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We explore an extension of the inert doublet model which allows also for CP violation in the Higgs

sector. This necessitates two noninert doublets. The lightest neutral scalar of the inert doublet is a

candidate for dark matter. Scanning over parameters we preserve the abundance of the dark matter in

agreement with the WMAP data. We also impose all relevant collider and theoretical constraints to

determine the allowed parameter space for which both the dark matter is appropriate and CP is violated. In

addition we find regions where the cutoff of the model originating from naturality arguments can be

substantially lifted compared to its standard model value, reaching �2–3 TeV.
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I. INTRODUCTION

It is widely believed that the standard model (SM) of
electroweak interactions is only an effective low-energy
theory valid below a certain energy scale �, which is
supposed to be of the order of 1 TeV. This view is based
on the fact that radiative corrections, �m2

h, to the Higgs

boson mass squared (m2
h) tend to increase the mass up to�,

implying a necessary fine-tuning. This is the celebrated
little hierarchy problem or the ‘‘LEP paradox’’ [1]. In order
to retain a meaningful perturbative expansion above
�1 TeV, a high level of fine-tuning between mh and � is
necessary to suppress �m2

h relative to m2
h; see e.g. [2].

Other well-known problems of the SM are the lack of a
candidate for the dark matter (DM) and too little CP
violation that could make the electroweak baryogenesis
viable [3]. In that context the SM scalar sector has to be
modified as the phase transition within a single Higgs
doublet is too slow for baryogenesis [3].

Our goal here is to outline a model that ameliorates the
little hierarchy problem (lifting � at least to �2 TeV)
while providing extra sources of CP violation needed for
baryogenesis as well as a realistic abundance of dark
matter. We will focus on extending the Higgs sector of
the SM by adding extra Higgs doublets since that could
also help to make the electroweak phase transition fast
enough; see [4].

In general there are two possibilities to alleviate the little
hierarchy problem: (i) suppression of the radiative correc-
tions, and/or (ii) an increase of the Higgs mass. Well-
known examples of the first strategy are supersymmetric

extensions of the SM, however in fact that could be
achieved to some extent even through very modest means,
e.g. by introducing just one extra real scalar singlet to the
SM [5] (although some fine-tuning is necessary). The
second possibility has recently been followed by
Barbieri, Hall, and Rychkov [6].1 The idea is to introduce
an extra scalar doublet � (the inert doublet) which does not
couple to the SM fermions as a consequence of a Z2

symmetry: � ! �� (all other fields are neutral under the
symmetry). Since it is required that h�i ¼ 0, the symmetry
remains unbroken, therefore it can provide a DM candi-
date. Since the inert doublet contributes to gauge-boson
two-point Green’s functions the SM-like Higgs boson
could be as heavy as 400–600 GeV, ameliorating the little
hierarchy problem this way. Also the DM constraints could
be satisfied choosing masses of the scalar and pseudoscalar
components of the inert Higgs of the order of 80 GeV. The
analysis of [9] reveals also another solution for the DM
candidate, such that scalar and pseudoscalar masses are
much heavier, * 500 GeV. The model in very simple
terms avoids the little hierarchy problem for the lighter
(inert) scalars as they just do not couple to fermions, so, in
particular, not to the top quark. The only drawback is that
the model is so restricted by the Z2 symmetry that it does
not allow for CP violation in the Higgs potential; this is the
issue that we would like to address here. There are two
simple extensions of the inert doublet model (IDM) that
can accommodate CP violation:
(i) Combining the standard 2-Higgs-doublet model

(2HDM) with an inert scalar doublet � (in other
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1The model was proposed earlier in [7] as a possible solution
to the DM problem, and its collider phenomenology was then
discussed in [8].

PHYSICAL REVIEW D 80, 055013 (2009)

1550-7998=2009=80(5)=055013(22) 055013-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.055013


words replacing the SMHiggs doublet of the IDM by
two doublets).

(ii) Adding a complex singlet scalar to the IDM.
This paper is devoted to the first of these extensions. It is

worth emphasizing that this scenario is not just a simple
sum of the 2HDM and the IDM. Although some theoretical
and experimental constraints which are applicable here are
(to leading order) identical to those of the 2HDM (just
because the inert doublet does not couple to fermions),
there are also important exceptions. These concern the
oblique parameters T and S, the amount of DM, and the
issue of positivity of the scalar potential (vacuum stability):

(i) The extra inert degrees of freedom transform as an
SU(2) doublet, so they couple to the vector bosons
and therefore contribute to the oblique parameters,
modifying the standard 2HDM predictions.

(ii) The neutral components of the inert doublet are
candidates for DM, and since the inert doublet cou-
ples to the 2HDM doublets, the amplitudes for DM
annihilation are in general influenced in a nontrivial
way by the extension of the noninert sector.

(iii) Even under simplifying assumptions, the scalar po-
tential for the 2HDM extended by the inert doublet
has a rich structure, so that the condition for posi-
tivity is much more involved than a simple superpo-
sition of conditions needed for the 2HDM and the
IDM separately.

The paper is organized as follows. In Sec. II we intro-
duce the model and define some notation. In Sec. III we
define some benchmarks for the inert sector, and in Sec. IV
we present the strategy adopted to search for allowed
regions in the parameter space of the model. Sections V
and VI are devoted to reviews of theoretical and experi-
mental constraints. In Sec. VII we show some regions of
parameters of the model that are compatible with all the
constraints, and in Sec. VIII we summarize.

Technical details on positivity, CP conservation, and
necessary basis transformations are collected in
Appendixes A, B, and C.

II. INERT-PLUS-TWO-DOUBLET MODEL: IDM2

A. The potential

Introduction of two doublets, �1;2 leads in general to

flavor-changing neutral currents in Yukawa couplings. To
avoid those one can impose an extra Z0

2 symmetry such that
�1 ! ��1 and uR ! �uR (all other fields are neutral).
The model then has Z2 � Z0

2, where the first factor is the
inert doublet Z2: � ! �� (all other fields are neutral). The
potential reads

Vð�1;�2; �Þ ¼ V12ð�1;�2Þ þ V3ð�Þ þ V123ð�1;�2; �Þ;
(2.1)

where

V12ð�1;�2Þ ¼ � 1

2
fm2

11�
y
1�1 þm2

22�
y
2�2

þ ½m2
12�

y
1�2 þ H:c:�g þ �1

2
ð�y

1�1Þ2

þ �2

2
ð�y

2�2Þ2 þ �3ð�y
1�1Þð�y

2�2Þ
þ �4ð�y

1�2Þð�y
2�1Þ

þ 1

2
½�5ð�y

1�2Þ2 þ H:c:�; (2.2)

V3ð�Þ ¼ m2
��

y�þ ��

2
ð�y�Þ2; (2.3)

V123ð�1;�2; �Þ ¼ �1133ð�y
1�1Þð�y�Þ þ �2233ð�y

2�2Þ
� ð�y�Þ þ �1331ð�y

1�Þð�y�1Þ
þ �2332ð�y

2�Þð�y�2Þ
þ 1

2
½�1313ð�y

1�Þ2 þ H:c:�

þ 1

2
½�2323ð�y

2�Þ2 þ H:c:�: (2.4)

Here, �1133, �2233, �1331, and �2332 are real, whereas �1313

and �2323 can be complex. Disregarding�2, the correspon-
dence with the notation of [6] would be

ðm�; ��; �1133; �1331; �1313Þ $ ð�2; 2�2; �3; �4; �5Þ:
(2.5)

In V1ð�1;�2Þwe have allowed for soft breaking of Z0
2 in

order to preserve the chance of CP violation in the poten-
tial while we do not allow for any breaking of Z2 in order to
have a stable lightest component of � as a DM candidate.
Note that, as a consequence of the unbroken Z2, there is no
mixing in mass terms between �1;2 and �. It is worth

realizing that, since � does not couple to quarks, there
are no constraints on the charged inert Higgs mass from the
b ! s� decay.

B. 2HDM mass eigenstates

In the (noninert) 2HDM sector of the model, we denote
the doublets (in a basis where both have a vacuum expec-
tation value [VEV])

�1 ¼ ’þ
1

ðv1 þ �1 þ i�1Þ=
ffiffiffi
2

p
� �

;

�2 ¼ ’þ
2

ðv2 þ �2 þ i�2Þ=
ffiffiffi
2

p
� �

;

(2.6)

and adopt the mixing matrix R, defined by

H1

H2

H3

0
@

1
A ¼ R

�1

�2

�3

0
@

1
A; (2.7)

satisfying
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RM2RT ¼ M2
diag ¼ diagðM2

1;M
2
2;M

2
3Þ; (2.8)

and parametrized in terms of three rotation angles �i as

R ¼
c1c2 s1c2 s2

�ðc1s2s3 þ s1c3Þ c1c3 � s1s2s3 c2s3
�c1s2c3 þ s1s3 �ðc1s3 þ s1s2c3Þ c2c3

0
@

1
A
(2.9)

with ci ¼ cos�i, si ¼ sin�i. In Eq. (2.7), �3 �
� sin��1 þ cos��2 is the combination of �i’s which is
orthogonal to the neutral Nambu-Goldstone boson. Here,
tan� � v2=v1.

We also define a mass parameter �2 �
ðv2=2v1v2ÞRem2

12, and note the following useful relation:

Imm2
12 ¼ Im�5v1v2: (2.10)

C. Inert-sector mass eigenstates

Components of the inert doublet are defined as follows:

� ¼ �þ
ðSþ iAÞ= ffiffiffi

2
p

� �
: (2.11)

The masses of the inert scalars will be given by expressions
analogous to those of [6,9]:

M2
�� ¼ m2

� þ 1

2
�2

ch;

M2
S ¼ m2

� þ 1

2
½�2

ch þ�2
0 þ �2

split�;

M2
A ¼ m2

� þ 1

2
½�2

ch þ�2
0 ��2

split�;

(2.12)

where we have introduced the abbreviations

�2
ch ¼ �1133v

2
1 þ �2233v

2
2; �2

0 ¼ �1331v
2
1 þ �2332v

2
2;

�2
split ¼ Re�1313v

2
1 þ Re�2323v

2
2: (2.13)

Adopting the simplifying assumptions (denoted ‘‘dark
democracy’’)

�a � �1133 ¼ �2233; �b � �1331 ¼ �2332;

�c � �1313 ¼ �2323 ðrealÞ; (2.14)

the masses can be written as

M2
�� ¼ m2

� þ 1

2
�av

2;

M2
S ¼ m2

� þ 1

2
ð�a þ �b þ �cÞv2

¼ M2
�� þ 1

2
ð�b þ �cÞv2;

M2
A ¼ m2

� þ 1

2
ð�a þ �b � �cÞv2

¼ M2
�� þ 1

2
ð�b � �cÞv2:

(2.15)

As a consequence of the assumptions (2.14), there are no
trilinear couplings H���S or H���A.

D. Stability of the potential

The condition for positivity of V is discussed in
Appendix A for the general potential, Eq. (2.1). In our
numerical applications we will limit ourselves to the case
of dark democracy defined in (2.14). We find that for this
special case, Eqs. (A16) and (A32) must be satisfied for
positivity. However, we restrict ourselves even further by
requiring V12, V3, and V123 separately to be positive. Then,
in addition to the familiar constraint on V12 [7,10,11] and
V3, we obtain the following condition:

�a � maxð0;�2�b;��b � �cÞ; (2.16)

implying m� <M�� . This amounts to a strong constraint

on the splitting of the inert-sector spectrum, not present in
the full treatment of positivity.
The input parameters in the inert sector are defined by

specifying scalar masses ðMS;MA;M��Þ together withm�,

so that the quartic couplings �a, �b and �c can be deter-
mined via (2.15). Here we will consider cases (the profile 3
is the only exception; see Sec. III B), with masses ordered
as follows:MS <MA <M�� . This is motivated by the fact

that a positive contribution to the electroweak precision
observable T from the inert sector (see Sec. VI) makes it
easier to allow for heavy 2HDM masses. For this case it is
easy to show that the ordering and the positivity condition
(2.16) leave a certain nonempty allowed region in the space
of ð�a; �b; �cÞ, namely �a > 0, �b < 0, �a > 2j�bj to-
gether with �c < 0 and j�bj> j�cj. Then the requirement
of having the right amount of dark matter (see next section)
imposes additional constraints on the masses (or equiva-
lently on the quartic couplings), resulting in a relatively
small region of allowed ð�a; �b; �cÞ. If MS <M�� <MA,

then the constraints are less tight.

III. BENCHMARKS

In numerical studies we will assume that S is the lightest
neutral scalar, MS <MA. The first profiles have the DM
candidate around 75 GeV, a favored value [6,9]. For the
heavier neutral partner, we consider a few options at, or
slightly above, MA ¼ 110 GeV, which is the lower limit
compatible with LEP2 data [12].
In a recent study by Lopez Honorez et al. [9], the

splitting among inert-sector scalar masses was kept fixed,
while a scan over the parameter �2 (corresponding to our
m�) and the DM particle mass (MS in our notation) was

performed. In the region of heavy DM particles, a detailed
study has also been performed in [13].
We shall instead consider two discrete sets of ‘‘dark’’

profiles, to be specified below. In the first set of dark
profiles, we keep the DM particle light. For trial values
of the masses and m� (inspired by the results of [9]), we
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estimate the amount of dark matter frommicrOMEGAs 2.2
[14,15], in the IDM version developed by Lopez Honorez
et al. [9]. That version has only one Z2-even doublet,
whereas we here consider two such doublets, �1 and �2

(with many more ‘‘free’’ parameters). Therefore the cal-
culation of amplitudes for various DM annihilation chan-
nels is more complicated.

The mass of the charged partner, M�� , and the inert-

sector mass parameter m� have been chosen such that a

reasonable amount of dark matter is obtained for at least
one set of the parameters (3.6). In the context of dark
matter, the parameter m� is important, since a particular

choice for the inert neutral scalar masses MS and MA

together with m� constrain ð�a; �b; �cÞ which, in turn,

are responsible for the annihilation of dark matter into
the visible sector; see [9]. In the original IDM, the essential
parameter determining the trilinear coupling among two
DM particles and the SM Higgs boson, is

�L � 1

2
ð�a þ �b þ �cÞ: (3.1)

In the present model, the trilinear coupling between two
S particles and a neutral-Higgs boson is determined by

�Lðv1�1 þ v2�2ÞSS: (3.2)

Projecting out the coupling to a particular neutral-Higgs
boson, we find

SSHj: FSSj�L; with FSSj ¼ cos�Rj1 þ sin�Rj2;

(3.3)

where the prefactor satisfies jFSSjj 	 1, since R is unitary.

In particular, FSS1 ¼ cosð�� �1Þ cos�2.
Similarly, the four-point coupling involving two S par-

ticles and two neutral-Higgs bosons is determined by

1

4
½ð�a þ �b þ �cÞð�2

1 þ �2
2Þ

þ ð�a þ �b � �cÞð�2
1 þ �2

2Þ�SS: (3.4)

Projecting out the coupling to the lightest Higgs boson, we
find

SSH1H1:
1

2
ð�L � �cR

2
13Þ ¼

1

2
ð�L � �csin

2�2Þ: (3.5)

In our estimates of the DM density, we shall follow the
approach of [9], taking �L as the relevant parameter. The
DM values presented in this work are based on the full tree-
level calculation performed using micrOMEGAs 2.2 with
all intermediate and final states originating from the rich
2HDM structure of the model.2

A. 2HDM masses

For each of the dark profiles, we consider the following
mass parameters of the (noninert) 2HDM sector:

SetA: ðM1;M2Þ¼ ð100;300ÞGeV; �¼200GeV; (3.6a)

SetB: ðM1;M2Þ¼ ð200;400ÞGeV; �¼400GeV; (3.6b)

SetC: ðM1;M2Þ¼ ð400;500ÞGeV; �¼400GeV: (3.6c)

A nonzero value for� is adopted, in order to accommodate
the unitarity constraints limiting quartic couplings. We
avoid degeneracy of M1 and M2, since that would be a
source of potential difficulties to produce CP violation; see
Sec. VC for a detailed discussion.

B. Light DM particle

We shall consider the following ‘‘light’’ DM profiles:

Profile 1: MS ¼ 75 GeV; MA ¼ 110 GeV; M�� ¼ 112 GeV;

Profile 10: MS ¼ 77 GeV; MA ¼ 110 GeV; M�� ¼ 112 GeV;

Profile 2: MS ¼ 75 GeV; MA ¼ 120 GeV; M�� ¼ 125 GeV;

Profile 3: MS ¼ 75 GeV; MA ¼ 120 GeV; M�� ¼ 85 GeV;

Profile 4: MS ¼ 100 GeV; MA ¼ 110 GeV; M�� ¼ 115 GeV;

Profile 5: MS ¼ 120 GeV; MA ¼ 125 GeV; M�� ¼ 130 GeV:

(3.7)

C. Heavier DM particle

We also consider some profiles where the two neutral inert-particle masses are higher, and rather close, another domain
favored by [9]:

2Within the approximate treatment of positivity, and keeping only the lowest mass state of the 2HDM, the full result can be
mimicked by an appropriate tuning of m�, which in turn amounts to a tuning of �a.
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Profile 11: MS ¼ 500 GeV; MA ¼ 501 GeV; M�� ¼ 502 GeV;

Profile 12: MS ¼ 600 GeV; MA ¼ 601 GeV; M�� ¼ 602 GeV;

Profile 13: MS ¼ 800 GeV; MA ¼ 802 GeV; M�� ¼ 804 GeV;

Profile 14: MS ¼ 1000 GeV; MA ¼ 1002 GeV; M�� ¼ 1005 GeV:

(3.8)

The latter profiles have a high degree of degeneracy
among the masses. This is required in order to have the
correct amount of dark matter, but will also minimize the
contribution to the electroweak observable T. For a de-
tailed study of the IDM in the high-mass regime, see [13].

IV. SEARCH STRATEGY

In general, our goal will be to verify that within the
IDM2 model one can accommodate the following features:

(i) a ‘‘heavy’’ lightest neutral scalar (so that the natural-
ness problem is alleviated),

(ii) at least one neutral scalar odd under Z2 consistent
with the present limits on the DM abundance,

(iii) CP violation in the potential (introduced viam2
12 and

�5).
First we choose the following input parameters for the

2HDM: tan�, M1, M2, MH� , and �, together with
ð�1; �2; �3Þ. All remaining parameters of the 2HDM sector
are calculable in terms of those chosen above [16] (see also
[17]). For the inert sector we choose MS � 70–80 GeV or
* 500 GeV (DM candidate), MA, M�� , and m� (needed

for determination of relevant quartic couplings in V123

which are necessary for calculating the DM abundance).
Then the following strategy will be applied while deter-

mining allowed regions in the parameter space of the
model:

(1) We fix tan�, MH� , sets of 2HDM masses
ðM1;M2; �Þ, and profiles of the inert-sector parame-
ters (dark profiles MS;MA;M��).

(2) Next we check if, for a given choice of dark profile
ðMS;MA;M��Þ and ðM1;M2; �Þ, there exists a value
ofm� such that the model predicts the right order of

magnitude for the dark matter abundance.
(3) Then we scan over the mixing angles ð�1; �2; �3Þ of

the 2HDM, requiring that:
(a) The naturalness is alleviated for each Higgs boson

j�M2j
M2

¼ j�tj �
2

M2
<D; (4.1)

where M denotes a generic Higgs boson mass, �M2

stands for the top-quark contribution to the one-loop
correction to M2, �t is a calculable coefficient in
terms of the mixing angles, etc. The cutoff should be
chosen to be in the TeV region, e.g. modestly � ’
2 TeV. The fine-tuning parameter D is to be chosen
according to our aesthetic standards.

(b) Based on the experience gained from [6] we restrict
the scan to heavy ( � 100 GeV) Higgs bosons in the

2HDM sector (so that the little hierarchy problem
could be that way reduced, that would be an analog
of the heavy SMHiggs of [6]). It is worth noting that
here some possible tension between parameters
emerges. It may appear as we increase Higgs masses
in the 2HDM sector trying to retain small quartic
constants. Even though the masses could be raised
by increasing �2 �m2

12 in the potential, neverthe-
less the mass of one scalar would still remain �v
(see e.g. [18]). In order to increase its mass some
combination of quartic couplings in V12 will have to
be large, therefore checking the unitarity in the
2HDM sector is essential to guarantee that �i’s
remain in a perturbative regime.

(c) Remaining experimental constraints are satisfied.
(d) CP is violated, i.e. �i are far enough from their CP

conserving limits. We use the invariants Ji, i ¼ 1, 2,
3 [19] as a measure of CP violation. Eventually we
plot an average and/or maximum (with respect to the
mixing angles �i) for jImJ1j and the electron elec-
tric dipole moment (EDM) to illustrate the strength
of CP violation.

V. THEORETICAL CONSTRAINTS

A. The little hierarchy

As an order-of-magnitude estimate for radiative correc-
tions to neutral-Higgs boson masses, we consider the con-
tributions that arise from top-quark loops:

�M2
j ¼ � 3m2

t

4	2v2
�2

j ða2j þ ~a2j Þ for j ¼ 1; 2; 3; (5.1)

where aj and ~aj are defined in (3.21) of [20]:

aj �
Rj2

s�
; ~aj � � c�Rj3

s�
: (5.2)

Similarly, for the charged-Higgs particles we find

�M2
H� ¼ � 3m2

t

4	2v2
�2

H�cot2�: (5.3)

Since the inert doublet does not couple to fermions there is
no hierarchy problem for S and A.
We adopt the following simple condition:

j�M2
j j

M2
j

< D;
j�M2

H�j
M2

H�
<D (5.4)

with the amount of fine-tuning parametrized by D. For the
resulting cutoff we will choose
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� ¼ minð�j;�H�Þ: (5.5)

This quantity � will in general be most constrained by the
value of M1 (unless when a21 þ ~a21 is small). For an alle-
viation of the hierarchy problem, we would like to have �
large compared to the Higgs masses.

B. Perturbativity and unitarity

To preserve perturbativity we shall impose the following
conditions on quartic and Yukawa couplings of neutral-
and charged-Higgs bosons

�i;

ffiffiffi
2

p
mt

v
jajj;

ffiffiffi
2

p
mt

v
j~ajj; mtffiffiffi

2
p

v
cot�; �a; �b; �c < 4	:

(5.6)

Since we will consider tan� � 0:5, the last three condi-
tions will always be satisfied. We also impose unitarity on
the Higgs-Higgs scattering amplitudes [21–23].

C. CP violation

Since our intention here is to outline a model which
would possess CP violation in the Higgs potential we shall
discuss this issue in more detail. The magnitude of CP
violation can be quantified in terms of the invariants in-
troduced by Lavoura and Silva [19]. However here we
prefer to adopt the more general, basis-independent ap-
proach of Gunion and Haber and calculate the invariants
J1, J2, and J3 of [24]. They state (theorem 4) that the Higgs
sector is CP-conserving if and only if all Ji are real. The
calculations of these quantities are straightforward, and we
end up with the following result, valid for our choice of
basis:

Im J1 ¼ �v2
1v

2
2

v4
ð�1 � �2Þ Im�5; (5.7)

ImJ2 ¼ �v2
1v

2
2

v8
½ðð�1 � �3 � �4Þ2 � j�5j2Þv4

1

þ 2ð�1 � �2ÞRe�5v
2
1v

2
2 � ðð�2 � �3 � �4Þ2

� j�5j2Þv4
2� Im�5; (5.8)

Im J3 ¼ v2
1v

2
2

v4
ð�1 � �2Þð�1 þ �2 þ 2�4Þ Im�5: (5.9)

We note that since we have chosen a basis with real VEV’s,
there is no CP violation when Im�5 ¼ 0 (it should be
realized that Imm2

12 and Im�5 are not independent here; see
(2.10)). Then an interesting question arises: Is it possible
for Im�5 � 0 to have no CP violation? It turns out that the
answer is ‘‘yes,’’ as will be discussed in the following.

The simultaneous vanishing of the three ImJi implies
that CP is conserved. This can happen for five distinct
cases:

(i) Case A: Im�5 � 0 with v1 ¼ 0 ( tan� ! 1).
(ii) Case B: Im�5 � 0 with v2 ¼ 0 ( tan� ¼ 0).

(iii) Case C: Im�5 ¼ 0. This corresponds to M2 [see
(2.8)] being block diagonal, and the diagonalization
performed in terms of only one rotation angle.

(iv) Case D: Im�5 � 0 with �1 ¼ �2 and v1 ¼ v2.
(v) Case E: Im�5 � 0with �1 ¼ �2, v1 � v2 and ð�1 �

�3 � �4Þ2 ¼ j�5j2.
Some comments are here in order (details are discussed

in Appendix B):
(i) When all three masses are degenerate, CP is con-

served because Im�5 ¼ 0. This corresponds to
case C.

(ii) When there is only partial mass degeneracy, M1 ¼
M2 <M3 or M1 <M2 ¼ M3, there are instances of
CP conservation corresponding to cases C, D, and E.

(iii) There are also instances of CP conservation in the
mass nondegenerate case M1 <M2 <M3 corre-
sponding to cases C, D, and E.

The above discussion shows that, in terms of our input
parameters [ tan�, M1, M2, MH� , and �, together with
ð�1; �2; �3Þ] there exist various nontrivial locations such
that CP is conserved even though Im�5 � 0 (the case of
Im�5 ¼ 0 is relatively obvious). Since our intention is to
build a model that allows for a substantial amount of CP
violation, we would like to show regions of parameter
space where that indeed happens. However, in light of
the above discussion, the determination of such locations
cannot easily be performed analytically.
The chance for successful electroweak baryogenesis is

the crucial motivation for our discussion of CP violation.
However, without a dedicated analysis of baryogenesis
(which is beyond the scope of this project) it is hard to
estimate the amount of CP violation that is necessary.
Therefore, we have adopted the following strategy to illus-
trate the strength of CP violation which is available in the
model. We plot both the electron electric dipole moment de
and the invariant jImJ1j (which are physical quantities) in
the region of the parameter space allowed by all the other
constraints. In order to estimate the amount of potentialCP
violation we show both averaged and maximal values of de
and jImJ1j (the choice of J1 (as opposed to J2 and J3) is
arbitrary, however we recall that it is sufficient for CP
violation to have just one of the Ji complex). Large split-
ting between averaged and maximal values indicates the
potential for CP violation hidden in the appropriate choice
of mixing angles �i. Of course, in a realistic situation
(having the prediction for electroweak baryogenesis within
the model) we would need to have de below the experi-
mental upper limit and nevertheless enough CP violation
for successful baryogenesis.
In Appendix B, in Figs. 7 and 8, we show how allowed

regions in the ð�1; �2; �3Þ space are distributed.

VI. EXPERIMENTAL CONSTRAINTS

We here review various experimental constraints that
will be imposed on the model.
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T and S.—We adopt the results from [25,26] in order to
calculate T and S within our model. Since for the Higgs
fields we will use a basis in which only �1 has nonzero
VEV (the so-called Higgs basis) some necessary trans-
formations must be performed; see Appendix C for details.
For the model discussed here the rotation matrixO defined
by Eq. (59) of [25] reads

O ¼

O11 O12 O13 0 0
O21 O22 O23 0 0
O31 O32 O33 0 0
0 0 0 1 0
0 0 0 0 1

0
BBBBB@

1
CCCCCA (6.1)

and the mixing matrix V of that paper becomes

V ¼
i O11 O12 O13 0 0
0 O21 þ iO31 O22 þ iO32 O23 þ iO33 0 0
0 0 0 0 1 i

0
@

1
A;

(6.2)

with U ¼ 1. Therefore, UyV ¼ V, and

VyV ¼

1 �iO11 �iO12 �iO13 0 0
iO11 1 iO13 �iO12 0 0
iO12 �iO13 1 iO11 0 0
iO13 iO12 �iO11 1 0 0
0 0 0 0 1 i
0 0 0 0 �i 1

0
BBBBBBBB@

1
CCCCCCCCA
:

(6.3)

Since this is block diagonal, the contribution to T (and to S)
from the inert doublet is additive (the inert fields must
always appear in pairs, there is no interference between
the ‘‘visible’’ and the inert sector at the one-loop order):

T ¼ T2HDM þ 1

16	sin2
Wm
2
W

½FðM2
�� ;M2

SÞ

þ FðM2
�� ;M2

AÞ � FðM2
A;M

2
SÞ�; (6.4)

where �e:m:T2HDM ¼ ��2HDM is given by (63) of [25]. In
our case, the matrices (C3) and (C6) should be adopted.
Similarly, S can be obtained from the results given in [26].
We impose the bounds j�Tj< 0:10, j�Sj< 0:10 [27], at
the 1-� level.

We note that T, which is our main concern, gets a
positive contribution from a splitting between the masses
of charged and neutral-Higgs bosons, whereas a pair of
neutral ones gives a negative contribution. In fact, since the
function F is symmetric in its two arguments, these two
opposite-sign contributions cancel in the limit when the
charged boson is degenerate with either of the two neutral
ones.

B0 � �B0 mixing.—Because of the possibility of
charged-Higgs exchange, in addition to W� exchange,
the B0 � �B0 mixing constraint excludes low values of
tan� and low values of MH� [28–30]. Here we follow the
procedure of [31].

B ! Xs�: The b ! s� transition may also proceed via
charged-Higgs exchange, so some regions of the parameter
space with low values of tan� and MH� are excluded. The
exact region of exclusion is sensitive to higher-order QCD
effects [32–35], and roughly excludes MH� < 300 GeV.
Again, we follow the approach of [31].
B !  ��X.—The charged-Higgs contribution may sub-

stantially modify the branching ratio for B !  ��X [36].
The measurement [37] of BðB !  ��XÞ leads to the fol-
lowing constraint:

tan�

MH�
< 0:53 GeV�1 (6.5)

at 95% CL. This is in fact a very weak constraint. A more
recent measurement gives BðB� !  ��Þ ¼ ð1:79�
0:71Þ � 10�4 [38], where we have added in quadrature
symmetrized statistical and systematic errors. With the
SM prediction of ð1:59� 0:40Þ � 10�4,

rH exp ¼ BðB� !  ��Þ
BðB� !  ��ÞSM ¼ 1:13� 0:53: (6.6)

Within the framework of the 2HDM, one finds [39]

rH 2HDM ¼
�
1� m2

B

M2
H�

tan2�

�
2
: (6.7)

Then the data imply that two sectors at large values of tan�
and low values of MH� are excluded.
B ! D ��.—Measurements [40] of the ratio

Rexp ¼ BðB ! D�Þ
BðB ! D‘�‘Þ ; ‘ ¼ e;�; (6.8)

can also be used to constrain the coupling of the charged
Higgs to the , more precisely tan�=MH� . It thus restricts
large values of tan� and low values of MH� [41], in a
region of parameter space similar to the one following
from B !  ��X, but is considerably stronger.
LEP2 nondiscovery.—The nondiscovery of a Higgs bo-

son at LEP2 imposes a bound on how strongly the lightest
one can couple to the Z and to b �b. Useful results for this
constraint are available in table 27 of [42]. Adopting the
standard notation

�ZðH!b �bÞ ¼ �SM
ZðH!b �bÞ � C2

ZðH!b �bÞ (6.9)

one can approximately parametrize the upper limit on
C2
ZðH!b �bÞ from the table as follows:

C2
ZðH!b �bÞ 	

8><
>:
0:05 for 12 GeV<MA 	 80 GeV;
0:1 for 80 GeV<MA 	 90 GeV;
0:2 for 90 GeV<MA < 110 GeV:

(6.10)

For eþe� ! ZH1 the coefficient C
2
ZðH!b �bÞ is given by (4.3)

of [20]:
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C2
ZðH1!b �bÞ ¼ ðc�R11 þ s�R12Þ2 1

c2�
ðR2

11 þ s2�R
2
13Þ: (6.11)

Then the constraint (6.10) limits the parameter space.
Rb.—The branching ratio for Z ! b �b is also affected by

Higgs exchange. As noticed in [20], the contributions from
neutral-Higgs bosons to Rb are negligible, however,
charged-Higgs boson contributions, as given by [43],
Eq. (4.2), exclude low values of tan� and low MH� .
Experimentally Rb � �Z!b �b=�Z!had ¼ 0:216 29�
0:000 66 [27]. It is easy to see that the correction ��Z!b �b

implies the following change for Rb:

�Rb ¼ ��Z!b �b

�Z!had

ð1� RbÞ; (6.12)

where �Z!had ¼ ð1:7444� 0:0020Þ GeV [27]. Since
��Z!b �b is known within the 2HDM [43], so is �Rb. We
require

�Rb < 0:000 66; (6.13)

corresponding to ��Z!b �b ¼ 1:47 MeV at the 1-� level.
Muon anomalous magnetic moment.—Since here we are

considering heavy Higgs bosons (Mi * 100 GeV) there-
fore, according to [31,44], the 2HDM contribution to the
muon anomalous magnetic moment is negligible even for
tan� as large as �40.

Electron electric dipole moment.—The bounds on elec-
tric dipole moments constrain the allowed amount of CP
violation of the model. We adopt the bound [45] (see also
[46])

jdej & 1� 10�27½e cm�; (6.14)

at the 1-� level. The contribution due to neutral-Higgs
exchange,3 via the two-loop Barr-Zee effect [48], is given
by Eq. (3.2) of [46] in terms of the neutral-sector mixing
matrix O, defined in [49], and related to our R via

O11 O12 O13

O21 O22 O23

O31 O32 O33

0
@

1
A ¼

R33 R23 R13

R31 R21 R11

R32 R22 R12

0
@

1
A: (6.15)

This rotation matrixO should not be confused with the one
appearing in Eq. (6.1).

VII. RESULTS

Subject to the limitations discussed above, we may now
scan over the parameter space, imposing the constraint

�2 ¼X
�2
i < 5:99; 95%CL; (7.1)

as appropriate for identifying allowed regions in two di-

mensions, ðtan�;MH�Þ. The sum runs over all the experi-
mental constraints discussed above.
Our results will be given in terms of contour plots of

various quantities of interest. Regions corresponding to
values being confined within certain intervals are indicated
by a color coding as indicated. The external contour shows
the maximal region consistent with the experimental and
theoretical constraints we adopt (i.e., without the naturality

condition imposed on �=
ffiffiffiffi
D

p
, unless explicitly stated).

The model discussed here contains many parameters
(masses, mixing angles, etc.). In projecting down our re-
sults to a lower-dimensional space, we have decided to
favor the more ‘‘physical’’ parameters tan� and MH�

together with neutral scalar masses (and�). In this section,
most of the plots show (for fixed inert masses, MS, MA,
M�� , fixed 2HDM neutral masses,M1,M2, and�) allowed

regions in the ðtan�;MH�Þ space. The remaining parame-
ters, the neutral-Higgs-sector mixing angles, �1, �2, and
�3, which are not specified in those plots, have been
averaged over, or a maximum has been extracted. Thus,
for each allowed point in ðtan�;MH�Þ there exist �’s such
that all constraints are satisfied.

A. Light dark matter particle

We first consider the set of dark profiles for which the
DM particle is light, at �75 GeV; see Eq. (3.7). These
profiles may be compared with the parameters considered
by Lopez Honorez et al. [9], in their Fig. 5, where it was
shown that the correct amount of dark matter may be
obtained with dark-matter mass of the order of 50–
80 GeV, for splittings of the order 10–50 GeV.
In Table I we summarize the results for the DM density

�h2 for the different combinations of dark profiles of
Eq. (3.7), and non-inert-sector parameters of Eq. (3.6).
These are obtained from running micrOMEGAs [14,15],
as described in Sec. III. For the quartic couplings in the
inert sector (denoted here by ��=2), we use the value 0.1

(the amount of dark matter is practically independent of
this coupling [9]). Here, ‘‘OK’’ means that a value within
3� of the WMAP value 0:1131� 0:0034 [50], can be
found for a suitable choice of m�. For these profiles of

light DM particles, typically values m� � 30–50 GeV are

required.
Profile 10 corresponds to the allowed horizontal band in

Fig. 9 of Lundström et al. [12], in the sense that we find
solutions for sets B and C, corresponding to heavier non-
inert Higgs particles. This band is rather narrow: forMS ¼
75 GeV we find too much dark matter, at MS ¼ 79 GeV
too little. It appears shifted by a couple of GeV, with
respect to the results of [12], presumably due to the use
of a different DM code, micrOMEGAs [14,15] vs
DARKSUSY [51].

All these profiles (except profile 3) have the charged
particle heavier than both the neutral ones, in order that the
inert sector makes a positive contribution to T (see

3Neglecting the Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing, the charged-Higgs contribution to de vanishes in the
2HDM (with softly broken Z2) up to two loops [47].
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Sec. VI). This, in turn, allows for a higher value of the
‘‘ordinary’’ neutral-Higgs particle [6] that enters the elec-
troweak fits.

Profiles 4 and 5 give �h2 	 0:01 (consistent with
Figs. 8 and 9 of [12]) and will not be considered any
further.

Dark profile 1.—We start discussing the case
ðMS;MA;M��Þ ¼ ð75; 110; 112Þ GeV. Among the three

sets of mass parameters considered for the visible sector,
only set A ðM1;M2; �Þ ¼ ð100; 300; 200Þ GeV gives a
reasonable value of �h2. With m� of the order 45–

55 GeV we obtain �h2 ’ 0:10–0:13. Higher values of
m� yield too high values of �h2. For profile 1 and sets B

and C, the value is too high, �h2 � 0:24.4 The allowed
region is shown in Fig. 1. The figure is obtained by scan-
ning over tan� from 0.5 to 50, and over MH� from
300 GeV (barely above the B ! Xs� cutoff) to 700 GeV.
For each point in the ðtan�;MH�Þ plane, a scan over
mixing angles ð�1; �2; �3Þ is performed, analyzing all
models compliant with the constraints, showing contours
of the CP-violating quantity jImJ1j and the electron elec-
tric dipole moment (EDM). These two quantities provide
two different measures of the amount of CP violation. The
outer contours delineate the regions within which consis-
tent solutions are found for one or more sets of mixing
angles �i. The averages presented in the left panels are
obtained by averaging over all sets of ð�1; �2; �3Þ for
which the experimental constraints are satisfied according
to Eq. (7.1). Similarly, the maxima in the right panels
correspond to maxima of absolute values, obtained from
the same scans over allowed sets of ð�1; �2; �3Þ.

In the upper part of the figure we display jImJ1j, while
the lower one shows the electron electric dipole moment,
jdej. In the left panels averages over allowed sets of �i are
displayed, while the right ones show extrema. There is no
obvious correlation between jdej and jImJ1j, other than
both having maxima in the interior of the allowed region.

In Appendix B we discuss the correlations of angles �i

for which viable solutions are found. These are shown
separately for small tan� and large tan�. In general, it is
easier to accommodate CP violation at low values of tan�

than at higher values. For high values of tan�, the allowed
values of these parameters tend to accumulate near the
limits where H2 is odd under CP (�2 ’ 0, �3 ’ �	=2).
For the parameters considered here, ðM1;M2; �Þ ¼

ð100; 300; 200Þ GeV, the viable models are constrained to
tan�� 0:5� 6. The cutoff at high tan� is mostly due to
the unitarity constraint on the neutral-Higgs sector. We also
note a cutoff at MH� � 650 GeV. This, on the other hand,
is due to the electroweak constraints, T in particular.
The fact that the average electric dipole moment is

rather small compared to the maximum value means that
large parts of the tan�-MH� space would remain viable
even if the experimental constraint on jdej should become
significantly tightened.
The little hierarchy.—In this Fig. 1, no constraint from

the fine-tuning consideration in Sec. VA is imposed. In

Fig. 2 we plot the quantity �=
ffiffiffiffi
D

p
of Eq. (5.5), which by

definition is minimized over the three neutral-Higgs parti-
cles and the charged one (for fixed mixing angles �i). This
is next maximized over the �i (for fixed tan� and MH�)
before being plotted in this figure. For the cases consid-

ered, we note that �=
ffiffiffiffi
D

p
reaches up to around 3 TeV. The

dominant reason why this varies with tan� andMH� is that
the factor

�j � a2j þ ~a2j (7.2)

of Eq. (5.1), for which solutions are allowed, varies.

Specifically, when the factor �1 is small, �=
ffiffiffiffi
D

p
will be

larger. This happens when sin�1 cos�2 and cos� sin�2 are
both small (cf. Appendix B).
Accordingly, imposing the constraint (5.4), with

�=
ffiffiffiffi
D

p ¼ 2 TeV, we obtain the more restricted allowed
regions shown in Fig. 3. Compared with Fig. 1 (where there
is no constraint on �), we see a dramatic reduction of the
allowed parameter space. ForM1 ¼ 100 GeV, only a small
region of MH� � 300–350 GeV and tan�� 2–6 survives.
Naturally, this is dominantly caused by the condition (5.4)
applied to M1.
Dark profile 10.—This profile has a slightly higher value

of MS, and thus gives allowed models also out to higher
values of the noninert Higgs mass, M1, corresponding to
the horizontal band in Fig. 9 of Ref. [12]. The results for
sets B and C are shown in Fig. 4. As compared with
profile 1, the heavier S here allows more annihilation to

TABLE I. Dark-matter density �h2 for different dark profiles, DP1, DP10, DP3, DP4, DP5
with mass parameters ðMS;MA;M��Þ, and different mass-parameter sets A–C with mass

parameters ðM1;M2; �Þ, all in GeV; see Sec. III.

DP1 DP10 DP3 DP4, DP5

�h2 (75, 110, 112) (77, 110, 112) (75, 110, 85) (100, 110, 115)

A (100, 300, 200) OK <0:07 <0:09 <0:01
B (200, 400, 400) >0:24 OK OK <0:01
C (400, 500, 400) >0:24 0.08–0.09 & 0:10 <0:01

4For sets B and C the lightest 2HDM Higgs is relatively heavy
so that SS annihilation via an intermediate H1 is suppressed, and
too much dark matter would survive.
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(off-shell) WW pairs, and thus an acceptable value of �h2

can be found.
For set B, there are solutions over most of the explored

tan�-MH� plane; for MH� � 400–500 GeV and M2 ¼
� ¼ 400 GeV they reach all the way out to tan�� 50.
For set C, on the other hand, the situation is different. Apart
from a region around tan�� 1–2, solutions are only found
within two widely separated bands in the tan�-MH� plane.
There is one band at MH� & 400 GeV and another at
MH� & 550–650 GeV, with a region of no solutions in
between. This is clearly due to the interplay or partial
cancellation of contributions to T, positive from the
charged-Higgs boson differing in mass from some neutral
ones, and negative from pairs of neutral ones having differ-
ent masses.
Dark profile 2.—In this case the allowed models are

located in essentially the same part of the tan�-MH� plane
as for dark profile 1, with similar values for jImJ1j and the
electron electric dipole moment.
Dark profile 3.—This profile differs from the previous

ones in having the charged boson of the inert sector lighter
than the heavier neutral one. With this modification from
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profile 1, we find acceptable solutions also for heavier
Higgs bosons in the noninert sector (sets B and C). The
allowed regions in the tan�-MH� plane are quite similar to

those shown in Fig. 4 for profile 10 and also the values of
the electric dipole moment are similar.
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The little hierarchy. If we here impose the constraint

(5.4), with �=
ffiffiffiffi
D

p ¼ 2 TeV, there is a considerable reduc-
tion in the allowed parameter space for set B, whereas for
set C essentially the whole parameter space survives, as
shown in Fig. 5 for profile 10.

B. Heavier dark matter particle

The second set of dark profiles has a heavier DM parti-
cle. For this case, it was shown (see Fig. 6 of [9]) that the
amount of dark matter can satisfy the WMAP constraint
[50] provided the splitting in the inert sector is small. We
confirm that finding and list in Table II approximate values

of�h2 obtained from micrOMEGAs [14,15] with suitable
choices of m�. The values vary quite a bit with the choice

of this parameter. As mentioned above, the small mass
splitting in this inert sector also leads to a small (hence
acceptable) modification of T.
Dark profiles 11, 12, 13, and 14.—For all these cases, we

find solutions for all the three considered sets of noninert
mass parameters of Eq. (3.6). The allowed regions in the
tan�-MH� plane and the corresponding values for the
electron electric dipole moment are very similar to those
displayed in Figs. 1 and 4. For set B, with ðM1;M2; �Þ ¼
ð200; 400; 400Þ GeV, the allowed region extends to large
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TABLE II. DM density �h2 for different dark profiles, DP11, DP12, DP13, DP14 with mass
parameters ðMS;MA;M��Þ and different 2HDM mass-parameter sets A–C, ðM1;M2; �Þ, all in
GeV; see Sec. III.

DP11 DP12 DP13 DP14

�h2 (500, 501, 502) (600, 601, 602) (800, 802, 804) (1000, 1002, 1005)

A (100, 300, 200) ’ 0:09 ’ 0:10 ’ 0:09 ’ 0:10
B (200, 400, 400) ’ 0:09 ’ 0:10 ’ 0:09 ’ 0:10
C (400, 500, 400) ’ 0:09 ’ 0:10 ’ 0:09 ’ 0:10
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values of MH� without coming into conflict with the elec-
troweak precision data, and to large values of tan� without
coming into conflict with unitarity. However, the
large- tan� part is constrained to MH� � 400–500 GeV
by the electroweak precision data, T in particular. This
region roughly corresponds to the decoupling limit. For
set C, there are two disconnected, allowed regions.

The little hierarchy.—We show in Fig. 6 the resulting

ranges in �=
ffiffiffiffi
D

p
, as defined by Eq. (5.5). This is seen to

reach well beyond 3 TeV, in particular, for set B.
Comparing sets of the 2HDM mass parameters it is clear
that, in agreement with our expectations, the maximal

value of the cutoff �=
ffiffiffiffi
D

p
grows with the mass scale of

the 2HDM model. This illustrates our strategy to amelio-
rate the little hierarchy problem by lifting the lowest visible
Higgs mass. As already mentioned, the allowed regions in
this case are very similar to those corresponding to light
dark profiles shown in Figs. 1 and 4. This is consistent with
the fact that the inert sector influences the experimental
constraints only through T which is sensitive to inert
scalar-mass splitting. Since the splitting is of the same
order (although it is larger for the light dark profiles),
therefore, it is not surprising that the allowed regions are

similar. Consequently, if we impose a cut on �=
ffiffiffiffi
D

p ¼
2 TeV we find allowed regions very similar to those found
for the lighter dark profiles; see Figs. 3 and 5.

In general, the heavier noninert Higgs states affect the
amount of dark matter. However, within the range of
parameters explored, their effect can be compensated by
a retuning of the soft mass parameter m�, which for fixed

masses yields a calibration of the trilinear inert-noninert
Higgs coupling �L.

VIII. SUMMARY

We have explored an extension of the inert doublet
model [6–8] (IDM), made by replacing the SM Higgs
doublet sector by a 2-Higgs-doublet model (2HDM) in
order to accommodate CP violation in interactions of
neutral Higgs bosons. This model has four inert-sector
scalars: two neutral, and a pair of charged ones, as well
as three ordinary neutral scalars and an accompanying pair
of charged ones. The latter five are those of the familiar
2HDM. Our motivation here was not only to have CP
violation in the scalar potential, but also to provide a
candidate for dark matter and to ameliorate the little hier-
archy problem by lifting Higgs boson masses (thereby
increasing the cutoff �).

We have estimated the amount of dark matter that is
predicted by the model, adopting the code micrOMEGAs
[14,15], checking all relevant theoretical and experimental
constraints. Solutions were found both for light DM parti-
cles, with a mass around 75 GeV, as well as for heavier
ones, of the order of a few hundred GeV. In both cases, the
splitting between the masses of the charged and the neutral
inert scalars must be small in order to reproduce the right

amount of dark matter. In the case of heavier dark matter
the splitting is tiny implying nearly vanishing contribution
to the T parameter.
As we have noted at the very end of Sec. VII B the

regions allowed by the condition �=
ffiffiffiffi
D

p
> 2 TeV for ligh-

ter and heavier dark matter profiles are similar. This is a
consequence of a very small contribution to T from the
inert sector (because of the small mass splitting). Since the
inert sector influences the experimental constraints only
through T, the allowed regions are similar. This observa-
tion illustrates an important difference between this model
and the original IDM, where the charged inert scalar has to
be considerably heavier than the neutral inert scalars in
order to provide a contribution to T that can compensate a
large negative SM contribution (for a heavy SM Higgs
boson). Here the role of the inert sector is mainly restricted
to providing a candidate for the dark matter, while T can be
made consistent with the data utilizing only the freedom of
the 2HDM sector with negligible contribution from the
inert sector. That freedom was not available in the original
inert model. In our approach the little hierarchy problem is
softened by increasing the Higgs boson masses; this is
possible mainly through the 2HDM sector alone.
In general, and in agreement with our expectations, the

naturality arguments favor heavier 2HDM masses. For

instance, if one requires �=
ffiffiffiffi
D

p
> 2 TeV, then as seen in

the top panel of Fig. 6, only a small region with tan��
2–5 and MH� � 320–380 GeV is allowed for
ðM1;M2; �Þ ¼ ð100; 300; 200Þ GeV. In contrast, for heav-
ier 2HDM masses (the middle panel in the same figure) a
much larger region remains with tan�� 1–40 andMH� �
400–640 GeV. On the other hand, for ðM1;M2; �Þ ¼
ð400; 500; 400Þ GeV (the lower panel) we observe again
a large allowed region, which however in this case is split
into two disconnected regions corresponding to light
(MH� � 300–450 GeV) and heavy (MH� �
550–650 GeV) charged-Higgs bosons. The splitting is re-
lated to partial cancellation between contributions to T
from charged and neutral 2HDM scalars. It is worth noting
that the pictures which emerge here are similar to the result
obtained within the ordinary 2HDM [31] (see also [52]).
As we have already mentioned, that similarity follows from
the small splitting in the inert doublet-sector masses.
For the light DM scenario discussed in Sec. VII A, the

experimental implications (direct detection and production
at the LHC) were addressed in [6,8,9]. For the case of
heavier DM particles, the prospects are more dim, since the
production cross section will be rather small. For a detailed
discussion, see [13,53,54].
As for the CP invariance, we observe that in general, CP

can be substantially violated in regions allowed by the
experimental and theoretical constraints. For instance, it
is seen that the electron electric dipole moment can easily
exceed the allowed value of 10�27½e cm� for appropriate
choices of the mixing angles. We also note that it is easier
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to accommodate CP violation at low values of tan� than at
higher values. For high values of tan�, the allowed values
of ð�1; �2; �3Þ tend to accumulate near the limits whereH2

is odd under CP (�2 ’ 0, �3 ’ �	=2).
It is also worth realizing that the model we discuss here

bears some similarity to the Weinberg model [55] of CP
violation with natural absence of flavor-changing Yukawa
couplings. Both models invoke three doublets, one of
which has no Yukawa couplings while the two others
couple to fermions such that no flavor-changing Yukawa
couplings emerge. However, the important difference is
that here (in order to guarantee stability of the dark matter
candidate) we impose an extra Z2 symmetry (� ! ��)
which remains unbroken after spontaneous symmetry
breaking since h�i ¼ 0. As a consequence, there is no
mixing in the mass matrix between the charged compo-
nents of �1;2 and �, therefore eventually �� is a mass

eigenstate with no Yukawa couplings at all. Then CP
violation in the charged scalar sector is the same as in a
pure 2HDM with Yukawa couplings parametrized by the
CKM matrix alone.
It should be noted that restricting our study to the range

of inert-model parameters satisfying (2.16), rather than
utilizing the full range defined by Eqs. (A16) and (A32),
we are clearly not able to find all allowed domains in the
parameter space. However, a full investigation is techni-
cally much more involved and therefore computationally
more challenging. In order to determine all the quartic
couplings in the 2HDM sector (V12) one has to specify
ðM1;M2; �Þ, tan�, MH� and also the angles ð�1; �2; �3Þ.
To fix the quartic couplings between the 2HDM and the
inert sector contained in V123 one has to know also the inert
mass parameters ðMS;MA;M��Þ and m�. Then for each

point in the parameter space (including angles over which
we scan) both Eqs. (A16) and (A32) must be checked. In
the presence of the large number of free parameters, that
makes the analysis much more complicated and time con-
suming. Also, within the general strategy outlined here, the
calculation of the DM abundance would be much more
complicated, since for that purpose all the parameters must
be simultaneously known. That is indeed necessary as
cross sections for dark matter annihilation depend on the
mixing angles ð�1; �2; �3Þ, masses of the 2HDM scalars
M1,M2,M3 and, of course, also on the inert mass parame-
ters ðMS;MA;M��Þ and m�. A more complete investiga-

tion adopting the general positivity conditions, Eqs. (A16)
and (A32), together with a more precise calculation of the
dark matter abundance will be attempted, and reported on
elsewhere.
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APPENDIX A: POSITIVITY OF THE POTENTIAL

In order to ensure vacuum stability, the potential should
be positive for large values of the fields�1,�2, and �. We
study the general potential

Vð�1;�2;�Þ¼�1

2
ð�y

1�1Þ2þ�2

2
ð�y

2�2Þ2þ
��

2
ð�y�Þ2þ�3ð�y

1�1Þð�y
2�2Þþ�4ð�y

1�2Þð�y
2�1Þþ1

2
½�5ð�y

1�2Þ2þH:c:�

þ�1133ð�y
1�1Þð�y�Þþ�2233ð�y

2�2Þð�y�Þþ�1331ð�y
1�Þð�y�1Þþ�2332ð�y

2�Þð�y�2Þþ1

2
½�1313ð�y

1�Þ2

þH:c:�þ1

2
½�2323ð�y

2�Þ2þH:c:��1

2
fm2

11�
y
1�1þm2

22�
y
2�2þ½m2

12�
y
1�2þH:c:�gþm2

��
y�: (A1)

We start by rewriting the Higgs doublets as

�1 ¼ k�1k�̂1; �2 ¼ k�2k�̂2; � ¼ k�k�̂;
(A2)

where k�ik and k�k are the norms of the spinors, and �̂i

and �̂ are unit spinors. By SUð2Þ invariance, only the
following combinations of fields may appear:

�y
1�1 ¼ k�1k2; �y

2�2 ¼ k�2k2;
�y� ¼ k�k2; �y

2�1 ¼ k�1k 
 k�2kð�̂y
2 
 �̂1Þ;

�y
1�2 ¼ ½�y

2�1��; �y�1 ¼ k�1k 
 k�kð�̂y 
 �̂1Þ;
�y

1� ¼ ½�y�1��; �y�2 ¼ k�2k 
 k�kð�̂y 
 �̂2Þ;
�y

2� ¼ ½�y�2��: (A3)

We let the norms of Eq. (A2) be parametrized as follows:

k�1k ¼ r cos� sin
; k�2k ¼ r sin� sin
;

k�k ¼ r cos
:
(A4)

The complex product between two different unit spinors
will be a complex number with modulus less than or equal
to unity, i.e.

�̂ y
2 
 �̂1 ¼ �1e

i�1 ; �̂y 
 �̂1 ¼ �2e
i�2 ;

�̂y 
 �̂2 ¼ �3e
i�3 :

(A5)

Using this parametrization, we can write

�y
1�1 ¼ r2cos2�sin2
;

�y
2�2 ¼ r2sin2�sin2
;

�y� ¼ r2cos2
;

�y
2�1 ¼ r2 cos� sin�sin2
�1e

i�1 ;

�y
1�2 ¼ r2 cos� sin�sin2
�1e

�i�1 ;

�y�1 ¼ r2 cos� sin
 cos
�2e
i�2 ;

�y
1� ¼ r2 cos� sin
 cos
�2e

�i�2 ;

�y�2 ¼ r2 sin� sin
 cos
�3e
i�3 ;

�y
2� ¼ r2 sin� sin
 cos
�3e

�i�3 ;

(A6)

where r � 0, � 2 ½0; 	=2�, 
 2 ½0; 	=2�, �i 2 ½0; 1�, and
�i 2 ½0; 2	i.
The potential can now be written as

V ¼ r4V4 þ r2V2; (A7)

with only the quartic, V4, part relevant for positivity,

V4 ¼ �1A1 þ �2A2 þ ��A3 þ �3A4 þ �4A5 þ �1133A6

þ �2233A7 þ �1331A8 þ �2332A9 þ Re�5A10

þ Im�5A11 þ Re�1313A12 þ Im�1313A13

þ Re�2323A14 þ Im�2323A15; (A8)

where
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A1 ¼ 1

2
cos4�sin4
; A2 ¼ 1

2
sin4�sin4
; A3 ¼ 1

2
cos4
; A4 ¼ cos2�sin2�sin4
; A5 ¼ �2

1cos
2�sin2�sin4
;

A6 ¼ cos2�sin2
cos2
; A7 ¼ sin2�sin2
cos2
; A8 ¼ �2
2cos

2�sin2
cos2
; A9 ¼ �2
3sin

2�sin2
cos2
;

A10 ¼ �2
1 cosð2�1Þcos2�sin2�sin4
; A11 ¼ �2

1 sinð2�1Þcos2�sin2�sin4
; A12 ¼ �2
2 cosð2�2Þcos2�sin2
cos2
;

A13 ¼ �2
2 sinð2�2Þcos2�sin2
cos2
; A14 ¼ �2

3 cosð2�3Þsin2�sin2
cos2
; A15 ¼ �2
3 sinð2�3Þsin2�sin2
cos2
:

(A9)

The quartic part of the potential can now be written as

V4 ¼ �1

2
cos4�sin4
þ �2

2
sin4�sin4
þ ��

2
cos4
þ �3cos

2�sin2�sin4
þ �1133cos
2�sin2
cos2


þ �2233sin
2�sin2
cos2
þ �2

1½�4 þ Re�5 cosð2�1Þ þ Im�5 sinð2�1Þ�cos2�sin2�sin4

þ �2

2½�1331 þ Re�1313 cosð2�2Þ þ Im�1313 sinð2�2Þ�cos2�sin2
cos2
þ �2
3½�2332 þ Re�2323 cosð2�3Þ

þ Im�2323 sinð2�3Þ�sin2�sin2
cos2
: (A10)

We minimize this expression with respect to �i to arrive at

�V4 ¼ �1

2
cos4�sin4
þ �2

2
sin4�sin4
þ ��

2
cos4
þ �3cos

2�sin2�sin4
þ �1133cos
2�sin2
cos2


þ �2233sin
2�sin2
cos2
þ �2

1ð�4 � j�5jÞcos2�sin2�sin4
þ �2
2ð�1331 � j�1313jÞcos2�sin2
cos2


þ �2
3ð�2332 � j�2323jÞsin2�sin2
cos2
: (A11)

Further, we minimize this expression with respect to �i to
arrive at

~V4 ¼ �1

2
cos4�sin4
þ �2

2
sin4�sin4
þ ��

2
cos4


þ �xcos
2�sin2�sin4
þ �ycos

2�sin2
cos2


þ �zsin
2�sin2
cos2
; (A12)

where

�x ¼ �3 þminð0; �4 � j�5jÞ (A13)

�y ¼ �1133 þminð0; �1331 � j�1313jÞ (A14)

�z ¼ �2233 þminð0; �2332 � j�2323jÞ: (A15)

For the positivity condition to be satisfied, ~V4 must be
positive for all combinations of � 2 ½0; 	=2� and 
 2
½0; 	=2�. This is both a necessary and a sufficient
condition.

1. Boundary points

Some points from the parameter space give us some
rather simple positivity conditions. We now turn our atten-
tion toward these special points.


 ¼ 0 or 
 ¼ 	=2 or � ¼ 0 or � ¼ 	=2.—First we
consider the boundary points in the ð�; 
Þ plane.

~V 4ð
 ¼ 0Þ ¼ ��

2
;

~V4

�

 ¼ 	

2

�
¼ �1

2
cos4�þ �2

2
sin4�þ �xcos

2�sin2�;

~V4ð� ¼ 0Þ ¼ �1

2
sin4
þ ��

2
cos4
þ �ysin

2
cos2
;

~V4

�
� ¼ 	

2

�
¼ �2

2
sin4
þ ��

2
cos4
þ �zsin

2
cos2
:

The last three of these expressions have the same form as
an expression already studied in the 2HDM [20]. Using a
result from there, we end up with the following conditions:

�1 > 0; �2 > 0; �� > 0; �x >� ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
;

�y >�
ffiffiffiffiffiffiffiffiffiffiffi
�1��

q
; �z >�

ffiffiffiffiffiffiffiffiffiffiffi
�2��

q
: (A16)

2. Interior points

What remains is to demand that ~V4 > 0 also in the
interior of the ð�; 
Þ plane. Thus,

�ycos
2�þ �zsin

2� >� 1

2

�
��

tan2

þ ð�1cos

4�þ �2sin
4�

þ 2�xcos
2�sin2�Þtan2


�
:

Maximizing the right-hand side of this inequality with
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respect to 
, we find that the maximum occurs at tan2
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��=ð�1cos

4�þ�2sin
4�þ 2�xcos

2�sin2�Þ
q

. Substituting

this back we arrive at

�ycos
2�þ �zsin

2�

>�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�1cos

4�þ �2sin
4�þ 2�xcos

2�sin2�Þ
q

:

(A17)

We need to solve this inequality subject to the constraints
given in (A16). Let us distinguish between four different
cases:

Case (a) �y � 0 and �z � 0.—The inequality (A17) is

trivially satisfied.
Case (b) �y > 0 and �z < 0.—The left-hand side of

(A17) can be both positive and negative. See details in
Sec. A 3.

Case (c) �y < 0 and �z > 0.—The left-hand side of

(A17) can be both positive and negative. See details in
Sec. A 3. Should be similar to case (b) with �y and �z

interchanged.
Case (d) (�y 	 0 ^ �z < 0) or (�y < 0 ^ �z 	 0).—We

can now square both sides of the inequality and reverse the
inequality sign to get

�2
ycos

4�þ 2�y�zcos
2�sin2�þ �2

zsin
4� < ��ð�1cos

4�

þ �2sin
4�þ 2�xcos

2�sin2�Þ
and finally

ð���1 � �2
yÞcos4�þ ð���2 � �2

zÞsin4�þ 2ð���x

� �y�zÞcos2�sin2� > 0

which is positive definite if

���x � �y�z >�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð���1 � �2

yÞð���2 � �2
zÞ

q
: (A18)

3. A detailed study of positivity in cases (b) and (c)

We consider the inequality (A17)

�ycos
2�þ �zsin

2�

>�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�1cos

4�þ �2sin
4�þ 2�xcos

2�sin2�Þ
q

:

(A19)

Let us introduce x ¼ tan2� and transform the inequality
into

�y þ �zx >�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�1 þ �2x

2 þ 2�xxÞ
q

; (A20)

which must be satisfied for x > 0. In order to analyze this
we will study the solutions of the equation

�y þ �zx ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�1 þ �2x

2 þ 2�xxÞ
q

: (A21)

Possible solutions of this equation are given by

x1;2 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
; (A22)

where a ¼ ���2 � �2
z , b ¼ 2ð���x � �y�zÞ and c ¼

���1 � �2
y. These possible solutions are obtained by

squaring (A21). However, in doing this we may introduce
false solutions, that is, solutions of

�y þ �zx ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�1 þ �2x

2 þ 2�xxÞ
q

: (A23)

In order for (A20) to be satisfied we must demand that
(A21) does not have any positive real-valued solutions
when subject to the constraints already obtained in
(A16). That is:

b2 � 4ac � 0 ^ ½ðx1 > 0 ^ �y þ �zx1 < 0Þ _ ðx2 > 0 ^ �y þ �zx2 < 0Þ�; (A24)

where the overline (bar) denotes negation. This expression
must be true in order for positivity to be satisfied. The
possible solutions read:

Case (b) �y > 0 and �z < 0.—In this case a > 0, while

c can be both positive, zero or negative. We have to
distinguish between these cases. The results are�

c > 0 ^
�
a � c�2

z

�2
y

_ b >�2
ffiffiffiffiffiffi
ac

p ��
_ c 	 0; (A25)

equivalent to

½���1 > �2
y ^ ð�2�

2
y � �1�

2
z _ ���x � �y�z

>�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð���1 � �2

yÞð���2 � �2
zÞ

q
Þ� _ ���1 	 �2

y:

(A26)

Case (c) �y < 0 and �z > 0.—In this case c > 0, while a

can be both positive, zero or negative. We need to distin-

guish between these cases. The results are�
a > 0 ^

�
c � a�2

y

�2
z

_ b >�2
ffiffiffiffiffiffi
ac

p ��
_ a 	 0; (A27)

equivalent to

½���2 > �2
z ^ ð�1�

2
z � �2�

2
y _ ���x � �y�z

>�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð���1 � �2

yÞð���2 � �2
zÞ

q
Þ� _ ���2 	 �2

z

(A28)

Combining the results from cases (a)–(d) subject to the
constraints of (A16) there are remarkable(!) simplifica-
tions. We end up withffiffiffiffiffiffi
�1

p
�z þ

ffiffiffiffiffiffi
�2

p
�y � 0 _ ���x � �y�z

>�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð���1 � �2

yÞð���2 � �2
zÞ

q
(A29)
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as an additional constraint to the ones listed in (A16), or
expressed in a more symmetric formffiffiffiffiffiffi
��

q
�x þ

ffiffiffiffiffiffi
�1

p
�z þ

ffiffiffiffiffiffi
�2

p
�y � 0 _ ���

2
x þ �1�

2
z þ �2�

2
y

� ���1�2 � 2�x�y�z < 0:

(A30)

4. The dark democracy

In the so-called dark democracy (2.14), �y ¼ �z and

(A17) simplifies to

�y >�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�1cos

4�þ �2sin
4�þ 2�xcos

2�sin2�Þ
q

(A31)

which is satisfied whenever

�y � 0 _ ð���x � �2
y >�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð���1 � �2

yÞð���2 � �2
yÞ

q
Þ:

(A32)

This constraint combined with the inequalities from (A16)
forms a necessary and sufficient condition to guarantee
positivity of the potential.

APPENDIX B: CP CONSERVATION

In the general case, the mixing of the different weak
neutral states is described by the angles f�1; �2; �3g
present in the rotation matrix R. There are three simple
limits of no CP violation, namely, when either H1, H2, or
H3 is odd under CP. These limits can all be defined in
terms of �2 and �3, as illustrated in Fig. 1 of [17]: H1 is
odd when �2 ¼ �	=2; H2 is odd when �2 ¼ 0 and �3 ¼
�	=2; whereas H3 is odd when �2 ¼ �3 ¼ 0. Away from
these limits, the model in general violates CP. (Exceptions
will be discussed below.)

We display in Figs. 7 and 8 how the allowed regions of
the � parameter space are distributed for different choices
of the mass parameters and different cuts on tan�. These

plots are obtained by collecting all points for which solu-
tions (in terms of tan�,MH� , �1, �2, �3) are found during
a particular scan (indicated by the parameters at the top),
and binning them in the �i variables. In these figures, we
also indicate (yellow plane and green lines) limits where
there is no CP violation. These figures show that in gen-
eral, it is much easier to accommodate CP violation at low
values of tan� than at higher values.
In addition to the CP-conserving limits mentioned

above there exist also other regions in the parameter space
which imply CP invariance. In the following we will
identify those regions in terms of the scalar masses, tan�
and�i. In this process wewill make repeated use of the fol-
lowing identities that follow from the orthogonality of R:

M 2
11 ¼ R2

11ðM2
1 �M2

2Þ þ R2
31ðM2

3 �M2
2Þ þM2

2

M2
22 ¼ R2

12ðM2
1 �M2

2Þ þ R2
32ðM2

3 �M2
2Þ þM2

2

M2
33 ¼ R2

13ðM2
1 �M2

2Þ þ R2
33ðM2

3 �M2
2Þ þM2

2

M2
12 ¼ R11R12ðM2

1 �M2
2Þ þ R31R32ðM2

3 �M2
2Þ

M2
13 ¼ R11R13ðM2

1 �M2
2Þ þ R31R33ðM2

3 �M2
2Þ

M2
23 ¼ R12R13ðM2

1 �M2
2Þ þ R32R33ðM2

3 �M2
2Þ:

In addition we order the masses so that M1 	 M2 	 M3.

1. Im�5 ¼ 0

Whenever Im�5 ¼ 0 we know that CP is conserved. To
see when this happens, we note that

� v2

2
s� Im�5 ¼ M2

13

¼ R11R13ðM2
1 �M2

2Þ þ R31R33ðM2
3 �M2

2Þ

�v2

2
c� Im�5 ¼ M2

23

¼ R12R13ðM2
1 �M2

2Þ þ R32R33ðM2
3 �M2

2Þ:
(B1)
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FIG. 7 (color online). Populated regions of � space. Left: tan�< 1. Right: tan�> 3. Inert-sector masses: (75, 110, 112) GeV.
2HDM-sector masses: ðM1;M2; �Þ ¼ ð100; 300; 200Þ GeV. Green lines at �2 ¼ 0 (and �3 ¼ 	=2 or 0) show limits of no CP
violation, with either H2 or H3 being odd under CP. The limit �2 ¼ 	=2 (yellow plane) indicates where H1 is odd. There is a
corresponding one at �2 ¼ �	=2 (not shown).
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BothM2
13 andM

2
23 must vanish in order to get Im�5 ¼ 0.

(If only one of these quantities vanishes while the other is
nonzero, that would correspond to � ¼ 0 or � ¼ 	=2.)
That happens in the following cases:

(1) Full mass degeneracy M1 ¼ M2 ¼ M3.
(2) Lower mass degeneracy M1 ¼ M2 <M3, when one

of the following conditions is satisfied
(a) �2 ¼ 	=2 or �3 ¼ 	=2. (This corresponds to

R33 ¼ 0.)
(b) �2 ¼ 0 and �3 ¼ 0. (This corresponds to R31 ¼ 0

and R32 ¼ 0.)
(3) Higher mass degeneracyM1 <M2 ¼ M3, when one

of the following conditions is satisfied:
(a) �2 ¼ 0. (This corresponds to R13 ¼ 0.)
(b) �2 ¼ 	=2. (This corresponds to R11 ¼ 0 and R12 ¼

0.)
(4) Nondegenerate masses M1 <M2 <M3, when one

of the following conditions is satisfied:
(a) �2 ¼ 	=2. (This corresponds to R11 ¼ 0 and R12 ¼

0 and R33 ¼ 0.)
(b) �2 ¼ 0 and �3 ¼ 0. (This corresponds to R13 ¼ 0

and R31 ¼ 0 and R32 ¼ 0.)
(c) �2 ¼ 0 and �3 ¼ 	=2. (This corresponds to R13 ¼

0 and R33 ¼ 0.)

2. Partially degenerate masses

We have seen in the previous section that full mass
degeneracy implies Im�5 ¼ 0. However, when Im�5 �
0, partial mass degeneracy is still possible in some cases.
We will point out those cases here. We begin by noting that

M 2
13 � tan�M2

23 ¼ 0

or, equivalently

R13ðR11 � R12 tan�ÞðM2
1 �M2

2Þ
þ R33ðR31 � R32 tan�ÞðM2

3 �M2
2Þ ¼ 0: (B2)

(i) Lower mass degeneracy M1 ¼ M2 <M3 is allowed
when R31 � R32 tan� ¼ 0. (Excluding R31 ¼ R32 ¼

0 which would imply Im�5 ¼ 0 as explained in the
previous subsection.)

(ii) Higher mass degeneracy M1 <M2 ¼ M3 is allowed
when R11 � R12 tan� ¼ 0. (Excluding R11 ¼ R12 ¼
0 which would imply Im�5 ¼ 0 as explained in the
previous subsection.)

3. �1 ¼ �2 and tan� ¼ 1

We know that even when Im�5 � 0we can have cases of
CP conservation. One such case is when �1 ¼ �2 and
tan� ¼ 1.

½�1 � �2�tan�¼1 ¼ 2

v2
ðM2

11 �M2
22Þ

¼ 2

v2
½ðR2

11 � R2
12ÞðM2

1 �M2
2Þ

þ ðR2
31 � R2

32ÞðM2
3 �M2

2Þ�: (B3)

This expression must be zero subject to the constraint (B2)
in order to have CP conservation. Thus, when Im�5 � 0
and tan� ¼ 1 we have CP conservation in the following
cases:
(1) Lower mass degeneracy M1 ¼ M2 <M3 when

R31 ¼ R32 � 0.
(2) Higher mass degeneracy M1 <M2 ¼ M3 when

R11 ¼ R12 � 0.
(3) Nondegenerate massesM1 <M2 <M3 in one of the

following cases:
(a) When R11 ¼ R12 and R31 ¼ R32. (Excluding the

cases which would imply Im�5 ¼ 0.) This corre-
sponds to �1 ¼ 	=4, �3 ¼ 0, and �2 arbitrary
(but not 0 or 	=2).

(b) When R11 ¼ R12 and R33 ¼ 0 (this implies R31 ¼
�R32). (Excluding the cases which would imply
Im�5 ¼ 0.) This corresponds to �1 ¼ 	=4, �3 ¼
	=2, and �2 arbitrary (but not 0 or 	=2).

(c) When R31 ¼ R32 and R13 ¼ 0 (this implies R11 ¼
�R12). (Excluding the cases which would imply
Im�5 ¼ 0.) This corresponds to �1 ¼ �	=4, �2 ¼
0, and �3 arbitrary (but not 0 or 	=2).
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FIG. 8 (color online). Populated regions of � space. Similar to Fig. 7 for inert-sector masses: (77, 110, 112) GeV. 2HDM-sector
masses: ðM1;M2; �Þ ¼ ð400; 500; 400Þ GeV.
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4. �1 ¼ �2 and ð�1 � �3 � �4Þ2 ¼ j�5j2
Finally, when Im�5 � 0 we also have CP conservation

when �1 ¼ �2 and ð�1 � �3 � �4Þ2 ¼ j�5j2. In order to
see what this corresponds to, we start by solving the
equation �1 ¼ �2 for the parameter �. We find

� ¼ s2�M
2
11 � c2�M

2
22

v2ðs2� � c2�Þ
(B4)

when �1 ¼ �2. Furthermore, we find that

ð�1 � �3 � �4Þ2 � j�5j2

¼
�
1

c2�

�
M2

11

v2
� �s2�

�
� M2

12

v2s�c�
�M2

33

v2

�
2

�
�
M2

33

v2
� �

�
2 � 4

v4
½ðM2

13Þ2 þ ðM2
23Þ2�: (B5)

By substituting the expression for � which is valid when
�1 ¼ �2, we arrive at

½ð�1 ��3 ��4Þ2 � j�5j2��1¼�2

¼ 1

v4t2�ðt2� � 1Þ ft
2
�ð1þ t2�ÞðM2

22 �M2
11ÞðM2

22 þM2
11

� 2M2
33Þ þ 2t3�ð1þ t2�ÞðM2

33 �M2
22ÞM2

12

� 2t�ð1þ t2�ÞðM2
33 �M2

11ÞM2
12 þ ðt2� � 1Þð1þ t2�Þ2

� ðM2
12Þ2 � 4t2�ðt2� � 1Þ½ðM2

13Þ2 þ ðM2
23Þ2�g:

After substituting the mass matrix elements into this ex-
pression we get

½ð�1 � �3 � �4Þ2 � j�5j2��1¼�2
¼ ðM2

3 �M2
2Þ2ðR31 � t�R32Þ

v4t2�ð1� t2�Þ
fð1þ t2�ÞðR31 þ t�R32ÞðR32 � t�R31Þ2

þ 2t�R
2
33½ðR31ðt3� � 3t�Þ þ R32ð1� 3t2�Þ�g þ

ðM2
1 �M2

2Þ2ðR11 � t�R12Þ
v4t2�ð1� t2�Þ

� fð1þ t2�ÞðR11 þ t�R12ÞðR12 � t�R11Þ2 þ 2t�R
2
13½ðR11ðt3� � 3t�Þ þ R12ð1� 3t2�Þ�g

þ 2ðM2
1 �M2

2ÞðM2
3 �M2

2Þ
v4t2�ð1� t2�Þ

fð1þ t2�ÞðR12 � t�R11ÞðR32 � t�R31ÞðR11R31 � t2�R12R32Þ

þ t�ð1þ t2�ÞR2
13½t�ðR2

32 � R2
31Þ þ R31R32ð1� t2�Þ� þ t�ð1þ t2�ÞR2

33½t�ðR2
12 � R2

11Þ
þ R11R12ð1� t2�Þ� � 4t2�ð1� t2�ÞR13R33ðR11R31 þ R12R32Þg: (B6)

This expression must be zero subject to the constraint (B2)
in order to have CP conservation. Thus, when Im�5 � 0
and tan� � 1 we have CP conservation in the following
cases:

(i) Lower mass degeneracy M1 ¼ M2 <M3 when
R31 ¼ tan�R32 � 0 and �2 ¼ R2

33M
2
2 þ ðR2

31 þ
R2
32ÞM2

3.

(ii) Higher mass degeneracy M1 <M2 ¼ M3 when
R11 ¼ tan�R12 � 0 and �2 ¼ R2

13M
2
2 þ ðR2

11 þ
R2
12ÞM2

1.
(iii) The case of nondegenerate masses M1 <M2 <M3

yields several possibilities for CP conservation. To
see this we rewrite (B2) as

M2
3 �M2

2

M2
2 �M2

1

¼ R13ðR11 � tan�R12Þ
R33ðR31 � tan�R32Þ ; (B7)

which must be a positive quantity in the case of
nondegenerate masses. Solving this equation for
M2

3 �M2
2 and substituting into (B6) we end up with

ðM2
2 �M2

1Þ2ðR31 þ t�R32Þ
v4R2

33ðR31 � t�R32Þ
ð1þ t2�Þ
t2�ð1� t2�Þ

� ðR11 � t�R12ÞðR11 þ t�R12ÞðR21 � t�R22Þ
� ðR21 þ t�R22Þ ¼ 0: (B8)

The solutions of this equation that yield CP conser-
vation are those that also imply positive values of
ðM2

3 �M2
2Þ=ðM2

2 �M2
1Þ. They are

(1) R11 þ t�R12 ¼ 0

(2) R21 þ t�R22 ¼ 0

(3) R31 þ t�R32 ¼ 0

provided

R13ðR11 � tan�R12Þ
R33ðR31 � tan�R32Þ

> 0: (B9)

5. CP conservation and mass degeneracy

Summarizing the results presented in this Appendix in
terms of mass degeneracy we see the following:
(1) When all three masses are degenerate, CP is con-

served because Im�5 ¼ 0. For this to happen the
two input masses must be equal, M1 ¼ M2. In most
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cases [whenR33ðR31 � R32 tan�Þ � 0] this will lead
to M3 being equal to M1 and M2. If R33ðR31 �
R32 tan�Þ ¼ 0 one cannot determine M3 from the
input parameters, but it can be arbitrarily chosen
equal to the two other masses.

(2) When there is only lower mass degeneracy, M1 ¼
M2 and R33ðR31 � R32 tan�Þ ¼ 0 one cannot deter-
mine M3 from the input parameters, but it can then
be arbitrarily chosen to be higher than the two other
masses; M1 ¼ M2 <M3. CP is then conserved if
either:

(a) R33 ¼ 0 or R31 ¼ R32 ¼ 0,
(b) R31 ¼ R32 � 0 and tan� ¼ 1,
(c) R31 ¼ R32 tan� � 0 and tan� � 1 and �2 ¼

R2
33M

2
2 þ ðR2

31 þ R2
32ÞM2

3.

(3) When there is only higher mass degeneracy, CP is
conserved in some special cases. For this to happen
we must first choose M1 <M2 and R13ðR11 �
R12 tan�Þ ¼ 0. Then, if R33ðR31 � R32 tan�Þ � 0,
M2 ¼ M3. If R33ðR31 � R32 tan�Þ ¼ 0, one cannot
determine M3 from the input parameters, but it can
be arbitrarily chosen to equal M2; M1 <M2 ¼ M3.
CP is then conserved if either:

(a) R13 ¼ 0 or R11 ¼ R12 ¼ 0,
(b) R11 ¼ R12 � 0 and tan� ¼ 1,
(c) R11 ¼ R12 tan� � 0 and tan� � 1 and �2 ¼

R2
13M

2
2 þ ðR2

11 þ R2
12ÞM2

1.

(4) There are also cases of CP conservation in the mass
nondegenerate case M1 <M2 <M3. For this to
happen we must first choose M1 <M2 and �1, �2,
�3, and tan� in such a way that M3 >M2 or in a
way such that M3 cannot be determined from the
input parameters. ThenM3 can be arbitrarily chosen
to be higher thanM2. In both casesM1 <M2 <M3.
CP is then conserved if either:

(a) R11 ¼ R12 ¼ R33 ¼ 0,
(b) R31 ¼ R32 ¼ R13 ¼ 0,
(c) R13 ¼ R33 ¼ 0,
(d) R11 ¼ R12 and R31 ¼ R32 (excluding the three cases

already mentioned above) and tan� ¼ 1,
(e) R11 ¼ R12 � 0 and R33 ¼ 0 and tan� ¼ 1,
(f) R31 ¼ R32 � 0 and R13 ¼ 0 and tan� ¼ 1,
(g) R11 þ R12 tan� ¼ 0 or R21 þ R22 tan� ¼ 0 or

R31 þ R32 tan� ¼ 0 (excluding the three first cases
mentioned above) and tan� � 1, and �2 takes on
special values.

APPENDIX C: DIFFERENT BASIS

For the purpose of determining the electroweak parame-
ters T and S in Sec. VI, we need to relate the rotation
matrix R defined by (2.3) in [20] and the O defined by (59)
in [25]. First, we find the U and V (in order to emphasize
that the inert doublet is not yet included, we here adopt a
subscript 2HDM) of [25] in the basis adopted in [20],
where the doublets are denoted by �i [see Eq. (2.6)].
For �i defined in the basis in which only �1 has a

nonzero VEV (the ‘‘Higgs basis’’) we have

�1 ¼
Gþ

ðvþH þ iG0Þ= ffiffiffi
2

p
 !

�2 ¼
Hþ

ðRþ iIÞ= ffiffiffi
2

p
 !

�3 ¼
�þ

ðSþ iAÞ= ffiffiffi
2

p
 !

: (C1)

The following transformation relates �i and �j:

�1

�2

� �
¼ c� s�

�s� c�

� �
�1

�2

� �
; (C2)

with �3 ¼ �. Since in (C1) the charged-Higgs bosons are
mass eigenstates (according to (15) in [25]) we obtain

U2HDM ¼ c� s�
�s� c�

� �
T

: (C3)

The matrix V2HDM is defined through (see Eq. (60) in [25])

�1 þ i�1

�2 þ i�2

� �
¼ V2HDM

G0

H1

H2

H3

0
BBB@

1
CCCA; (C4)

where Hi are mass eigenstates. The rotation matrix R is
defined by Hi ¼ Rij�j [see Eq. (2.7)]. Invoking the rela-

tion

�1

�2

� �
¼ c� �s�

s� c�

� �
G0

�3

� �
(C5)

and replacing in the left-hand side of (C4) �1;2 and �1;2 by

the mass eigenstatesG0 andHj, then V2HDM is identified as

V2HDM¼ ic� R11� is�R13 R21� is�R23 R31� is�R33

is� R12þ ic�R13 R22þ ic�R23 R32þ ic�R33

� �
:

(C6)
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