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I. INTRODUCTION

The hadronic wave function in terms of quark and gluon
degrees of freedoms plays an important role in QCD
process predictions. For example, knowledge of the wave
function allows to calculate distribution amplitudes and
structure functions or conversely these processes can give
phenomenological restrictions on the wave functions.

In principle the Bethe-Salpeter approach [1] and discrete
quantization in the light-front formalism [2] allow to ob-
tain hadronic wave functions but in practice several prob-
lems present to realize this [3,4]. Therefore approximate
solutions for hadronic bound states are usually considered
using in a first step specific quarks models to obtain the
valence quark wave function.

There are several nonperturbative approaches to obtain
properties of distribution amplitudes and/or hadronic wave
functions from QCD, and now we have possibility to
include techniques based on the anti–de Sitter space/con-
formal field theory (AdS/CFT) correspondence.

Although a rigorous QCD dual is unknown, a simple
approach known as bottom-up allows to built models that
have some essential QCD features, including counting
rules at short and confinement at long distances. This
model has been successful in several QCD applications
such as hadronic scattering processes [5–8], hadron spec-
trum [9–13], hadronic couplings and chiral symmetry
breaking [14–16], quark potentials [17–19] and hadron
decays [20].

Together with these applications it is possible to set up a
mapping between specific properties of the AdS descrip-
tion for hadrons and the Hamiltonian formulation for
quantized QCD in the light-front formalism. This approach
allows to obtain an excellent first approximation to the
valence wave function for mesons [21,22]. Wave functions
obtained using the AdS/CFT correspondence can be used
as an initial ansatz for a variational treatment or as basis
states to diagonalize the light-front QCD Hamiltonian.

In this work meson wave functions obtained in the
context of AdS/CFT ideas [21,22] are studied considering
two kinds of holographic soft-wall models. First we con-
sider the more usual model with a quadratic dilaton
[10,14,22]. Then we discuss predictions of a recent model
which considers a logarithmic dilaton as suggested by
Einstein’s equations for an AdS metric. It also includes
anomalous dimensions [13] and allows to reproduce the
Regge behavior even in the baryonic sector.
The work is structured as follows. Sec. II is devoted to

the extraction of wave functions for scalar/pseudoscalar
mesons using the two holographic models. In Sec. III we
concentrate on the pion wave function discussing the ad-
justment of the model parameters. Distribution amplitudes
and parton distributions for the valence state are calculated
in both models. In the pion case we consider both current
and constituent quark masses. In Sec. IV we calculate
decay constants in the simplified case when the valence
component is dominant. Conclusions are presented in
Sec. V.

II. MESON WAVE FUNCTION IN
HOLOGRAPHICAL MODELS

The comparison of form factors calculated both in the
light-front formalism and in AdS offers the possibility to
relate AdS modes to light-front wave functions (LFWF)
[21,22]. Below we briefly discuss the derivation of this
matching procedure.
In the light-front formalism the electromagnetic form

factor of pion can be written as [22]

FðQ2Þ ¼ 2�
Z 1

0
dx

1� x

x

Z 1

0
d��J0

�
�Q

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
~�ðx; �Þ;

(1)

where ~�ðx; �Þ is the effective transverse distribution of
partons; Q2 is the spacelike momentum transfer squared;
J0 is the Bessel function. Here we introduced the variable
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� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
x

1� x

r ��������
Xn�1

j¼1

xjb?j

��������; (2)

which represents the x-weighted transverse impact coor-
dinate of the spectator system.

On the other side the corresponding expression for sca-
lars in AdS with a dilaton ’ðzÞ is

FðQ2Þ ¼
Z 1

0
dz�ðzÞJ�ðQ2; zÞ�ðzÞ; (3)

where �ðzÞ corresponds to modes that represent hadrons,
JðQ2; zÞ is the dual mode to the electromagnetic current,
and the metric considered is

ds2 ¼ R2

z2
���dx

�dx�;

��� ¼ diagð1;�1;�1;�1� 1Þ;
(4)

where z is the holographic coordinate and �, that represent
different things in both holographical models considered,
in one model is the scale parameter characterizing the
dilaton field and in the other one this characterize the
anomalous dimension as you can see later when we discuss
the models considered. An important step is to set up the
electromagnetic current as

JðQ2; zÞ ¼
Z 1

0
dxgðxÞJ0

�
�Q

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
: (5)

Putting z ¼ � and comparing Eqs. (1) and (3) we get

~�ðx; �Þ ¼ xgðxÞ
1� x

j�ð�Þj2
2��

: (6)

Finally, considering the case with two partons q1 and �q2

~� n¼2ðx; �Þ ¼
j ~c q1 �q2ðx; �Þj2

ð1� xÞ2
1

A2
; (7)

where �2 ¼ xð1� xÞb2
? and A is the normalization con-

stant, we obtain the relation between the AdS modes and

the meson LFWF ~c q1 �q2ðx; �Þ

j ~c q1 �q2ðx; �Þj2 ¼ A2xð1� xÞgðxÞ j�ð�Þj2
2��

: (8)

Here A is constrained by the probability condition

Pq1 �q2 ¼
Z 1

0
dx

Z
d2b?j ~c q1 �q2ðx;b?Þj2 � 1 (9)

with Pq1 �q2 being the probability of finding the valence Fock

state jq1 �q2i in the meson M. Note, in the case of massless

quarks we have A ¼ ffiffiffiffiffiffiffiffiffiffiffi
Pq1 �q2

p
, while this is not the case for

massive quarks (see discussion in Sec. II A). Next we
consider two kinds of holographical models (Model 1
and Model 2) and their respective wave functions.

A. Model 1

Model 1 is based on the Schrödinger equation [23]

�
� d2

d�2
� 1� 4L2

4�2
þ �4

1�
2 þ 2�2

1ðLþ S� 1Þ
�
�1ð�Þ

¼ M2
1�1ð�Þ; (10)

for the AdS modes�ð�Þ that describe hadrons with integer
spin S and the mass spectrum

M2
1 ¼ 4�2

1

�
nþ Lþ S

2

�
; (11)

where n and L are the radial and orbital quantum numbers.
Here subscript ‘‘1’’ indicates the solutions of Model 1.
In this model the function gðxÞ in matching condition (8)

is fixed as gðxÞ ¼ 1 for large values of Q2 � 4�2. In this
case the current J�ðQ2; zÞ decouples from the dilaton field
[22]. The examples considered in this work correspond to
mesons with n ¼ L ¼ 0, although both for scalars and
vectors we find

�1ð�Þ ¼ �1

ffiffiffiffiffiffi
2�

p
exp�ð1=2Þ�2

1
�2 � ffiffiffi

�
p

exp�ð1=2Þ�2
1
�2 : (12)

Using Eq. (12) and keeping in mind that �2 ¼ xð1� xÞb2
?,

the meson LFWF of this model is

~c ð1Þ
q1 �q2

ðx;b?Þ ¼ �1A1ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

exp

�
� 1

2
�2
1xð1� xÞb2

?

�
:

(13)

The wave function (13) does not consider massive quarks.
We include the quark masses following the prescription
suggested by Brodsky and Téramond [24]. First one should
perform the Fourier transform of (13)

c ð1Þ
q1 �q2

ðx;k?Þ ¼ 4�A1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp exp

�
� k2

?
2�2

1xð1� xÞ
�
: (14)

In a second step the quark masses are introduced by

extending the kinetic energy of massless quarks with K0 ¼
k2
?

xð1�xÞ to the case of massive quarks:

K0 ! K ¼ K0 þ�2
12; �2

12 ¼
m2

1

x
þ m2

2

1� x
: (15)

Note, the change proposed in (15) is equivalent to the
following change in (10)

� d2

d�2
! � d2

d�2
þ�2

12: (16)

Finally we obtain

c ð1Þ
q1 �q2

ðx;k?Þ ¼ 4�A1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp exp

�
� k2

?
2�2

1xð1� xÞ �
�2

12

2�2
1

�
:

(17)

Note, in the case of massive quarks the normalization
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constant fulfills the relation

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Pq1 �q2

q �Z 1

0
dxe��2

12
=�2

1

��1=2
(18)

and A1 ! ffiffiffiffiffiffiffiffiffiffiffi
Pq1 �q2

p
when m1;2 ! 0.

B. Model 2

Model 2 has originally been developed in Ref. [13]. It is
based on the following equation of motion for the AdS
modes

@2�’ð�Þ �
2� �

�
@�’ð�Þ þ

�
M2

2 �
m2

5R
2

�2

�
’ð�Þ ¼ 0;

(19)

where for mesons we have

m2
5R

2 ¼ ð3þ L� Sþ �2
2�

2ÞðL� Sþ �þ �2
2�

2Þ: (20)

Here subscript ‘‘2’’ indicates the solutions of the Model 2.
From (19) we get the mass spectrum

M2
2 ¼ 4�2

2

�
nþ Lþ

�
2þ �

2
� S

��
; (21)

where � ¼ �3 is the value for scalar mesons and � ¼ �1
for vector mesons [13]. To have consistency with the
definition of the form factor of Eq. (3) the Eq. (19) should
be changed into a Schrödinger type equation of

�
� d2

d�2
þ 4m2

5R
2 þ �2 � 6�þ 8

4�2

�
�2ð�Þ ¼ M2

2�2ð�Þ;
(22)

by means of the following transformation

’ð�Þ ¼ eð1��=2Þ ln��2ð�Þ: (23)

In this model we have gðxÞ ¼ 2x [13] and the matching
condition between the LFWF and AdS modes reads

j ~c ð2Þ
q1 �q2

ðx; �Þj2 ¼ 2A2
2x

2ð1� xÞ j�2ð�Þj2
2��

: (24)

Again we restrict to the ground state case—n ¼ L ¼ 0 and
as AdS mode �2ð�Þ similar to the one of Model 1:

�2ð�Þ �
ffiffiffi
�

p
e�ð1=2Þ�2

2
�2 : (25)

Finally applying the Brodsky and Téramond prescription,
the meson momentum space LFWF including massive
quarks is

c ð2Þ
q1 �q2

ðx;k?Þ ¼ 4�A2

�2

ffiffiffiffiffiffiffiffiffiffiffiffi
2

1� x

s
exp

�
� k2

?
2�2

2xð1� xÞ �
�2

12

2�2
2

�
;

(26)

where A2 is the normalization constant constrained by the
probability condition (9) in analogy to A1.

III. EXAMPLE I: THE PION

A. Fixing the parameters

The wave functions we consider depend on parameters
ðAi;m1;2; �iÞ which must be fixed. As a first application we

consider some of the fundamental properties of the pion:
leptonic and two-photon decay constants, distribution
quantities. We work in the isospin limit, supposing that
the masses of u and d quarks are equal to each other: m ¼
mu ¼ md. In this case we have a set of three free parame-
ters ðAi; m; �iÞ which is the same number of parameters
considered in other models [25].
The two conditions related to the decay amplitudes for

� ! �� and �0 ! 		 [26] read

Z 1

0
dx

Z d2k?
16�3

c q �qðx;k?Þ ¼ F�

2
ffiffiffi
3

p ; (27)

and

Z 1

0
dxc q �qðx;k? ¼ 0Þ ¼

ffiffiffi
3

p
F�

; (28)

where F� ¼ f�=
ffiffiffi
2

p ’ 92:4 MeV is the pion leptonic
decay constant. Note, the second condition (28) is the
low-energy theorem relating the two-photon g�		 and

leptonic F� decay constants as g�		 ¼ 1=ð4�2F�Þ ¼
0:274 GeV�1.
On the other side, the average transverse momentum

squared of a quark in the pion hk2
?i� is about

ð300 MeVÞ2 [27]. The average transverse momentum
squared of a quark in the pion valence state is defined by

hk2
?iq �q ¼

1

Pq �q

Z 1

0
dx

Z d2k?
16�3

k2
?jc q �qðx;k?Þj2; (29)

which must be higher than hk2
?i�. For this reason we

consider a value of several hundreds of MeV forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2

?iq �q
q

. This can be used as a third restriction. When

fixing the parameters we consider two cases for each wave
function (17) and (26), current and constituent quark
masses. The values used are 4 MeV for current masses
and 330 MeV for constituent masses.
Since quarks masses are introduced in advance, the

remaining parameters Ai and �1 or �2 can be fixed using
(27) and (28) with the value of F� ¼ 92:4 MeV. Then with

TABLE I. Parameters defining LFWF given by Eqs. (17) and

(26) and predictions for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2

?iq �q
q

and Pq �q.

Model c ðx;k?Þ
m

(MeV) A
�

(MeV)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2

?iq �q
q
(MeV) Pq �q

1
c 1c 4 0.452 951.043 388.319 0.204

c 1cs 330 0.924 787.43 356.478 0.279

2
c 2c 4 0.486 921.407 376.222 0.236

c 2cs 330 0.965 781.218 353.877 0.299
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the fixed parameters Ai, m, �i we predict
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2

?iq �q
q

and the

probability Pq �q. Table I gives the values for A1;2 and �1;2

including the predictions for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2

?iq �q
q

and Pq �q. One can see

that our results for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2

?iq �q
q

and Pq �q are in agreement with

the predictions of Ref. [25]:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2

?iq �q
q

’ 356 MeV and

Pq �q ’ 0:296.

The parameters �1;2 define the holographic model con-

sidered in Refs. [13,22] and both are related to the Regge
slope. Thus in principle both quantities could be fixed by
spectral data. Unfortunately the pion mass is an exception

since it falls outside the Regge trajectories. Therefore �1;2

have been usually fixed by using form factors [13,22]. The
values obtained in the present work differ somewhat from
those values, which is understandable since the �1 and �2

found previously were obtained using (3), the form factor
in AdS, which when compared with the light-front expres-
sion gave (6). Nevertheless, the wave functions (17) and
(26) correspond to the case with only two quarks, and we
therefore should expect a small change in the �1;2 values.

In Figs. 1 and 2, we consider the LFWF using parame-
ters that appear in Table I, and additionally consider in
Fig. 3 a cc case in order to show the asymmetry in x is
reduced when quark mass is increased
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FIG. 2 (color online). The pion wave function c �ðx;k?Þ, for m ¼ 330 MeV. The left graph corresponds to equation Eq. (17) and
the right one to Eq. (26).
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FIG. 1 (color online). The pion wave function c ðx;k?Þ, for m ¼ 4 MeV. The left graph corresponds to Eq. (17) and the right one to
Eq. (26).
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B. Pion distribution amplitude

The meson distribution amplitude is calculated using
[28]


ðx; qÞ ¼
Z q2 d2k?

16�3
c valðx;k?Þ: (30)

We remind that the pion jc i can be expanded into Fock
states jc i ¼ a1jq �qi þ a2jq �qgi þ a3jq �qggi þ . . . . For
large values of q2 the dominant term is the first one and
since our wave functions were obtained considering (7),
which corresponds to the q �q configuration, we can calcu-
late 
ðxÞ � 
ðx;Q ! 1Þ.

Using (17) and (26) we get


1ðxÞ ¼ A1�1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
exp

�
� m2

2�2
1xð1� xÞ

�
; (31)

and


2ðxÞ ¼ A2�2

2�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� xÞp

exp

�
� m2

2�2
1xð1� xÞ

�
: (32)

In Fig. 4 both expressions are compared for current (c) and
constituent (cs) quark masses to the prediction of PQCD

using
ðx;Q ! 1Þ ¼ ffiffiffi
3

p
F�xð1� xÞ [29]. Figure 4 shows

that increasing quark masses reduces the differences be-
tween the two variants of LFWFs. Knowing the distribu-
tion amplitudes, it is possible to calculate the moments.
Taking � ¼ 1� 2x we have

h�Ni ¼
R
1
�1 d��

N
ð�ÞR
1
�1 d�
ð�Þ : (33)

Table II contains a summary of the moments up to h�4i.
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FIG. 4. Pion distribution amplitudes using holographic LFWF. Solid lines correspond to the prediction of PQCD, dashed lines
correspond to LFWF (31), and the dotted ones to LFWF (32) for m ¼ 4 MeV (upper panel) and for m ¼ 330 MeV (lower panel).
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FIG. 3 (color online). Wave function c c �cðx;k?Þ according to section IV. We consider in this case mc ¼ 1:5 GeV and �1 ¼ �2 ¼
894 MeV, the value suggested by the Regge slope for charmonium states. The left graph corresponds to Eq. (17) and the right graph to
Eq. (26).

MESON WAVE FUNCTION FROM HOLOGRAPHIC MODELS PHYSICAL REVIEW D 80, 055014 (2009)

055014-5



C. Parton distributions

If the LFWF has the form

c q �qðx;k?Þ ¼ �ðxÞ exp
�
� k2

?
2�2xð1� xÞ

�
; (34)

then the parton distribution is given by [30]

fðxÞ ¼ xð1� xÞ�2

16�2
�2ðxÞ: (35)

The LFWFs obtained from Models 1 and 2 have the
form considered in (34) and then the two-body contribution
to the parton distributions can be calculated in a direct way.
In Fig. 5 we display the product xfðxÞ for both models
again using current and constituent quark masses in the
LFWF. We use the same parameters as in Table I.

In principle, contributions from higher Fock states
should be added because they are not necessarily small.
In fact, in the pion case that we are discussing here, the
valence state component is around 25% as can be seen in
Table I or, for example, in Refs. [25,26].

IV. EXAMPLE II: DECAY CONSTANTS

Now we are in the position to calculate leptonic cou-
plings of pseudoscalar (fP) and vector (fV) mesons which
are given in our approach by

fP ¼ fV ¼ 2
ffiffiffi
6

p Z 1

0
dx

Z d2k?
16�3

c q �qðx;k?Þ: (36)

We use experimental values for the decay constants and the
probability condition

Pq �q ¼
Z 1

0
dx

Z d2k?
16�3

jc q �qðx;k?Þj2 � 1; (37)

where the equality holds for the case when the valence part
dominates. This procedure allows to fix the parameters �1;2

and the normalization constants A1;2.

Holographic models usually give a relation between �1;2

and the Regge slope fixed by spectroscopic data. Thus the
only free parameter A1;2 can be fixed by the normalization

condition. As an example we consider the decay constant
for kaons and J=c assuming the valence contribution to be
dominant, i.e. we use (37) with Pq �q ¼ 1. The quark masses

used are

mu ¼ md ¼ 330 MeV; ms ¼ 500 MeV;

mc ¼ 1500 MeV:

As already mentioned, the parameters �1;2 can be fixed

by using Regge slope data [31,32]: for kaon we take �1 ¼
�2 ¼ 524 MeV [31], while for J=c we use �1 ¼ �2 ¼
894 MeV.
Now we can calculate the decay constants of K and J=c

mesons. In Model 1 we obtain: fK ¼ 156:01 MeV and
fJ=c ¼ 226:68 MeV. Our predictions in Model 2 are:

fK ¼ 156:35 MeV and fJ=c ¼ 224:97 MeV. Our results

for the � and K meson decay constants in both models are
close to the experimental values of 155.5 and 277.6 MeV,
respectively.
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FIG. 5. Valence parton distribution xfðxÞ according to the LFWF considered in this work. The right graph corresponds to model 1
and the left graph is for model 2. In both cases the dashed line corresponds to the case with current masses, while the solid line
correspond to the constituent mass case. The parameters involved are the same as displayed in Table I.

TABLE II. First moments of the distribution functions h�Ni
calculated using 
PQCD and 
, given explicitly by (31) and (32),

for m ¼ 4 MeV and m ¼ 330 MeV. For 
2cs� we take m ¼
300 MeV, which shows that odd moments are reduced when the
quark mass quarks increases.


 h�0i h�1i h�2i h�3i h�4i

PQCD 1 0 0.2 0 0.086


1c 1 0 0.250 0 0.125


2c 1 0.143 0.238 0.073 0.116


1cs 1 0 0.186 0 0.073


2cs 1 0.102 0.179 0.040 0.068


2cs� 1 0.106 0.187 0.044 0.073
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Further applications of the approach considered here to
the mass spectrum and decay constants of light and heavy
hadrons will be considered in Ref. [33].

V. CONCLUSIONS

We have considered two kinds of wave functions for
mesons in the light-front formalism, obtained by the AdS/
CFT correspondence within two soft-wall holographic
models. By identifying in the momentum space wave
function the kinetic energy in the massless case we could
introduce the quark mass dependence as suggested by
Brodsky and de Teramond [24]. These wave functions
have different x dependence, which is less pronounced
when the quark masses are increased, as can be seen in
Figs. 1–3. This different x dependence is due to the fact that
the mode dual to the electromagnetic current JðQ2; zÞ is
different in both models, which according to (5) translates
into a different gðxÞ and therefore a different x dependence
in the corresponding LFWFs. If we restrict ourselves to
pions, there is an asymmetry in (26) which does not appear
in (17), because in model 1 we have gðxÞ ¼ 1 and in model
2 we have gðxÞ ¼ 2x.

When other mesons are considered, the parameter �1;2

used in the holographic models can be fixed by spectro-
scopic data, since this parameter is related to the corre-
sponding Regge trajectory. Taking quark masses as initial
input only one parameter remains (the normalization con-
stant A1;2), which can be fixed by the normalization

condition.
Properties such as the pion decay constant or electro-

magnetic form factors have been studied in holographical
models only in the AdS side [34]. In this work we consid-

ered expressions obtained in the CFT side, which are
related to a mesonic wave function, obtained using
Gauge/Gravity ideas. Because of the importance of the
hadronic wave function in QCD the versions considered
in this work represent a clear example of the usefulness of
the AdS/CFT ideas in QCD applications. These wave
functions can be used as initial ansatz in variational treat-
ments or as a first step in order to diagonalize the light-
front QCD Hamiltonian.
Another aspect that was not considered here is related to

the fact that the AdS modes dual to mesons have a depen-
dence on n and L [13,25], the radial and angular quantum
numbers, respectively. Thus in principle it should be pos-
sible to obtain LFWFs for radial and angular excitations
also. The Gauge/Gravity dualities offer an interesting op-
portunity to consider different meson excitations and in
future work we plan to see whether these models reproduce
the corresponding data.
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