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We study nucleon-to-delta electromagnetic transition form factors and relations between them within

the framework of the holographic dual model of QCD proposed by Sakai and Sugimoto. In this setup,

baryons appear as topological solitons of the five-dimensional holographic gauge theory that describes a

tower of mesons and their interactions. We find a relativistic extension of the nucleon-delta-vector meson

interaction vertices and use these to calculate transition form factors from holographic QCD. We observe

that at low momentum transfer, magnetic dipole, electric and Coulomb quadrupole form factors, and their

ratios follow the patterns expected in the large Nc limit. Our results at this approximation are in reasonable

agreement with experiment.
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I. INTRODUCTION

As is well known, �ð1232Þ resonance is the first excited
state of the nucleon and plays an important role in strong
interaction physics. Experimentally, �’s are produced in
scattering pions or electron beams off a nucleon target. The
�ð1232Þ has isospin 3=2 and therefore comes in four
different charge states: �þþ, �þ, �0, and �� with ap-
proximately the same mass and width. The spin of the
�ð1232Þ is also 3=2, and it is the lightest known particle
with such a spin. It appears that it decays via� ! N�with
99% branching ratio [1], and only less than 1% to the total
decay width is coming from the electromagnetic (EM)
channel (� ! N�). This EM �N� transition is predomi-
nantly of the magnetic dipole (M1) type.

With the lack of complete theoretical control over non-
perturbative low energy QCD, at present, one should ex-
plore various complementary techniques to gain more
understanding on nonperturbative QCD phenomena. The
large Nc limit is one such attempt that has been pursued for
some time, and it was revived a decade ago by a proposal
that in conjunction with the idea of holography, the large
Nc QCD in the strong coupling regime may be described
by a weakly coupled dual five-dimensional (5D) model,
with the additional fifth direction playing the role of the
energy scale [2]. Although the precise dual model of large
Nc QCD has not been found, several approximate models
were proposed applying both so-called ‘‘top-down’’ [3]
and ‘‘bottom-up’’ [4] approaches. The study of hadronic
form factors in these models of holographic QCD [3–14]
allowed us to gain a confidence that the holographic QCD
approach can be a useful complementary tool in predicting

the low energy behavior of QCD at least in the large Nc

limit.
In this work, our goal is to go one step further and

investigate the ��N ! � transition form factors in the
framework of holographic QCD. We will work in the
top-down model proposed by Sakai and Sugimoto [3].
Baryons in this model have been studied recently [13–
20] and our methods are based on some of these develop-
ments. In particular, we start our analysis by considering
the nonrelativistic nucleon-delta-vector meson vertices
found by Park-Yi [17], and for completeness also discuss
the related approach by Hashimoto-Sakai-Sugimoto [11].
Using the nonrelativistic result in Ref. [17], we find a

relativistic generalization of the nucleon-delta-vector me-
son vertex which is required for consistent treatment of
transition form factors. This in turn is essential for com-
parison of the model predictions for nucleon-delta transi-
tion form factors with experiment. The knowledge of these
form factors is proven to be an important and complex
check for any model of strong interactions. Thus, we would
like to investigate what holographic QCD can tell us about
this process and how well its predictions agree with
experiment.
Since the virtual photon has three polarizations, the

��N ! � transition should be in general described by
three independent form factors. These three form factors
are related to the magnetic dipole (M1), electric (E2), and
Coulomb (C2) quadrupole types of transitions. The �N�
transition was measured in the pion photoproduction and
electroproduction reactions in the �-resonance energy re-
gion. The E2 and C2 transitions were found to be relatively
small but nonzero at moderate momentum transfers Q2,
with the ratios REM ¼ E2=M1 and RSM ¼ C2=M1 being at
the level of a few percent. The smallness of these ratios
seems to have a purely nonperturbative origin. Indeed, the
perturbative QCD studies [21] predict the same strength for
E2 and M1 transitions at asymptotically large Q2, while
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experimentally, the E2=M1 ratio is negative and very close
to zero for energies up to Q2 � 4 GeV2 [22].

The smallness of the E2=M1 ratio is a very well-known
prediction of the quark model, where the N ! � transition
is described by a spin flip of a quark in the s-wave state,
which in the �N� case leads to the M1 type of transition.
Any d-wave admixture in the wave function of � would
allow for the E2 and C2 quadrupole transitions. Therefore,
by measuring these transitions, one is able to observe the
presence of the d-wave components and, hence, quantify to
which extent the nucleon or the � wave function deviates
from the spherical shape.

Within the nonrelativistic SU(6) quark model it was
shown that E2 is zero [23] provided that quarks have
zero orbital angular momentum. Small values for E2=M1
in the regionQ2 < 4 GeV2 were obtained in the relativistic
quark model, see e.g. Ref. [24]. In the large Nc limit of
QCD, it was shown that the E2=M1 ratio is of order
Oð1=N2

cÞ [25] without any assumption about the quark
orbital angular momentum or intrinsic deformation of the
baryon. We will show below that the same features can be
also reproduced from the holographic QCD.

There have been studies on the ��N ! � transition
form factors using other methods, for example, the local
quark-hadron duality approach motivated by QCD sum
rules [26] and the framework of the light-cone sum rules
in [27]. Recent lattice calculations [28] of the N� transi-
tion form factors up to 1:5 GeV2 give small negative values
for the ratio E2=M1. All these results provide strong
evidence that the observed small value of E2=M1 has a
purely nonperturbative origin. This is why we think that the
application of the holographic QCD may shed more light
on our understanding of this phenomenon, as it captures
both nonperturbative and large Nc features. Some of the
reviews describing various aspects of the �N� transition
can be found in [29].

The paper is organized as follows. In Sec. II, we briefly
review the holographic model proposed by Sakai and
Sugimoto [3], and discuss how baryons are described in
the model. Instead of going into the details of this con-
struction that are well described in Refs. [3,5], we only
outline the five-dimensional effective action that emerges
from the model and the field decomposition which are of
importance for our further discussions. We then review the
primary results in Ref. [17], where nucleons and delta
baryons as well as their interactions with the vector mesons
are studied within the nonrelativistic formalism. This will
be our starting point of the subsequent analysis. In Sec. III,
we explore the holographic vector meson dominance fea-
ture that emerges from the holographic QCD. In the origin
of this lies the observation that there exists a basis for the
vector meson fields in which the external electromagnetic
field interacts only with vector meson fields, linearly with-
out kinetic mixing. As a result, we end up with a very
convenient framework to perform tree-level calculations.

In Sec. IV, we outline similar approaches for describing
baryons in the Sakai-Sugimoto model (other than
Ref. [17]). For completeness, we also study and compare
the dependence of some of the main results, when applying
these alternative approaches.
In Sec. V, we propose a relativistic generalization for the

N�vðnÞ vertex that is required to obtain relativistic tran-
sition form factors. Since our purpose is to perform tree-
level calculations, we avoid all problems associated with
the higher-spin fermions. Without concerning what is the
appropriate 5D relativistic formulation for the spin-3=2
fermions, we simply explore the expectation that after
integrating over the holographic fifth direction Z, the the-
ory should effectively become a 4D relativistic theory of
spin-3=2 particles, for which Rarita-Schwinger formalism
can be implemented. This in turn should reduce to a non-

relativistic theory with N�vðnÞ vertex that we started with.
By considering all possible relativistic operators consistent
with 4D symmetries, we eventually find a unique relativ-
istic operator which satisfies these requirements, and write
down a 4D relativistic Lagrangian that correctly describes

the N�vðnÞ vertices, up to possible subleading terms of
order Oð1=NcÞ.
In Sec. VI, after giving a general formalism for the

interaction vertex and defining the relevant form factors,
together with their ratios that are of importance in com-
parison with experiments, we present our results for the
�N� transition form factors from the holographic QCD.
We observe that magnetic dipole, electric, and Coulomb
quadrupole form factors all depend on a single holographic
form factor. Similar observation was also made in
Ref. [11]. This leads to interesting consequences that are
in accord with the expected behavior in the large Nc limit.
We also briefly discuss some other observables of interest.
We conclude by summarizing our results and pointing out
some directions for further development.

II. PRELIMINARIES

We briefly outline the holographic model proposed by
Sakai and Sugimoto in Ref. [3] in order to establish our
notations and conventions that we are going to use through-
out this paper. Although we give a very short description of
the original construction, we stress that practical readers
can simply start from the resulting 5D gauge theory given
in (1) and (2), without referring to the details of the
construction. We will also make a few comments about
the holographic treatment of baryons and conclude by
describing the nonrelativistic nucleon-�-vector meson ver-
tex obtained originally in Ref. [17].

A. Model of Sakai and Sugimoto

The Sakai-Sugimoto model is constructed by placing

probe Nf D8 and D8-branes in the S1 compactified Nc

D4-brane background of type IIA string theory. In the
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D-brane picture, the supersymmetry on a D4 brane is
broken by imposing an antiperiodic boundary conditions
on fermions along the S1 circle. As a result, for energies
lower than the compactification scale, we are effectively
left with the 4D pure SUðNcÞ gauge theory. In accordance
with the basics of AdS/CFT [2], in the large Nc limit, the
theory describing Nc coincident D4 branes is expected to
be dual to a supergravity theory in a curved background
with flux obtained by solving type IIA supergravity.

Working in the probe approximation, that is when
Nf=Nc � 1, one can ignore the backreaction of D8 and

D8 branes embedded in the D4-brane background. The

introduction ofD8 andD8 branes supports the existence of
Nf massless flavors of quarks. In this model, quarks of left-

and right-handed chiralities appear from D8�D4 and

D8�D4 strings, respectively. This construction aims to
reproduce large Nc QCD with Nf massless quarks. The

chiral UðNfÞL �UðNfÞR symmetry group of QCD

emerges from the UðNfÞL �UðNfÞR gauge theory living

on the probe D8 and D8 branes. One expects that the

dynamics of this gauge theory, living on the D8 and D8
branes, holographically describes the chiral dynamics of
the large Nc QCD with massless quarks.

Geometrically, the chiral UðNfÞL �UðNfÞR symmetry

of QCD is spontaneously broken to the diagonal subgroup

UðNfÞV due to the ‘‘merging’’ of these D8 and D8 branes

in the background of D4 branes. In simple terms, the
resulting configuration can be viewed as a stack of Nf

D8 branes continuously connecting asymptotic regions of

the original D8 and D8 branes. The Nambu-Goldstone
bosons of the broken chiral symmetry arise from the
Wilson line that connects these two asymptotically sepa-
rated regions on the D8 brane. Other modes on the D8
branes correspond to a tower of vector and axial-vector
mesons, whose interactions among themselves are com-
pletely determined from the theory describing D8 branes.

The resulting 5D theory on the D8 branes is a UðNfÞ
non-Abelian gauge theory with a Chern-Simons (CS) term
in a curved background metric. In addition to the usual 4D
Minkowski spacetime coordinates, there is the holographic
dimension Z, that ranges from �1 to þ1. The global
UðNfÞL and UðNfÞR chiral symmetries of QCD reside at

the boundaries Z ¼ þ1 and Z ¼ �1, respectively. More
precisely, gauge fields on these boundaries only couple to
the left or right chiral currents of QCD. The action of this
5D gauge theory consists of a gauge-kinetic term, that can
be written as

SD8 ¼ �

4

�
f�
MKK

�
2 Z

d4xdZTr

�
� 1

2
ð1þ Z2Þ�1=3F��F

��

þM2
KKð1þ Z2ÞF�ZF

�
Z

�
; (1)

and the Chern-Simons term,

SCS ¼ Nc

24�2

Z
R4�Z

Tr

�
AF2 þ i

2
A3F� 1

10
A5

�
; (2)

where A ¼ A�dx
� þ AzdZ, and the metric is chosen to be

mostly negative. From what follows, we will focus on the
case with only two flavors Nf ¼ 2 that is sufficient to our

present purposes.
The non-Abelian gauge fields AMðx�; ZÞ contain all

information about the pion, vector, and axial-vector me-
sons. More precisely, the 5D gauge field AM can be mode
expanded in the AZ ¼ 0 gauge as

A�ðx; ZÞ ¼ � 1

f�
@��ðxÞc 0ðZÞ þ

X
n�1

BðnÞ
� ðxÞc nðZÞ

þ � � � ; (3)

where c 0ðZÞ ¼ 2
� arctanðZÞ [30], and fc nðzÞgn�1 are or-

thonormal eigenfunctions, satisfying

K1=3@ZðK@Zc nÞ ¼ � m2
n

M2
KK

c n; c nðZ ! �1Þ ¼ 0;

(4)

with K ¼ 1þ Z2 and are normalized as

�

4

�
f�
MKK

�
2 Z þ1

�1
dZK�1=3c nc m ¼ �mn: (5)

The 4D fields �ðxÞ and BðnÞ
� ðxÞ describe pions and spin-1

mesons. For odd integers (2n� 1), Bð2n�1Þ
� 	 vðnÞ

� describe

vector mesons, while Bð2nÞ
� 	 aðnÞ� describe axial-vector

mesons [31]. Inserting the field expansion from Eq. (3)
into the action (1) and (2), we get a 4D Lagrangian that
describes the dynamics of pions and tower of vector and
axial-vector mesons. The theory has a unique scale MKK,
the popular choice of which isMKK ¼ 0:949 GeV, chosen
to reproduce the experimental �-meson mass.

B. Holographic baryons

Besides mesons, the present holographic model is also
able to incorporate baryons, which appear in a way quite
similar to the Skyrmion in 4D [32]. In the holographic 5D
theory (1), we have topological solitons along the spatial
Euclidean four dimensions ð ~x; ZÞ, whose topological
charges are determined by the second Chern number of
the gauge potential

B ¼ 1

8�2

Z
R3�Z

TrðF ^ FÞ: (6)

In fact this topological charge is related to the usual
Skyrmion number of pions upon 4D interpretation (3),
which supports the identification of these solitons as bary-
ons [33].
As the energy of the baryon is minimized at Z ¼ 0, due

to the specific form of the action (1), it localizes at this
position. In fact, the size of this soliton baryon naively
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tends to shrink to zero by the same reason. From the gauge-
kinetic action (1), it follows that the mass of the soliton
(MB) with B ¼ 1, which is localized at Z ¼ 0 and has zero
size would be

M0
B ¼ 4�2 �

2

�
f�
MKK

�
2
MKK: (7)

If the size of the soliton is perturbed by �, then the increase
in mass is �MB � �2. This suggests that it would be
energetically more favorable for the soliton to stay local-
ized at Z ¼ 0 with zero size.

However, the presence of the 5D Chern-Simons term (2)
induces an additional electric charge to the topological
charge (6), whose electrostatic self-energy (� 1=�2) com-
pensates the shrinking tendency. As a result, the baryon
acquires a stable and finite size [14–16]. Note that the
soliton profile should be much like the profile of the
instanton in Yang-Mills theory, since the equations that
describe this soliton are similar to those of the Euclidean
4DYang-Mills (YM) theory, except a nontrivial form of the
action (1).

The soliton solutions come with a moduli space of zero
modes, just like in the case of Skyrmions, and one should
quantize along this moduli space. The structure of the
moduli space can be easily learned from that of the in-
stantons: we have approximate SO(4) spatial rotations
interlocked with the isospin SUð2ÞI in addition to the usual
translational moduli. Size is not a moduli due to the non-
trivial Z dependence of the metric, but one can also choose
to quantize along the size as in Ref. [15]. As a result, one
gets nucleons as lowest states of the spectrum, � baryons
as a next excitation, and other higher excited baryon states.

One of the important lessons we learn from the well-
known YM instanton solution is its purely non-Abelian
nature in the field profile with the Uð1Þ part being absent.
Another lesson is that the profile has a long-ranged tail at
large distance r of the form

Aa
m ���2 ��a

mn@n
1

r2
; (8)

where � is the stabilized size of the soliton baryon. This
can provide important information about the coupling of
baryons with the mesons, more precisely with the 5D
gauge field AMðx; Z ¼ 0Þ at the position of the soliton Z ¼
0. This is essentially in the same vein to the usual pion tail
of the Skyrmion solution, whose strength was used by
Adkins-Nappi-Witten to obtain the nucleon-pion coupling
g�NN [32]. Recall that the logic was to replace the quan-
tized Skyrmions with a pointlike nucleon field NðxÞ that
has a coupling to the pions with the right strength g�NN to
source the asymptotic pion tail of the original Skyrmion
solution. One subtlety was that the pion tail of the classical
Skyrmion solution must be replaced by the expectation
value of quantum states obtained by semiclassical quanti-
zation along the zero modes. Only after that it can be

mapped to the profile sourced by the nucleon current
�N���5N in the nonrelativistic limit. Also, the quantization
of Skyrmion results in a tower of higher half-integer spin
and isospin states as well, with � baryons of spin and
isospin 3=2 being a primary example. Through the identi-
cal procedure as for nucleons, it was also possible to
calculate nucleon-�-pion coupling gN�� [32].
The same logic may be invoked to find a coupling of

quantized holographic baryons in 5D to gauge field
AMðx�; ZÞ that encodes pions and a tower of spin-1 vector
mesons via (3). In other words, the coupling of the baryon
field to the 5D gauge field AM must be such to be able to
reproduce quantum state expectation value of the long-
ranged tail (8) of the original soliton solution for the
baryon. The necessary semiclassical quantization on the
zero modes is essentially identical to that of the Skyrmion,
giving us a tower of nonrelativistic spectrum of half-
integer spin and isospin. By computing expectation values
of the long-range tail (8) over these states, one may write
down effective local couplings of baryon fields to the field
AM that can reproduce these quantum averaged tails. An
important point is that these couplings will involve only the
non-Abelian part of AM as the Abelian U(1) component is
absent in the tail (8).
For the lowest spin, isospin 1=2 states corresponding to a

holographic version of the usual nucleons, Refs. [10,14,16]
introduced a 5D Dirac spinor B to write down an effective
Lagrangian that encapsulates the above features. The nec-
essary analysis for higher excited baryons was done in
Ref. [17]. However, in 5D it seems hard to find a fully
relativistic formulation of higher-spin fermions, and the
effective fields and Lagrangians in Ref. [17] are only non-
relativistic. In the next subsection, we will summarize this
development which serves as a basis of our subsequent
analysis. Later, we will show how one can proceed to a
necessary relativistic extension of their results, that will be
crucial for our purposes.

C. Nonrelativistic treatment

In this section we summarize some of the results of
Ref. [17], which will be our starting point in calculating
the transition form factors. As we are interested only in
N �� transition in this work, the relevant interaction term
would involve baryon fields of spin and isospin 1=2 as well
as 3=2. A convenient nonrelativistic notation for spin,
isospin 1=2 states is

U �
	; (9)

where	 ¼ þ,� is a two-component nonrelativistic spinor
index and � ¼ 1; 2 is the index for the isospin doublet. A
similar notation for spin, isospin 3=2 states is

U �1�2�3
	1	2	3

; (10)

where the three indices 	i’s and �i’s must be totally
symmetric to be in the S ¼ I ¼ 3=2 representation under
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the spatial rotation and the isospin. These nonrelativistic
baryon fields are presumed to be localized at the position
Z ¼ 0, where they minimize their energy. A quantum
spread along Z � 0 can be shown to be a subleading effect
in the large Nc limit that holographic QCD is based on.
With the above notations, the relevant nonrelativistic N �
� transition coupling to the 5D gauge field AM ¼ Aa

M

a
2

(a ¼ 1; 2; 3) has been obtained to be [17]

S5DN� ¼ �k1=2ð12Fa
ij�ijkðU�

	Þ�ð�2�kÞ��0 ð
2
aÞee0Uee0�
��0	

þ Fa
ZiðU�

	Þ�ð�2�iÞ��0 ð
2
aÞee0Uee0�
��0	ÞjZ¼0; (11)

where

k1=2 ¼
ffiffiffi
3

p ðNc þ 2Þ
4
ffiffiffi
5

p M�1
KK ¼

ffiffiffiffiffiffi
15

p
4

M�1
KK: (12)

We have replaced Nc by Nc þ 2, as was argued in
Refs. [14,16,34] to better account for subleading effects.
We will discuss this issue in more detail in Sec. IV. Note
that the Abelian U(1) part is absent in the above due to the
non-Abelian nature of the soliton-baryon profile, as ex-
plained before. By inserting the mode expansion (3) of AM

in Eq. (11), one can obtain nucleon-� couplings to the
pions and a tower of spin-1 (axial) vector mesons.

For our purpose of calculating electromagnetic (EM)

form factors, we need to consider vector mesons Bð2n�1Þ
� ¼

vðnÞ
� only, as EM does not couple to axial vectors. Because

for vector mesons vðnÞ
� ðx�Þ, c ð2n�1ÞðZÞ is even under Z !

�Z, it is easily seen that the second term in (11) simply
vanishes, and the first piece gives us

SN�v ¼ � 1

2
k1=2

X
n�1

c ð2n�1Þð0Þð@ivðnÞ
j � @jv

ðnÞ
i Þa�ijkðU�

	Þ�

� ð�2�kÞ��0 ð
2
aÞee0Uee0�
��0	: (13)

This nonrelativistic result will be the starting point of our
analysis. Notice that due to Fa

ij�ijk structure in (11) this

interaction is of ‘‘magnetic’’ type. Since c ð2n�1ÞðZÞ is an
even function for the vector mesons, there is no analogous
‘‘electric’’ type of interaction (unless there is some sub-
leading asymmetric smearing in Z). This observation is in
agreement with the fact that the EM transition of N� is
predominantly of magnetic (M1) dipole type.

It is also instructive to consider N�� coupling. In this
case, since c 0ðZÞ is an odd function, only the second term
survives and as a result [17],

SN�� ¼ 8k1=2
�f�

ð@i�aÞðU�
	Þ�ð�2�iÞ��0 ð
2
aÞee0Uee0�

��0	:

(14)

The generalization of this interaction to the relativistic case
may be important when discussing the photoproduction
processes.

III. VECTOR DOMINANCE IN HOLOGRAPHIC
QCD

In the Sakai-Sugimoto model, the 5D UðNfÞ gauge field
AM (M ¼ 0; 1; 2; 3; Z) contains pseudoscalar pions and a
tower of vector/axial-vector mesons upon its 4D mode
expansion. It can also include external vector potentials
that couple to UðNfÞL �UðNfÞR chiral symmetry currents

as its non-normalizable modes near Z ! �1 boundaries.
In the AZ ¼ 0 gauge (leading order in fields), the mode
expansion reads as [3,5]

A�ðx; ZÞ ¼
�
� 1

f�
@��ðxÞ þA�ðxÞ

�
c 0ðZÞ þV�ðxÞ

þ X
n�1

BðnÞ
� ðxÞc ðnÞðZÞ þ � � � ; (15)

where V ¼ 1
2 ðAL þ ARÞ and A ¼ 1

2 ðAL � ARÞ are the

external vector and axial-vector potentials. By looking at
how the model responds to these external potentials, one
can study various form factors of chiral symmetry currents.
Electroweak form factors of the QCD sector would be of
particular interest for applications, see e.g. Ref. [35].
The electromagnetic vector potential AEM

� can be

thought of as an external potential probing the QCD sector
by

V � ¼ e
2
3 0

0 � 1
3

 !
AEM
� ; A� ¼ 0: (16)

As the axial part A� is absent, the electromagnetic exter-

nal potential will couple only to the vector mesons

Bð2n�1Þ
� 	 vðnÞ

� , which allows one to neglect axial-vector

mesons Bð2nÞ
� 	 aðnÞ� in the above expansion (15). We will

see how V� interacts with the system in the following,

neglecting the axial part, which results in a feature quite
similar to vector dominance with a tower of vector mesons

vðnÞ
� .
Keeping only the vector part, and using Eq. (4), we get

ð1þ Z2Þ1=3@Z½ð1þ Z2Þ@Zc ð2n�1Þ
 ¼ � m2
vn

M2
KK

c ð2n�1Þ;

(17)

as well as the orthonormality condition:

�

4

�
f�
MKK

�
2 Z þ1

�1
dZð1þ Z2Þ�1=3c ð2n�1ÞðZÞc ð2m�1ÞðZÞ

¼ �nm: (18)

Taking all of these into account, the action (1) for AM

reduces to a 4D action
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S4D ¼
Z

d4x

�
Tr

�
�FV

��

X
n�1

aVvnFðnÞ��

�

þ X
n�1

Tr

�
� 1

2
FðnÞ
��FðnÞ�� þm2

vnv
ðnÞ
� vðnÞ�

��
; (19)

where FV
�� ¼ @�V � � @�V�, FðnÞ

�� ¼ @�v
ðnÞ
� � @�v

ðnÞ
� ,

and [36]

aVvn ¼ �

4

�
f�
MKK

�
2 Z þ1

�1
dZð1þ Z2Þ�1=3c ð2n�1ÞðZÞ:

(20)

The second term in this action describes massive vector
mesons, while the first piece represents a kinetic mixing
between the external vector potential V� and the massive

vector mesons vðnÞ
� . It is more convenient to diagonalize the

kinetic terms by shifting the vector meson fields as

vðnÞ
� ¼ ~vðnÞ

� � aVvnV�; (21)

which transforms the action to

S4D ¼
Z

d4x
X
n�1

Tr

�
� 1

2
~FðnÞ
�� ~FðnÞ�� þm2

vn ~v
ðnÞ
� ~vðnÞ�

� 2m2
vnaVvn ~vðnÞ

� V�

�
; (22)

in terms of ~vðnÞ
� fields, up to an additive renormalization of

V� kinetic terms which are divergent anyway. In the ~vðnÞ
�

basis, the mixing to V� is independent on the momentum

transfer, which will make the summation over n of
Feynman diagrams more convergent as we will see later.
This is the usefulness of this new basis, although any final

results must be independent of whether we work in the vðnÞ
�

or the ~vðnÞ
� basis.

Another advantage in using this new basis ~vðnÞ
� is in a

manifest presence of the holographic vector meson domi-
nance feature. Note that the expansion of AM in (15)
including only the vector part becomes in the new basis

A�ðx; ZÞ ¼ V�ðxÞ þ
X
n�1

vðnÞ
� ðxÞc ð2n�1ÞðZÞ

¼
�
1� X

n�1

aVvnc ð2n�1ÞðZÞ
�
V�ðxÞ

þ X
n�1

~vðnÞ
� ðxÞc ð2n�1ÞðZÞ: (23)

Using the completeness relation of the eigenfunctions for
the vectorlike quantity

�

4

�
f�
MKK

�
2X
n�1

ð1þ Z2Þ�1=3c ð2n�1ÞðZÞc ð2n�1ÞðZ0Þ

¼ �ðZ� Z0Þ; (24)

and the definition (20) of aVvn , we can easily derive a sum

rule: X
n�1

aVvnc ð2n�1ÞðZÞ ¼ 1; (25)

which drastically simplifies the expansion

A�ðx; ZÞ ¼
X
n�1

~vðnÞ
� ðxÞc ð2n�1ÞðZÞ; (26)

without any remnant of the external vector potential V�.

In other words, in the ~vðnÞ
� basis the external vector poten-

tial V� does not interact directly with the system through

AM, but only through momentum-independent mixings

with the vector mesons ~vðnÞ
� via (22). Any interaction of

the system with the external vector potential is completely
mediated by tree-level exchanges of the massive vector

mesons ~vðnÞ
� . Moreover, one can define vector meson decay

constants as follows:

h0jJaV�ð0ÞjvðnÞ;bi ¼ gvn�ab��; gvn 	 m2
vnaVvn :

(27)

Therefore, the previous interaction term (13) of N ��
with vector mesons can be easily generalized to the case
of having an external vector potential V�, by simply

replacing vðnÞ
� with ~vðnÞ

� :

SN�~v ¼ � 1

2
k1=2

X
n�1

c ð2n�1Þð0Þð@i~vðnÞ
j � @j~v

ðnÞ
i Þa�ijkðU�

	Þ�

� ð�2�kÞ��0 ð
2
aÞee0Uee0�
��0	; (28)

without any further change. The electromagnetic N ��
transition form factors will be described by tree-level
Feynman diagrams, where the external field, V�, couples

to transition vertex only through the exchange of vector

mesons ~vðnÞ
� .

IV. OTHER APPROACHES

We should point out that there are other similar ap-
proaches in the literature, exploring chiral symmetry cur-
rents from the soliton solution itself [11–13,15,18,19]. The
only difference can be traced back to how we treat the
nonrelativistic baryon wave function along the Z direction,
which was taken to be the � function in the above, to give
the c ð2n�1Þð0Þ factor. Although this is a right thing to do in
a strict large Nc limit sense, Refs. [11,12,15,18,19] went
one step further to better approximate the baryon wave
functions, which corresponds to including a subleading
effect in the large Nc limit. This modification of the baryon
wave functions will have its effects only on the factor
c ð2n�1Þð0Þ.
In Refs. [11,15], the motion along Z was approximated

by harmonic oscillator. For our purposes, it is sufficient to
take the ground state wave function:
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055006-6



�nZ¼0
B ðZÞ ¼

�
2a

�

�
1=4

e�aZ2
; (29)

where a ¼ 2�3ffiffi
6

p ð f�
MKK

Þ2 � 0:240. Accordingly, we replace

c ð2n�1Þð0Þ by

hc ð2n�1ÞðZÞi ¼
Rþ1
�1 dZc ð2n�1ÞðZÞe�2aZ2

Rþ1
�1 dZe�2aZ2 : (30)

In fact Refs. [11,15] also treated the size of soliton baryon,
�, as a quantummechanical modulus, and any quantity that
involves � should also be averaged over the resulting wave
function on �. It can be shown that the coefficient k1=2 in
(11) is proportional to �2, as the long-ranged tail of the
soliton baryon that this term is based on is linear in �2,
which can be seen in (8). The resulting quantum average
increases �2 and hence k1=2 by a factor offfiffiffi

5
p þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ N2

c

p
2Nc

� 1:62: (31)

Recall that the earlier expression for k1=2 ¼ffiffi
3

p ðNcþ2Þ
4
ffiffi
5

p M�1
KK ¼

ffiffiffiffi
15

p
4 M�1

KK involves a shift Nc ! Nc þ 2

that effectively accounts a subleading effect in the large
Nc limit [34]. This observation was used in the analysis of
Refs. [10,14,16]. This shift corresponds to the increase of
k1=2 by a factor of 5

3 � 1:66 relative to its classical value,

which happens to be very close to the above increase by the
quantum wave function on �. This in fact explains the
fortunate numerical agreements between Refs. [10,14,16]
and Ref. [11]. Although it does not make much difference

to replace our previous value k1=2 ¼
ffiffiffiffi
15

p
4 M�1

KK �
0:968M�1

KK with the value from the analysis in Ref. [11],

k1=2 ¼ 1:62�
ffiffiffi
3

p
Nc

4
ffiffiffi
5

p M�1
KK � 0:941M�1

KK; (32)

we will choose the latter for consistency when we discuss
the results by the approach of Ref. [11].

As the soliton-baryon size � is given by

�2 ¼ Nc

�3

ffiffiffiffiffiffi
3

10

s �
MKK

f�

�
2 � ð2:364Þ2; (33)

which is numerically bigger than the average size of the
quantum wave function in Ref. [11],

Zav ¼
ffiffiffiffiffiffiffiffiffi
hZ2i

q
¼ 1

2

ffiffiffi
1

a

s
� 1:021; (34)

the quantum spread over Z seems numerically subdomi-
nant to the initial size effect of the baryons. This seems to
be a problem in this approach.

For completeness, we will present both results we obtain
using the approaches in Refs. [11,15] and the previous one
with the factor c ð2n�1Þð0Þ based on Ref. [17]. We refer the

former as the type II and the latter as the type I model. In
summary,

type I: c ð2n�1Þð0Þ
type II: c ð2n�1Þð0Þ ! hc ð2n�1ÞðZÞi:

As a final comment, the two types of approaches we
consider share one common feature that seems to be uni-
versal. Because of the identity (25)X

n�1

aVvnc ð2n�1ÞðZÞ ¼ 1; (35)

for any Z, one can easily see that the sum ruleX
n�1

aVvnhc ð2n�1ÞðZÞi ¼ 1 (36)

holds whatever approximation we use for hc ð2n�1ÞðZÞi.
This will give us a universal result for the zero-momentum
limit of the form factor, that is a one robust prediction of
the model without referring to a specific type of approach.

V. RELATIVISTIC GENERALIZATION

As was discussed earlier, in the holographic model, the
external electromagnetic field is carried by the vector
mesons. The linear coupling of the electromagnetic poten-
tial with these vector mesons is given by the last term in the
interaction Lagrangian (22), where the external vector field
is expressed through the electromagnetic potential as in
Eq. (16). Therefore, the interaction of the electromagnetic
field with the hadrons can only occur through the inter-
mediate vector meson exchange. This feature of ‘‘holo-
graphic vector meson dominance,’’ given by (26), is a
relativistic concept, since it emerges from the manifestly
relativistic 5D gauge theory. On the other hand, the

nucleon-�� ~vðnÞ interaction vertex, given by Eq. (28), is
nonrelativistic. To have a more consistent framework, we
have to find a relativistic generalization of this vertex (28).
Although, we are interested in low momentum transfers,
where the nonperturbative effects are dominant, there is no
clear separation of relativistic and nonrelativistic effects.
Moreover, for momentum transfers larger than about
2 GeV2, the relativistic effects may not be negligible.
With this generalization in hand, we can find the relativistic

nucleon-�� ~vðnÞ transition form factors by simply sum-

ming over all tree-level Feynman diagrams involving ~vðnÞ
�

meson exchanges.
A difficulty in Ref. [17] for a relativistic formulation was

the absence of a relativistic 5D formalism of high spin
fermions, notably for spin 3=2 fermions corresponding to a
holographic description of� baryons. This difficulty might
have a chance to be overcome in the future, but there is one
point we can make at present without any regard to details
of a solution: the resulting 4D theory, after integrating over
Z, must be reduced to a 4D relativistic theory for a spin 3=2
field that describes the � resonances. Moreover, for con-
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sistency, the nonrelativistic limit of this 4D theory should
precisely reproduce the previous nonrelativistic result (28).

In the nonrelativistic treatment of Ref. [17], a �-function
localization of the baryon wave functions to Z ¼ 0 was
assumed, as a leading approximation to the large Nc limit,
where the baryons become infinitely heavy. This seems to
indicate an intricate intertwining of a relativistic general-
ization and an inclusion of subleading effects of the large
Nc limit: if we take the largeNc limit first, then the baryons
should be treated nonrelativistically.

We propose to take a different path instead. We first
impose a relativistic formulation before looking at the
leading large Nc effects. After integrating over Z, a pre-
sumed 4D relativistic theory will be a theory of spin 3=2 �
baryons, for which we have a consistent relativistic de-
scription in terms of the Rarita-Schwinger formalism.
Whatever formalism for a 4D relativistic spin 3=2 field
we would have from the perspective of a presently un-
known 5D relativistic formulation, it would be equivalent
to the Rarita-Schwinger field at the end. As we take the
largeNc limit for the parameters in the resulting relativistic
theory, we expect that in the nonrelativistic limit the results
must agree with those of Ref. [17]. This expectation relies
on the assumption of validity of exchanging the order of
the two limits. This way one will be able to fix the parame-
ters in the 4D relativistic theory of Rarita-Schwinger �
baryons in the large Nc limit.

A relativistic generalization of the nucleon-�-~vðnÞ vertex
(28) of interest in terms of Dirac spinor nucleons and
Rarita-Schwinger � baryons can be determined within
our proposal, which will be the subject of the next sections.

A. Basics of the Rarita-Schwinger spin 3
2 field

The �ð1232Þ is a spin-3=2 resonance. Therefore its spin
content can be described in terms of a Rarita-Schwinger

(RS) field [37]: �ð�Þ
� , where � is the vector and � the

spinor index (the latter index is omitted in the following).
Here, we briefly summarize the relevant relativistic formal-
ism for this 4D RS field.

The free and massive RS field obeys the Dirac equation,
supplemented with the auxiliary conditions (constraints):

ði@6 �MÞ�� ¼ 0; @��� ¼ 0; ���� ¼ 0:

(37)

The constraints ensure that the number of independent
components of the vector-spinor field is reduced to the
physical number of spin degrees of freedom. In the inter-
acting theory, the coupling of the RS field must be compat-
ible with the free theory construction in order to preserve
the physical spin degrees of freedom, otherwise one ends
up with unphysical degrees of freedom with negative-norm
states [38,39] or superluminal (acausal) modes [40,41].
The proposals for consistent spin-3=2 couplings were
given e.g. in Ref. [42]. Although it can be a subtle issue
to discuss consistency of a quantum theory of interacting

RS field, wewill not be concerned about this here, since the
Feynman diagrams, that are required to calculate form
factors we are interested in, are tree-level diagrams and
involve intermediate vector meson exchanges. In fact, we
are only interested in the kinematic description of relativ-
istic spin- 32 particle and its pointlike tree-level interactions

with massive vector mesons ~vðnÞ
� , such that these interac-

tion vertices reduce to our previous expression (28) in the
nonrelativistic limit.
We will work in the conventions, where the � matrices

are

�0 ¼ 1 0
0 �1

� �
; �i ¼ 0 �i

��i 0

� �
;

�5 ¼ 0 1
1 0

� �
:

(38)

Since we are interested in the nonrelativistic limit for the�
resonances, consider a specific momentum state of @� ¼
�ip�, which has the following restframe components

p0 ¼ E ¼ M and pi ¼ 0 (i ¼ 1; 2; 3). Then solving equa-
tions of motion with constraints, one finds �0 ¼ 0 and

�i ¼ Ui

0

� �
; (39)

with three two-component spinors Ui (i ¼ 1; 2; 3) satisfy-
ing an important constraint,

X3
i¼1

�iUi ¼ 0: (40)

In fact, Ui (i ¼ 1; 2; 3) with the constraint (40) is an
unconventional way of describing usual nonrelativistic
spin s ¼ 3

2 states of SO(3) rotation group. First note that

the independent number of components is indeed 2� 3�
2 ¼ 4 as in the case of spin s ¼ 3=2 representation. It is not
difficult to find the similarity transformation between the
Ui representation and the usual representation with js ¼
3
2 ; szi basis. Writing

U i ¼ ai
bi

� �
; (41)

with complex numbers ai and bi, one finds

a1 ¼
ffiffi
1
2

q
j32; 32i þ

ffiffi
1
6

q
j32;�1

2i;
b1 ¼

ffiffi
1
2

q
j32;�3

2i þ
ffiffi
1
6

q
j32; 12i;

a2 ¼ i
ffiffi
1
2

q
j32; 32i � i

ffiffi
1
6

q
j32;�1

2i;
b2 ¼ �i

ffiffi
1
2

q
j32;�3

2i þ i
ffiffi
1
6

q
j32; 12i;

a3 ¼ �
ffiffi
2
3

q
j32; 12i;

b3 ¼
ffiffi
2
3

q
j32;�1

2i:

(42)
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Recall that in our expression (28), we used yet another
form of spin s ¼ 3

2 representation: a three-indexed objects

U	1	2	3
totally symmetric under permutations of 	i ¼

þ;�. It is easy to relate this representation with the
standard js ¼ 3

2 ; szi representation,

Uþþþ ¼ j32; 32i;
Uþþ� ¼ Uþ�þ ¼ U�þþ ¼

ffiffi
1
3

q
j32; 12i;

U��þ ¼ U�þ� ¼ Uþ�� ¼ �
ffiffi
1
3

q
j32;�1

2i;
U��� ¼ �j32;�3

2i;

(43)

where sign conventions are chosen simply for later conve-
nience. With the above (42) and (43), one can now easily
translate the nonrelativistic limit of the RS field and the
three-indexed object U	1	2	3

that was used in (28). One

identity that we will need specifically is

ð�½iUj
Þ	 ¼ 1

2
ffiffiffi
2

p �ijkð�2�kÞ��0
U��0	; (44)

with ½i; j
 ¼ 1
2 ðij� jiÞ, that is straightforward to check

using (42) and (43).

B. Relativistic N� ~vðnÞ vertex
With the gadget in the previous section, we can now find

the relativistic N�~vðnÞ vertex, that generalizes the non-
relativistic expression (28). Note that while we have to
generalize the space rotation indices (lower indices) into
a relativistic Rarita-Schwinger field, we should still keep
the isospin indices (upper indices) as they are in (28). To
relate to the more conventional notation of � baryons, one
can simply substitute

U111 ¼ �þþ;

U222 ¼ ��;

U112 ¼ U121 ¼ U211 ¼
ffiffi
1
3

q
�þ;

U221 ¼ U212 ¼ U122 ¼
ffiffi
1
3

q
�0:

(45)

Since we do not need to modify the isospin structure in
(28), we will temporarily omit it, focusing only on the
relativistic generalization of the spacetime part.

Up to equations of motion, there are four possible forms
of Lorentz invariant coupling between nucleon Dirac

spinor N, Rarita-Schwinger �-baryon field ��, and the

nth massive vector mesons FðnÞ
�� ¼ @�~v

ðnÞ
� � @�~v

ðnÞ
� :

ð1Þ �NFðnÞ
������ þ H:c:

ð2Þ �NFðnÞ
�����5�� þ H:c:

ð3Þ �NFðnÞ
�������� þ H:c:

ð4Þ �NFðnÞ
�������5�� þ H:c:

(46)

However, using the constraint ���� ¼ 0, one can easily

show that (3) and (4) are equivalent to (1) and (2).
If we take the nonrelativistic limit as is done in the

previous section, the spinors reduce to nonrelativistic
two-component spinors as

N ¼ U
0

� �
; �i ¼ Ui

0

� �
; �0 ¼ 0; (47)

and using the explicit form of the � matrices, one easily
checks that (1) does not lead to any nonrelativistic coupling
as it couples particles to antiparticles, while (2) becomes

� ðU	Þ�ð@i~vðnÞ
j � @j~v

ðnÞ
i Þð�½iUj
Þ	: (48)

From the important identity (44) that we derived in the
previous section, this reduces to

� 1

2
ffiffiffi
2

p ðU	Þ�ð@i~vðnÞ
j � @j~v

ðnÞ
i Þ�ijkð�2�kÞ��0

U��0	;

(49)

which recovers precisely the spacetime index structure of
our nonrelativistic coupling (28).
The upshot is that the following relativistic operator,

SrelN�~v ¼
ffiffiffiffiffiffi
30

p
4

M�1
KK

X
n�1

c ð2n�1Þð0ÞFðnÞa
�� ð
2
aÞee0

� �N����5ð��Þee0� þ H:c:; (50)

is the correct relativistic form of our nonrelativistic

nucleon-�-~vðnÞ vertex (28), where FðnÞa
�� 	 @�~v

ðnÞa
� �

@�~v
ðnÞa
� , and the upper indices a, e, e0, and � represent

isospin indices. With the help of (45), one can also write
the final result in terms of the conventional notation of �
baryons ð�þþ;�þ;�0;��Þ and the nucleons ðp; nÞ:
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SrelN�~v ¼ i

ffiffiffiffiffiffi
30

p
4

M�1
KK

X
n�1

c ð2n�1Þð0ÞFðnÞþ
��

� ffiffiffi
2

3

s
�p���5ð�0Þ� þ ffiffiffi

2
p

�n���5ð��Þ�
�

� i

ffiffiffiffiffiffi
30

p
4

M�1
KK

X
n�1

c ð2n�1Þð0ÞFðnÞ�
��

� ffiffiffi
2

p
�p���5ð�þþÞ� þ

ffiffiffi
2

3

s
�n���5ð�þÞ�

�

þ i

ffiffiffiffiffiffi
30

p
4

M�1
KK

X
n�1

c ð2n�1Þð0ÞFðnÞ0
��

� ffiffiffi
4

3

s
�p���5ð�þÞ� þ

ffiffiffi
4

3

s
�n���5ð�0Þ�

�
þ H:c:; (51)

where

FðnÞ�
�� ¼ 1ffiffiffi

2
p ðFðnÞ1

�� � iFðnÞ2
�� Þ; FðnÞ0

�� ¼ FðnÞ3
�� (52)

are the nth vector meson fields in the EM charge basis, and
�� are the Rarita-Schwinger fields for the � baryons.
Equation (51) is the final form of the sought-for relativistic
couplings between nucleons, � baryons, and the massive
vector mesons ~vðnÞ

� .

VI. TRANSITION FORM FACTORS

A. Definitions

The ��N ! � transition is described by the matrix
element of the electromagnetic current JEM� between the

nucleon state with momentum p and the � with momen-
tum p0. It can be written as

h�ðp0Þ j JEM� ð0Þ j NðpÞi ¼ e ���ðp0Þ����5NðpÞ; (53)

where NðpÞ and ��ðp0Þ describe nucleon and delta, re-

spectively. The conservation of the electromagnetic current
implies q���� ¼ 0, where q ¼ p0 � p is the photon mo-

mentum transfer. For virtual photons (q2 � 0), the decom-
position of the vertex function can be expressed in terms of
three independent scalar form factors GiðQ2Þ with Q2 ¼
�q2:

��� ¼ G1ðQ2Þ½q��� � q6 g��

þG2ðQ2Þ½q�P� � ðqPÞg��

þG3ðQ2Þ½q�q� � q2g��
; (54)

where P ¼ ðpþ p0Þ=2. Following [43], one can also de-
fine the magnetic dipole GM, electric quadrupole GE, and
Coulomb quadrupole GC form factors in terms of G1, G2,
and G3 as follows:

GMðQ2Þ ¼ mN

3ðmN þm�Þ
�
ðð3m� þmNÞðm� þmNÞ þQ2ÞG1ðQ2Þ

m�

þ ðm2
� �m2

NÞG2ðQ2Þ � 2Q2G3ðQ2Þ
�
;

GEðQ2Þ ¼ mN

3ðmN þm�Þ
�
ðm2

� �m2
N �Q2ÞG1ðQ2Þ

m�

þ ðm2
� �m2

NÞG2ðQ2Þ � 2Q2G3ðQ2Þ
�
;

GCðQ2Þ ¼ 2mN

3ðm� þmNÞ
�
2m�G1ðQ2Þ þ 1

2
ð3m2

� þm2
N þQ2ÞG2ðQ2Þ þ ðm2

� �m2
N �Q2ÞG3ðQ2Þ

�
:

(55)

We can also define the ratios REM and RSM (see e.g. [43–46]) that are often used in the experimental papers:

REMðQ2Þ ¼ E2ðQ2Þ
M1ðQ2Þ ¼ � GEðQ2Þ

GMðQ2Þ ; RSMðQ2Þ ¼ C2ðQ2Þ
M1ðQ2Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ ðm2

� �m2
P �Q2Þ2

4m2
�

vuut 1

2m�

GCðQ2Þ
GMðQ2Þ : (56)

B. Predictions from holographic QCD

Adding Feynman diagrams that correspond to inter-
mediate vector meson exchanges between the external

EM current and the N�vðnÞ vertex given in Eq. (51)
(corresponding to p ! �þ transition, in particular), we
will obtain the following result for the form factors:

G1ðQ2Þ ¼ X
n�1

gvngN�vn

Q2 þm2
vn

; G2ðQ2Þ ¼ G3ðQ2Þ ¼ 0;

(57)

where gvn 	 m2
vnaVvn and

gN�vn ¼ ffiffiffi
2

p ffiffiffiffiffiffi
30

p
4MKK

hc ð2n�1ÞðZÞi: (58)

From Table I below, one can observe that for the type I
model, the summation in (57) does not converge fast
enough, while the type II case is sufficiently convergent.
The reason is that the completeness relation (24) that we

used before to derive vector dominance is valid only with
integration and not quite true pointwise, similar to the
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Gibbs’ phenomenon in Fourier transform theory. In these
cases, the following expression,

X
n�1

gvngN�vn

Q2 þm2
vn

¼ X
n�1

gvngN�vn

m2
vn

� X
n�1

gvngN�vnQ2

m2
vnðQ2 þm2

vnÞ

¼ ffiffiffi
2

p ffiffiffiffiffiffi
30

p
4MKK

� X
n�1

gvngN�vnQ2

m2
vnðQ2 þm2

vnÞ ; (59)

should be used instead to have a good convergence at low
Q2, where in the last line we have used the sum rule (25).

Observe, however, that any truncation to a finite number
of excited modes (as above) would eventually fail for high
Q2, and a summation over all modes would be required in
order to achieve convergence. There is an alternative way
of doing this by noting that the form factor is proportional
to the Z average of

X
n�1

gvnc ð2n�1ÞðZÞ
Q2 þm2

vn

	 GðZ;Q2Þ: (60)

Using the completeness relation, one can show that this
function satisfies

ð1þ Z2Þ1=3@Z½ð1þ Z2Þ@ZGðZ;Q2Þ
 ¼
�
Q2

M2
KK

�
GðZ;Q2Þ;

(61)

with the boundary conditionGðQ2; Z ! �1Þ ¼ 1. In fact,
this is nothing but the bulk-to-boundary propagator (from
the Z ! �1 boundary to the bulk Z for the gauge field). It
is not difficult to solve this equation numerically for each
Q2. We use this method in the numerical plots later.

Notice that the form factors G2;3ðQ2Þ are vanishing,

since we are working at leading order in Nc, neglecting
the subleading effects. In other words, G2ðQ2Þ and G3ðQ2Þ
are expected to be of order Oð1=NcÞ in the large Nc limit.
The fact that there is only one independent form factor was
also observed in Ref. [47], when discussing the form
factors of the vector meson in the framework of AdS/
QCD, and in Refs. [10,11] for the nucleon form factors
in the Sakai-Sugimoto model.

The physically relevant magnetic dipole GM, electric
quadrupoleGE, and Coulomb quadrupoleGC form factors,
are predicted from holographic QCD to be

GMðQ2Þ ¼ mNðð3m� þmNÞðm� þmNÞ þQ2Þ
3m�ðmN þm�Þ G1ðQ2Þ;

GEðQ2Þ ¼ mNðm2
� �m2

N �Q2Þ
3m�ðmN þm�Þ G1ðQ2Þ;

GCðQ2Þ ¼ 4mNm�

3ðm� þmNÞG1ðQ2Þ:

(62)

As a result, the ratios take the following form:

REMðQ2Þ ¼ � ðm2
� �m2

N �Q2Þ
ð3m� þmNÞðm� þmNÞ þQ2

;

RSMðQ2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ ðm2

� �m2
P �Q2Þ2

4m2
�

vuut

� 2m�

ð3m� þmNÞðm� þmNÞ þQ2
:

(63)

In case when Q2 ¼ 0, we will have

GMð0Þ
G1ð0Þ ¼ mNð3m� þmNÞ

3m�

;

GEð0Þ
G1ð0Þ ¼

mNðm� �mNÞ
3m�

;

GCð0Þ
G1ð0Þ ¼

4mNm�

3ðm� þmNÞ ;

(64)

REMð0Þ ¼ RSMð0Þ ¼ � m� �mN

3m� þmN

: (65)

Recalling that baryon masses are of order OðNcÞ, while
� 	 m� �mN �Oð1=NcÞ, we have

REMð0Þ ¼ RSMð0Þ ’ � �

4mN

��O
�
1

N2
c

�
: (66)

Although, we work at leading order in Nc, this result is
consistent, since holographic QCD predicts G2;3 �
Oð1=NcÞ, and using Eqs. (55) and (56), one can easily
deduce Eq. (66). In agreement with our result, the REM

ratio for the �N� transition was also shown to be of order
1=N2

c in the Ref. [25]. Furthermore, the relation REMð0Þ ¼
RSMð0Þ was also observed in Ref. [48] within the large-Nc

limit (see also Ref. [49]). These observations provide an
additional evidence that the smallness of the �N� REM

ratio is naturally explained in the large Nc limit.

TABLE I. Various couplings and masses for MKK ¼ 0:949 GeV.

n 1 2 3 4 5 6 7 8

m2
vn (GeV2) 0.602 2.59 5.94 10.6 16.7 24.0 32.7 42.8

gvn (GeV2) 0.164 �0:707 1.615 �2:884 4.508 �6:484 8.869 �11:58
gN�vn (GeV�1) (I) 14.12 12.88 12.60 12.51 12.46 12.44 12.43 12.42

gN�vn (GeV�1) (II) 11.84 5.512 0.585 �1:481 �1:101 �0:038 0.407 0.196

ELECTROMAGNETIC NUCLEON-TO-DELTA TRANSITION . . . PHYSICAL REVIEW D 80, 055006 (2009)

055006-11



Finally, one can check that, when Q2 ¼ 0,

G1ð0Þ ¼
ffiffiffi
2

p ffiffiffiffiffiffi
30

p
4MKK

X
n�1

aVvnhc ð2n�1ÞðZÞi ¼
ffiffiffiffiffiffi
15

p
2

1

MKK

;

(67)

where in the last step we used the sum rule from Eq. (25).
This result is universal for types I and II models. Therefore,
from Eq. (64) it follows that

GMð0Þ ¼
ffiffiffiffiffiffi
15

p
2

mN

MKK

ð3m� þmNÞ
3m�

’ 2:43
mN

MKK

;

GEð0Þ ¼
ffiffiffiffiffiffi
15

p
2

1

MKK

mNðm� �mNÞ
3m�

’ 0:154
mN

MKK

;

GCð0Þ ¼
ffiffiffiffiffiffi
15

p
2

1

MKK

4mNm�

3ðm� þmNÞ ’ 1:47
mN

MKK

:

(68)

If we choose MKK ¼ 0:949 GeV to fit the �-meson mass,
and use the experimental nucleon and � baryon masses,
the above gives us

GMð0Þ � 2:41; GEð0Þ � 0:153; GCð0Þ � 1:46:

(69)

However, since we are working in the large Nc limit
approximation, for consistency, the terms of order 1=Nc

have to be dropped, and one should use the same mass for
the nucleons and �. In this case, we will have GEð0Þ ¼ 0,

GMð0Þ ¼ 2GCð0Þ ¼ 4

3

ffiffiffiffiffiffi
15

p
2

mN

MKK

: (70)

Numerically, we get GMð0Þ ¼ 2GCð0Þ ’ 2:58 and REM ¼
RSM ¼ 0.

We should point out that within the model one finds that
the quantized baryon mass is larger than the nucleon mass
mN. In the 5D effective field theory approach that is
applied in Refs. [14,16], one finds

mN

MKK
� 1:98: (71)

In order to obtain a better agreement in the baryon sector of
the holographic model, different values for either f� or
MKK have to be chosen. The ratio of the classical baryon
mass mN � M0

B �OðNcÞ to MKK scale (7), before quanti-
zation is

M0
B

MKK

¼ 2�3

�
f�
MKK

�
2 � 0:59: (72)

This is clearly smaller than the ratio considered above,
which may signal that the 1=Nc expansion and the numeri-
cal estimate for the baryon masses are no longer reliable.
Since our predictions should be only leading order in Nc,
there is no need to fit the parameters of the model (f� and
MKK) to the exact physical results. In particular, if we keep
MKK ¼ 0:949 GeV, while taking the baryon mass as input

from experiment, this may correspond to changing the
value for f�, similar to the case in the Skyrme model
[32]. This issue is a problem of model and approximation
that is being used. Whatever the resolution of this problem,
it should not affect our final results.
In Fig. 1 we present a plot for the ratio

G�
MðQ2Þ=ð3GD

p ðQ2ÞÞ that is commonly used in the litera-

ture, where GD
p ðQ2Þ ¼ 1=ð1þQ2=�2

pÞ2 is the proton’s

empirical electric form factor with �2
p ’ 0:71 GeV2, and

G�
MðQ2Þ ¼ GMðQ2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

ðm� þmNÞ2
s

: (73)

The data are taken from the experiments in [50]. The
theoretical curves correspond to type I and type II models.
One may see that for Q2 � 0:5 GeV2 the better agreement
with experiment is provided by the type II model.
However, both models disagree with experiment (by about
20%) for Q2 
 0:5 GeV2. This suggests that, although
smearing of baryons is required to get the correct behavior
for Q2 � 0:5 GeV2, the exact account of 1=Nc corrections
is required for lower energies.

C. Helicity amplitudes

Equivalently, one can also parametrize the ��N� tran-
sition through the rest frame helicity amplitudes A1=2 and

A3=2 defined in terms of the following matrix elements of

the electromagnetic current operator:

0 1 2 3 4 5 6

 Q
2
 ( (GeV/c)

2
 ) 

0

0.2

0.4

0.6

0.8

1

G
M

*   /
(3

G
D

)

FIG. 1 (color online). The plot of the ratioG�
MðQ2Þ=ð3GDðQ2ÞÞ

as a function of Q2, where GDðQ2Þ ¼ 1=ð1þQ2=�2Þ2 with
�2 ¼ 0:71 ðGeV=cÞ2. The solid and dotted lines are the predic-
tions from the holographic type I and type II models, respec-
tively. The dashed (dash-dotted) curves are from taking the
parameter a of Eq. (20) to be 20% larger (smaller) than the
value a� 0:240. The experimental data points are taken from
[50].
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A3=2 	 � effiffiffiffiffiffiffiffiffi
2q�

p 1

ð4MNM�Þ1=2
� h�ð~0;þ3=2ÞjJ � �
¼þ1jNð� ~q;þ1=2Þi;

A1=2 	 � effiffiffiffiffiffiffiffiffi
2q�

p 1

ð4MNM�Þ1=2
� h�ð~0;þ1=2ÞjJ � �
¼þ1jNð� ~q;�1=2Þi;

(74)

where the transverse photon polarization vector entering in

A1=2 and A3=2 is given by �
¼þ1 ¼ �1=
ffiffiffi
2

p ð1; i; 0Þ, the spin
projections are along the z axis (along the virtual photon
direction), and q� is the magnitude of the virtual photon
three-momentum in the � rest frame:

q� 	 jqj ¼ QþQ�
2M�

; Q� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM� �MNÞ2 þQ2

q
:

(75)

The helicity amplitudes are functions of the photon vir-
tuality Q2, and can be expressed in terms of the Jones-
Scadron ��N� form factors as

A3=2 ¼ �N

ffiffiffi
3

p
2

ðGM þGEÞ ¼ �N

ffiffiffi
3

p
2

GM þO
�
1

N2
c

�
;

A1=2 ¼ �N
1

2
ðGM � 3GEÞ ¼ �N

1

2
GM þO

�
1

N2
c

�
;

(76)

where

N 	 e

2

�
QþQ�
2M3

N

�
1=2 ðMN þM�Þ

Qþ
: (77)

The above helicity amplitudes are expressed in units

GeV�1=2, and reduce at Q2 ¼ 0 to the photocouplings
quoted by the Particle Data Group [1]. Experimentally,
these helicity amplitudes are extracted from the M1, E2,
and C2 multipoles for the ��N ! �N process at the reso-
nance position, i.e. for �N c.m. energy W ¼ M�.

In terms of helicity amplitudes,

REM ¼
A1=2 � 1ffiffi

3
p A3=2

A1=2 þ
ffiffiffi
3

p
A3=2

: (78)

Notice that from the Eq. (76) it follows that

A3=2

A1=2
¼ ffiffiffi

3
p þO

�
1

N2
c

�
: (79)

This result was also predicted in the Ref. [25] within the
framework of the large Nc QCD.

In the case Q2 ¼ 0, we have Q� ¼ M� �MN , and
therefore

N ¼ e

2

�
M2

� �M2
N

2M3
N

�
1=2 ’ 0:094 GeV�1=2: (80)

As a result, we will have from holographic QCD

A1=2 ’ �121½10�3 GeV�1=2
;
A3=2 ’ �209½10�3 GeV�1=2
; REM ’ 0%:

(81)

The experimental results (MAMI/A2 Collaboration [51]
and LEGS Collaboration [52]), taken from the Particle
Data Group [1], quote

A1=2 ¼ �ð135� 6Þ½10�3 GeV�1=2
;
A3=2 ¼ �ð250� 8Þ½10�3 GeV�1=2
;
REM ¼ �ð2:5� 0:5Þ%:

(82)

From the values of the ��N� form factors at Q2 ¼ 0,
one can extract some interesting static quantities. For the
dominant M1 transition, one can extract the static N ! �
transition magnetic moment �N!� from the value of
GMð0Þ as [53]

�N!� ¼
ffiffiffiffiffiffiffiffi
M�

MN

s
GMð0Þ; (83)

which is expressed in nuclear magnetons �N 	 e=ð2MNÞ.
Furthermore, one can extract a static N ! � quadrupole
transition moment QN!� as [53]

QN!� ¼ �6

ffiffiffiffiffiffiffiffi
M�

MN

s
1

MNq�ð0ÞGEð0Þ; (84)

where q�ð0Þ is obtained from Eq. (75) for Q2 ¼ 0, as
q�ð0Þ ¼ ðM2

� �M2
NÞ=2M�.

Our results from the holographic QCD framework, with
masses of baryons taken from experiments, are

GMð0Þ ’ 2:41; �N!� ’ 2:76�N;

QN!� ’ �0:171 fm2:
(85)

On the other hand, without taking experimental baryon
masses and neglecting terms of orderOð1=NcÞ, we will get

GMð0Þ ’ 2:58; �N!� ’ 2:58�N;

QN!� ’ 0 fm2:
(86)

From the experiments, Ref. [54] extracted the values

GMð0Þ ¼ 3:02� 0:03; �p!�þ ¼ ½3:46� 0:03
�N;

Qp!�þ ¼ �ð0:0846� 0:0033Þ fm2: (87)

Taking into account that our results are of only leading
order in large Nc, we find about 20% discrepancy with
experiments as an indication that the holographic model
works consistently. It is an important open problem to
systematically improve the large Nc expansion in the holo-
graphic QCD.
Transition amplitudes and their ratios were also dis-

cussed in the framework of the Skyrme-like models, see
e.g. Refs. [55–57]. In particular, Wirzba and Weise [55]
performed a modified Skyrme model calculation, at lead-
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ing order in Nc, where REM takes values between �2:5%
and �6%, depending on the coupling parameters of the
stabilizing terms. In [57], Walliser and Holzwarth included
rotational corrections, which are of order 1=Nc, and lead to
a quadrupole distortion of the classical soliton solution.
Including such corrections, one finds a very good descrip-
tion of the photocouplings and obtains a ratio REM ¼
�2:3%, consistent with experiment. Similarly, we also
expect that quantum corrections, including rotational ef-
fects, should improve our results and provide a better
agreement with the experimental data.

VII. CONCLUSION

Working in the framework of the holographic dual
model of QCD proposed by Sakai and Sugimoto [3,5]
with two massless flavors, we consider the electromagnetic
N ! � transition form factors at leading order in Nc [58].
By considering a relativistic generalization of the nonrela-
tivistic vertices found in Ref. [17] up to 1=Nc ambiguities,
we treat the problem in a consistent relativistic way [59].
As a result of holographic computation, we establish that
among three independent form factors, only one survives.
Besides, the largeNc dependence of transition form factors
and their ratios coincide with what was expected in the
earlier studies. In particular, the following fact was ob-
served for the ratios: REM ¼ RSM �Oð1=N2

cÞ.
After employing the approximation where baryons are

pointlike, we also consider a simple example, where the

baryon wave functions are smeared as a ground state
oscillator à la Ref. [11]. Although, the value of the
GMð0Þ form factor remains the same for both models, we
seem to get a better agreement with experimental data for
energies up to 6 GeV2. This suggests that the finite size
effects may indeed improve holographic QCD predictions.
We leave the discussion of these effects for further studies.
Our most reliable results in this work are the values for the
form factors obtained at Q2 ¼ 0.
An interesting direction for further studies includes the

possibility for studying transition form factors among vari-
ous other excited hadron states. This approach can shed
more light on photoproduction and electroproduction pro-
cesses and help us to better understand the nature of baryon
excited states.
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Note added.—Simultaneously with our work another

article [60] appeared in the arXiv, discussing the same
problem but in the framework of the holographic
‘‘bottom-up’’ model. Some of the main results as well as
the hierarchies among the different form factors are quali-
tatively quite independent of the choice of the model.
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