which was consistent with what we discussed concerning
the importance of their interplay to get CP violation.
Furthermore, we could confirm that the standard model

contribution to the neutron EDM due to the Kaluza-Klein
zero modes vanishes at the one-loop level, as we expect.
The fact that the EDM appears already at the one-loop

level suggests that we may be able to get a rather mean-
ingful lower bound on the compactification scale by a
comparison with the data. This turns out to be the case.
We could derive a rather meaningful lower bound for the
compactification scale, which is around 2.6 TeV, by com-
paring the contribution due to the nonzero Kaluza-Klein
modes with the experimental data.
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APPENDIX A: GENERAL FORMULAS FOR
ELECTRIC DIPOLE MOMENT

We now derive general formulas for each type of
Feynman diagram, leaving the couplings in the interaction
vertices arbitrary. First, the gauge boson exchange diagram
is given by (a, b, c, and d are generic coupling constants)
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(A1)

In the second line only the part relevant for the EDM has been extracted. Similarly, the diagram due to the exchange of the
scalar partner of gauge boson is given by

(A2)

For the diagrams due to the gauge boson self-energy, there are the following three types of diagrams:

(A3)

(A4)

(A5)

HereMG,mn, andm denote masses of the gauge boson, the
internal fermion, and the down-type quark, respectively.
Qc denotes the electric charge of internal fermion. x and y
are Feynman parameters, and X � xþ y. P� is defined as
the sum of the external momenta for fermions: P� � p� þ
p0
�. In the last diagram of the gauge boson self-energy, the

plus (minus) sign corresponds to the diagram where the
W� (X�) boson propagates in the loop, respectively. In all

amplitudes, we used the property that the Feynman pa-
rameter integral of an odd function of x� y vanishes.
In order to arrive at the above expressions, the numerator

of the integrand is calculated as

ðaLþ bRÞ��ðk6 þ p6 0 þmnÞ��ðk6 þ p6 þmnÞ��ðcLþ dRÞ
� �ðad� bcÞ�5ðx� yÞð1� XÞmP�

þ 2ðac� bdÞmn�5ð1� XÞP�:
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In the above calculation, the momentum shift k !
k� xp0 � yp is performed, and � means that terms rele-
vant for the fermion EDM are extracted. The equation of
motion for the external fermion is also utilized:

�c ðp0Þ�5ðxp6 0 þ yp6 Þc ðpÞ ! ð�xþ yÞm �c ðp0Þ�5c ðpÞ:
(A6)

APPENDIX B: EXPLICIT CALCULATIONS OF
EDM

Applying the possible interaction vertices described in
Ref. [40] to these formulas derived in Appendix A, we can

obtain the amplitudes of the EDM in a straightforward way
and list them by classifying into the neutral current sector,
charged current sector, and gauge boson self-energy sector.
Concerning the mode indices in the amplitude, the sum-
mation

P1
l;m;n¼1 should be understood. In our calculation,

we adopt approximations mW;m � 1=R, and the results
are shown at the leading order of Oðm2

WÞ.

1. Neutral current sector

a. KK mode photon exchange

(B1)

b. KK mode photon partner exchange

(B2)

c. Higgs exchange

(B3)

d. KK mode Higgs exchange

(B4)

e. KK mode Higgs partner exchange

(B5)

f. KK mode Z boson exchange

(B6)
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g. KK mode neutral NG boson �y exchange

(B7)

h. Zero-mode neutral NG boson �y exchange

(B8)

2. Charged current sector

a. KK mode W boson exchange

(B9)

b. KK mode X� boson exchange

(B10)

c. KK mode Xy boson exchange

(B11)

d. KK mode Wy boson exchange

(B12)

3. Gauge boson self-energy

a. KK mode W� boson self-energy diagram

(B13)
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b. KK mode X� boson self-energy diagram

(B14)

c. KK mode Xy boson self-energy diagram

(B15)

d. KK mode Wy boson self-energy diagram

(B16)

Various integrals I1–6 are summarized in the following
Appendix C.

APPENDIX C: VARIOUS INTEGRALS

Various integrals appearing in the amplitudes are defined
as follows:

I1 �
Z �R

��R
dy

1

ð ffiffiffiffiffiffiffi
�R

p Þ3 SlðyÞCmðyÞSnðyÞ; (C1)

I2 �
Z �R

��R
dy

1

ð ffiffiffiffiffiffiffi
�R

p Þ3
Mn

mn

SlðyÞSmðyÞ

�
�
CnðyÞ �MR

n
"ðyÞSnðyÞ

�
; (C2)

I3 �
Z �R

��R
dye�MjyjCmðyÞ

�
CnðyÞ �MR

n
"ðyÞSnðyÞ

�
;

(C3)

I4 �
Z �R

��R
dyeMjyjSmðyÞSnðyÞ; (C4)

I5 �
Z �R

��R
dy

Mnffiffiffiffiffiffiffi
�R

p
mn

e�Mjyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M

1� e�2�MR

s

�
�
CnðyÞ þMR

n
"ðyÞSnðyÞ

�
; (C5)

I6 �
Z �R

��R
dyCmðyÞ

�
CnðyÞ �MR

n
"ðyÞSnðyÞ

�
; (C6)

with SnðyÞ ¼ sinðnR yÞ and CnðyÞ ¼ cosðnR yÞ.
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