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2Instituto de Fı́sica Teórica, Universidade Estadual Paulista, Rua Pamplona, 145, 01405-900, São Paulo, Brazil
3Departamento de Fı́sica, Universidade Federal da Paraı́ba, Caixa Postal 5008, 58051-970, João Pessoa, Paraı́ba, Brazil

(Received 21 May 2009; published 3 September 2009)

Scalar composite boson masses have been computed in QCD and technicolor theories with the help of

the homogeneous Bethe-Salpeter equation, resulting in a scalar mass that is twice the dynamically

generated fermion or technifermion mass (mdyn). We show that in the case of walking (or quasiconformal)

technicolor theories, where the mdyn behavior with the momenta may be quite different from the one

predicted by the standard operator product expansion, this result is incomplete and we must consider the

effect of the normalization condition of the Bethe-Salpeter equation to determine the scalar masses. We

compute the composite Higgs boson mass for several groups with technifermions in the fundamental and

higher dimensional representations and comment about the experimental constraints on these theories,

which indicate that models based on walking theories with fermions in the fundamental representation

may, within the limitations of our approach, have masses quite near the actual direct exclusion limit.
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I. INTRODUCTION

The chiral and gauge symmetry breaking in field theo-
ries can be promoted by fundamental scalar bosons through
the Higgs boson mechanism. However the main ideas
about symmetry breaking and spontaneous generation of
fermion and gauge boson masses in field theory were based
on the superconductivity theory. Nambu and Jona-Lasinio
proposed one of the first field theoretical models where all
the most important aspects of symmetry breaking and mass
generation, as known nowadays, were explored at length
[1]. The model of Ref. [1] contains only fermions possess-
ing invariance under chiral symmetry, although this invari-
ance is not respected by the vacuum of the theory and the
fermions acquire a dynamically generated mass (mf). As a

consequence of the chiral symmetry breaking by the vac-
uum the analysis of the Bethe-Salpeter equation shows the
presence of Goldstone bosons. These bosons, when the
theory is assumed to be the effective theory of strongly
interacting hadrons, are associated to the pions, which are
not true Goldstone bosons when the constituent fermions
have a small bare mass. Besides these aspects Nambu and
Jona-Lasinio also verified that the theory presents a scalar
bound state (the sigma meson) with mass m� � 2mf.

In quantum chromodynamics (QCD) the same mecha-
nism is observed, where the quarks acquire a dynamically
generated mass (mdyn). This dynamical mass is usually

expected to appear as a solution of the Schwinger-Dyson
equation (SDE) for the fermion propagator when the cou-
pling constant is above a certain critical value. The condi-
tion that implies a dynamical mass for quarks breaking the
chiral symmetry is the same one that generates a bound-
state massless pion. This happens because the quark propa-
gator SDE is formally the same equation binding a quark

and antiquark into the massless pseudoscalar state at zero
momentum transfer (the pion). However, as shown by
Delbourgo and Scadron [2], the same similarity of equa-
tions happens for the scalar p wave state of the Bethe-
Salpeter equation (BSE), indicating the presence of a
bound state with mass m� ¼ 2mdyn. This scalar meson is

the elusive sigma meson [3], that is assumed to be the
Higgs boson of QCD. The basic equations describing such
mechanism are

�ðp2Þ � �P
BSðp; qÞjq!0 � �S

BSðp; qÞjq2¼4m2
dyn
; (1)

where the solution of the fermionic Schwinger-Dyson
equation (�ðp2Þ), that indicates the generation of a dy-
namical quark mass and chiral symmetry breaking of
QCD, is a solution of the homogeneous Bethe-Salpeter
equation for a massless pseudoscalar bound state
(�P

BSðp; qÞjq!0), indicating the existence of Goldstone

bosons (pions), and is also a solution of the homogeneous
BSE of a scalar p wave bound state (�S

BSðp; qÞjq2¼4m2
dyn
),

which implies the existence of the scalar (sigma) boson
with the mass described above.
Non-Abelian gauge theories, if they do not contain

fundamental scalar bosons, may undergo the process that
we discussed above, where the scalar boson plays the role
of the Higgs boson. In particular, the gauge symmetry
breaking of the standard model can also be promoted
through this dynamical mechanism if there are new fermi-
ons interacting strongly at the Fermi scale, and models
along this idea were named technicolor (TC) models [4]. It
is worth remembering that even if we do not have fermions
that condense at the Fermi scale, the standard model has its
gauge symmetry dynamically broken together with the
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QCD chiral breaking, although this does not generate a
phenomenologically viable theory [5].

The same calculation of Ref. [2] was done by Elias and
Scadron in the TC case [6] obtaining a composite Higgs
boson mass given by

MH � 2mTC
dyn; (2)

wheremTC
dyn is the dynamically generated techniquark mass.

This calculation is simple and elegant, however it was
performed before the most recent developments of walking
gauge theories [7] and assumed a standard operator product
expansion behavior (OPE) for the techniquark self-energy.
For a standard OPE behavior we mean a self-energy that
behaves as �ðpÞ / h �c c i=p2 which appears in a non-
Abelian gauge theory which has a fermion condensate
h �c c i and an ordinary behavior for the running coupling
constant. On the other hand, in an extreme walking gauge
theory the standard OPE is modified by a large anomalous
dimension (�) and the self-energy behaves as �ðpÞ /
�ln��ðp2=�2Þ, where � is the theory’s characteristic
mass scale. It was not observed in the work of Ref. [2]
that mTC

dyn may vary according the dynamics of the theory

that forms the scalar bound state, and the result should be
written in terms of known standard model quantities and
TC theory gauge group and fermion content. Furthermore,
the equalities of Eq. (1) are obtained from the homoge-
neous BSE whereas the bound state properties are dictated
by the full BSE, i.e. the homogeneous BSE plus its nor-
malization condition, and we observed in Ref. [8] that in
walking (or quasiconformal) technicolor theories the nor-
malization condition of the BSE may affect the result of
Eq. (2).

In this work we study the effect of the normalization
condition on the determination of scalar boson masses in
dynamically broken gauge theories. We verify that the
normalization condition does not modify the value of the
scalar boson mass when its wave function has the asymp-
totic behavior exactly as predicted by the OPE. Therefore
the determination of the QCD sigma meson mass of
Ref. [2] is not modified by the normalization condition.
However in walking (or quasiconformal) gauge theories
the asymptotic behavior of fermionic self-energies and the
wave function of scalar bound states are dominated by
higher order interactions and are characterized by a much
harder decrease with the momentum, therefore, in this
case, the normalization condition of the BSE does con-
strain the scalar masses. We determine the correction to
Eq. (2) for the composite Higgs boson mass in the case of
various gauge theories for fermions in the fundamental and
higher dimensional representations. We determine the sca-
lar boson masses in the walking regime and comment on
the experimental constraints for these theories.

II. BSE AND THE NORMALIZATION CONDITION

Equation (1) tell us that always when the Schwinger-
Dyson equation for the fermion propagator has a nontrivial
solution, i.e. a dynamical mass is generated, the homoge-
neous BSE for (pseudo)scalar bound states, which have
identical expressions in the Hartree-Fock approximation,
also have solutions. However the complete determination
of the existence (or not) of bound states is obtained from
solutions of the renormalized inhomogeneous BSE. Since
the inhomogeneous BSE is quite difficult to solve it is
common to look for the homogeneous solutions associated
with a normalization condition. The BSE normalization
condition in the case of a non-Abelian gauge theory is
given by [9]

2{q� ¼ {2
Z
d4pTr

�
P ðp;pþqÞ

�
@

@q�
Fðp;qÞ

�
P ðp;pþqÞ

�

� {2
Z
d4pd4kTr

�
P ðk;kþqÞ

�
@

@q�
K0ðp;k;qÞ

�

�P ðp;pþqÞ
�

where

K0ðp; k; qÞ ¼ 1

ð2�Þ4 Kðp; k; qÞ;

Fðp; qÞ ¼ 1

ð2�Þ4 S
�1ðpþ qÞS�1ðpÞ;

and P ðp; pþ qÞ is a solution of the homogeneous BSE
and Kðp; k; qÞ is the fermion-antifermion scattering kernel.
When the internal momentum q� ! 0, the wave func-

tion P ðp; pþ qÞ can be determined only through the
knowledge of the fermionic propagator:

P ðpÞ ¼ SðpÞ�5

�ðpÞ
f0�

SðpÞ; (3)

where �ðpÞ is the fermion self-energy and it should be
noticed in the above equation that f0� describes the (techni)
pion decay constant associated to nd fermion doublets,
which can be related to the decay constant f� in the case
nd ¼ 1 by f02� ¼ ndf

2
�.

If we identify �ðpÞ � mdynGðpÞ we can write the nor-

malization condition as

2i

�
f0�
m

�
2
q�¼ i2

ð2�Þ4�
�Z

d4pTr

�
SðpÞGðpÞ�5SðpÞ

�
�

@

@q�
S�1ðpþqÞS�1ðpÞ

�
SðpÞGðpÞ�5SðpÞ

�

þ i2

ð2�Þ4
Z
d4pd4kTr

�
SðkÞGðkÞ�5SðkÞ

�
�

@

@q�
Kðp;k;qÞ

�
SðpÞGðpÞ�5SðpÞ

��
: (4)
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Equation (4) is quite complicated but it can be separated
into two parts

2i

�
f0�
m

�
2
q� ¼ I0� þ IK�; (5)

corresponding, respectively, to the two integrals in the
right-hand side of Eq. (4).

Equation (5) can be further developed, first, if we use the
fermion propagator given by SðpÞ ¼ 1=½p6 �mGðpÞ� to
write

@

@q�
S�1ðpþ qÞ ¼ �� �m

@

@q�
Gðpþ qÞ; (6)

and, secondly, if we consider a specific expression for the
fermionic self-energy (GðpÞ). Since we want to make our
calculation the most general as possible we will work with
the following expression for GðpÞ [10–12]:

GðpÞ ¼
�
m2

p2

�
�
�
1þ bg2 ln

�
p2

m2

����ð�Þ
: (7)

In the above expression we assumed m ¼ mdyn, and that m

is of the order of �, which is the characteristic QCD(TC)
mass scale �QCD (�TC), where the theory breaks the chiral

symmetry and forms the composite scalar boson. In Eq. (7)
g is the QCD(TC) running coupling constant, b is the
coefficient of g3 term in the renormalization group �ðgÞ
function, �ð�Þ ¼ � cosð��Þ, where

� ¼ 3c

16�2b
;

and c is the quadratic Casimir operator given by

c ¼ 1
2½C2ðR1Þ þ C2ðR2Þ � C2ðR3Þ�;

where C2ðRiÞ, are the Casimir operators for fermions in the
representations R1 and R2 that form a composite boson in
the representation R3. The only restriction on this ansatz is
� > 1=2 [9], which will be recovered in this work and
indicates a condition on the composite wave function
normalization. Notice that a standard OPE behavior for
�ðp2Þ is obtained when � ! 1, whereas the extreme walk-
ing technicolor solution is obtained when � ! 0. Note that
we performed all the calculations keeping the factor � in
Eq. (7). It is at the end of each result that we take the limit
� ¼ 0 or � ¼ 1, and we can check numerically that the
results for intermediate � values are between the ones that
we discuss. It is easy to see that for � ¼ 1 Eq. (7) gives a
self-energy roughly equal to �ðpÞ / m3=p2, which is the
behavior predicted by OPE in an ordinary non-Abelian
theory (assuming h �c c i / m3), whereas when � ¼ 0 the
self-energy turns out to be equal to �ðpÞ / mln��ðp2=m2Þ
which is the hardest behavior allowed for a dynamical
fermion mass in a walking theory [7,9].

With the ansatz of Eq. (7) we have

@

@q�
S�1ðpþ qÞ ¼ �� þm

Gðpþ qÞ
ðpþ qÞ2

� ½�þ �ð�Þbg2ðpþ qÞ�ðpþ qÞ�;
(8)

considering the angle approximation to transform the term
Gðpþ qÞ=ðpþ qÞ2 as

Gðpþ qÞ
ðpþ qÞ2 ¼ GðpÞ

ðpÞ2 �ðp� qÞ þGðqÞ
ðqÞ2 �ðq� pÞ; (9)

where � is the Heaviside step function and we can finally
contract Eq. (5) with q� and compute it at q2 ¼ M2

H in
order to obtain

M2
H ¼ 4m2

�
� 4nfN

16�2

Z
d4p

m2G4ðpÞ½p2 þm2G2ðpÞ�2
ðp2 þm2G2ðpÞÞ4

� 1

ðpÞ2 ð�þ �ð�Þbg2ðpÞÞ
�
m

f0�

�
2

þ IKðq2 ¼ 4m2; Gðp; kÞ; g2ðp; kÞÞ
�
: (10)

Equation (10) was determined for a non-Abelian SUðNÞ
theory with the number of fermions equal to nf. I

Kðq2 ¼
4m2; Gðp; kÞ; g2ðp; kÞÞ comes from the second term in the
right-hand side of Eq. (4). Actually the simplest truncation
of the kernel Kðp; k;qÞ is the known rainbow-ladder ap-
proximation, where

Krs
tuðp; k;q ! 0Þ ¼ �g2D��ðk� pÞ

�
��

�a

2

�
tr

�
��

�a

2

�
su
:

(11)

In this case @q�Kðp; k; qÞ � 0 and the second term of the
normalization condition [Eq. (4)] does not contribute. In
order to go beyond the rainbow-ladder approximation we
should compute IK, however in such case we would have to
consider diagrams like the ones discussed in Ref. [13],
which imply in the calculation of the derivative of the
higher order kernel, followed by a large number of inte-
grations. Fortunately, this last contribution is of
Oðg2ðp2Þ=4�Þ smaller than the one of I0 and it will be
neglected in the following. The uncertainty introduced in
this last step is not expected to be large since many of the
mass generation characteristics are preserved when we go
beyond the rainbow approximation [14].
The ansatz of Eq. (7), when inserted into Eq. (10) leads

to

M2
H ¼ 4m2

�
nfN

8�2

�
I1ð�Þ�þ I2ð�Þ 3cg

2ðmÞ
16�2

��
m

f0�

�
2
�
;

(12)

where we defined the integrals
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I1ð�Þ ¼ 1

�ð4�Þ
Z 1

0
dz

z4��1e�z

ð1þ 4�þ �zÞ ;

I2ð�Þ ¼ 1

�ð4�þ 1Þ
Z 1

0
dz

z4�e�z

ð1þ 4�þ �zÞ ;
(13)

with � ¼ bg2.

The ratio ðf0�m Þ2 can now be expressed as�
f0�
m

�
2 ¼ nfN

8�2

��
1þ �

2

�
I3ð�Þ þ 3cg2ðmÞ

16�2
I4ð�Þ

�
; (14)

where

I3ð�Þ ¼ 1

�ð2�Þ
Z 1

0
dz

z2��1e�z

2�þ �z
;

I4ð�Þ ¼ 1

�ð2�þ 1Þ
Z 1

0
dz

z2�e�z

2�þ �z
;

(15)

so we have

nfN

8�2

�
1þ �

2

�
I3ð�Þ ¼

ð1þ �
2Þ

2Zð�Þ : (16)

The function Zð�Þ is the same one that was obtained in
Ref. [12] [see Eq. (38) of that reference] and is equal to

ðZð�ÞÞ�1 � Nnf

4�2

1

�ð2�Þ
Z 1

0
dz

z2��1e�z

ð2�þ �zÞ : (17)

The final result for the scalar composite boson mass
obtained with the help of the BSE normalization condition
can be written as

M2
H ¼ 4m2

� I1ð�Þ�þ I2ð�Þ 3cg2ðmÞ
16�2

ð1þ �
2ÞI3ð�Þ þ 3cg2ðmÞ

16�2 I4ð�Þ
�
þOðg2Þ; (18)

where m is the dynamical mass and the uncertainty of
Oðg2Þ in Eq. (18) is to remember that we neglected the
contribution of the term IK. As we shall see in the follow-
ing the term between brackets in Eq. (18) will reduce the
value of the scalar composite mass.

III. SCALAR MASSES IN QCD AND TC

In QCD it is expected that the asymptotic behavior of the
dynamical quark self-energy is proportional to m3

dyn=p
2

[9]. This means that the self-energy, as well as the wave
function of the scalar bound state, decrease very fast with
the momentum. This situation corresponds in our ansatz
for GðpÞ [Eq. (7)] to the case where � ! 1, and Eq. (18)
gives

Mð1Þ
H � m� ¼ 2mQCD

dyn ð1þOðg2ÞÞ; (19)

meaning that the result of Delbourgo and Scadron [2] is not
changed by the BSE normalization condition when the
fermionic self-energy has the asymptotic behavior pre-
dicted by the standard OPE. This result is easy to under-

stand because the integrals of the BSE normalization
condition are extremely convergent in this case and no
extra condition appears in this situation.
The most interesting case is when � ! 0, which is the

case of the extreme walking (or quasiconformal) techni-
color theories. In this case Eq. (18) gives

M2ð0Þ
H � 4m2

�
1

4

bg2ðmÞð2�� 1Þ
ð1þ bg2ðmÞð2��1Þ

2 Þ
�
: (20)

Notice that in order to have a positive mass we must
have ð2�� 1Þ> 0, in such a way that we recover Lane’s
condition [9], i.e.

� > 1
2: (21)

At this point it is important to remember that the dy-
namical mass (m) depends on the dynamics of a particular
theory and, as emphasized in Refs. [8,15], it should be
written in terms of known standard model quantities and
TC theory gauge group and fermion content. The way this
is accomplished follows the work of Ref. [8]: m will be
related to F� (the technipion decay constant), and this last
one will be related to the vacuum expectation value of the
standard model through

g2wnFF
2
�

8
¼ g2wv

2

4
¼ M2

W; (22)

where gw is the weak coupling constant, v� 246 GeV is
the standard model vacuum expectation value and F� is
obtained from the Pagels and Stokar relation [16],

F2
� ¼ NTC

4�2

Z dp2p2

ðp2 þ�2ðp2ÞÞ2
�
�2ðp2Þ � p2

2

� d�ðp2Þ
dp2

�ðp2Þ
�
: (23)

Where we are also changing our notation (nf ! nF, N !
NTC, f� ! F�) because in the following we shall refer
only to TC theories.
The relation between F� and mdyn will depend strongly

on the �ðp2Þ behavior described by Eq. (2), and the dy-
namical masses in the limits � ¼ 0 and � ¼ 1 will be
given by

mð0Þ �
�
v

�
8�2bg2ð2�� 1Þ

NTCnF

�
1=2

�
(24)

mð1Þ �
� ffiffiffi

4

3

s
v

�
8�2

NTCnF

�
1=2

�
: (25)

Therefore, with the help of Eq. (5) of [8] we end up with
the following expression for the scalar composite mass:
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M2ð0Þ
H � 4v2

�
8�2bg2ðmÞð2�� 1Þ

NTCnF

�

�
�
1

4

bg2ðmÞð2�� 1Þ
ð1þ bg2ðmÞð2��1Þ

2 Þ
�
; (26)

where v� 246 GeV is the standard model vacuum expec-
tation value and we are considering a SUðNTCÞ group with
nF technifermions.

The result of Eq. (26) should be compared to the one of
Ref. [12], that was obtained from an effective action for
composite operators, and which, if we neglect the contri-
bution from the top quark, gives the following result:

m2
H � 2�ð0Þ

4VR

�
�ð0Þ
4VR

�ð0Þ
6VR

�
; (27)

where the �0s couplings appearing in Eq. (27) are equal to

�ð0Þ
4VR ¼ NTCnF

4�2
½Zð0Þ�2

�
1

bg2ð4�� 1Þ þ
1

2

�
;

�ð0Þ
6VR ¼ NTCnF

4�2

½Zð0Þ�3
m2

;

(28)

and

Zð0Þ ¼ 4�2bg2ð2�� 1Þ
NTCnF

: (29)

In the calculation of the effective action [12] it was
assumed that c�TC � �

3 , and the same will be done here.

This choice is the same one proposed in Ref. [17], seems to
be in agreement with recent estimates of the infrared
coupling in the QCD case [18] and is necessary in order
to compare the present calculation with the one of
Ref. [12]. The dynamical mass can be related with the
vacuum expectation value of the Higgs field in the standard
model through the relation

v2 ¼ nF
2
F2
� ¼

�
1þ �

2

�
m2

2Zð�Þ ; (30)

and the technipion decay constant (F�) was obtained from
the Pagels and Stokar relation [16], as described in Ref. [8].
Zð�Þ is a factor computed in Ref. [12], which in the limit
� ! 0 is reduced exactly to Eq. (29). We can now present
in Fig. 1 the masses that we have obtained in the limit � !
0, that is the limit of walking (or quasiconformal) theories.

The curves of Fig. 1 were obtained for extreme walking
(or quasiconformal) SUðNTCÞ gauge theories in the case
where the fermions are in the fundamental representation.
These curves represent three different calculations of the
scalar boson masses. The curve depicted in green corre-
spond to the result obtained with Eq. (2), the curve in red
was obtained from the effective action calculation of
Ref. [8] and show the masses computed with the help of
Eq. (27), and the values of masses indicated in blue are the
ones computed in this work and given by Eq. (26). We

credit the larger mass values obtained in Ref. [12] to the
fact that the effective action is able to capture some of the
nonlinear effects present in the SDE (or BSE) and due to
the process of normalization of the effective composite
field.

IV. HIGGS MASS WITH FERMIONS IN HIGHER
DIMENSIONAL REPRESENTATIONS

Equation (26) is a quite general expression to be used in
the case of extreme walking (or quasiconformal) gauge
theories, where the factor NTC has to be changed by C2ðGÞ
when dealing with groups other than SUðNTCÞ technicolor.
Furthermore we have dealt only with gauge theories where
the fermions are in the fundamental representation, but we
can use Eq. (26) to obtain scalar masses when the fermions
belong to higher dimensional representations, as well as for
unitary groups other than SUðNTCÞ. In order to do so we
just have to compute the coefficients b, � for the appro-
priate groups and number of technifermions (nF). The
advantage of working with higher dimensional fermionic
representations has been extensively advocated by Sannino
and collaborators [19,20], and the most important one is
that we can obtain walking, or quasiconformal, TC theories
with a small number of technifermions and in conformity
with high precision standard model data.
The number of fermions in different group representa-

tions that lead to a walking (or quasiconformal) gauge
theory can be obtained looking at the zero of the two-

FIG. 1 (color online). This figure shows the scalar masses
computed for extreme walking SUðNTCÞ gauge theories in the
case where the fermions are in the fundamental representation.
The curves depicted in green (top), red (middle) and blue
(bottom) were computed using, respectively, Eqs. (2), (26), and
(27), and we used the following number of fermions: nF ¼ 8, 11,
14, 18 for SU(2) to SU(6), respectively.
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loop �ðg2Þ function, which is given by

�ðgÞ ¼ ��0

g3

ð4�Þ2 � �1

g5

ð4�Þ4 ; (31)

where

�0 ¼ ð4�Þ2b ¼ 11
3C2ðGÞ � 4

3TðRÞnFðRÞ; (32)

and

�1 ¼
�
34
3C

2
2ðGÞ � 20

3C2ðGÞTðRÞnF � 4C2ðRÞTðRÞnF
�
:

(33)

We will consider only fermions that are in the representa-
tion R and condensate into a singlet state, for which the
constant c that enters in the definition of the parameter � of
Eq. (7) is given by

c ¼ C2ðRÞ; (34)

remembering that C2ðRÞI ¼ Ta
RT

a
R and C2ðRÞdðRÞ ¼

TðRÞdðGÞ, where dðRÞ is the dimension of the representa-
tion R, while the label G refers to the adjoint
representation.

Notice that the walking (or quasiconformal) theory is not
necessarily specified by the zero of the �ðgÞ function.
Actually there is a window of number of flavors that
characterize a quasiconformal (or walking) theory. This
point has been discussed by Sannino and collaborators
[20], and they verified that the number of fermions below
which the theory undergoes chiral symmetry breaking
while quasiconformal and asymptotically free can be ob-
tained from the following expression:

nF ¼ 17C2ðGÞ þ 66C2ðRÞ
10C2ððGÞ þ 30C2ðRÞ

C2ðGÞ
TðRÞ : (35)

Considering the two-loop beta function and using the
number of fermion on the border of the conformal window,
Eq. (35), in order to still have chiral symmetry breaking
leading to the extreme case of walking theories, we ob-
tained the Higgs masses when technifermions are in higher
dimensional representations as shown in Table I. We also
show the behavior of Higgs mass as a function of NTC in
some representations of SUðNTCÞ, Spð2NTCÞ, and SOðNTCÞ
in Figs. 2–4.

The mass values shown in Table I and in the Figs. 2–4
are quite light when compared with the ones determined in
the early work of Ref. [6]. These values may still have
contributions from the larger order corrections to Eq. (10),
which are very difficult to calculate, but based on the work
of Ref. [13] we can at least say that the sign of the
contribution is positive in the sense of increasing the scalar
masses. The scalar boson will interact with the ordinary
fermions, and, in particular, strongly with the top quark;
this interaction will give a new contribution to the scalar
mass that has been computed in Ref. [12], which will also
increase all the scalar masses that we have calculated by a

factor of the same order, depending more on the top-scalar
coupling than anything else. Other sources of contributions
to the scalar masses are more model dependent, such as the

TABLE I. Higgs mass,MH , and number of Dirac fermions, nF,
used to compute the Higgs mass in some representations of
SUðNÞ, Spð2NÞ, and SOðNÞ. The number of fermions considered
are such that they are on the border of the conformal window for
the representations F (fundamental), G (adjoint), S2 (2-index
symmetric), and A2 (2-index antisymmetric). For the SOðNÞ we
considered only those NTC for which we could have at least 2
Dirac fermions on the border of the conformal window.

Group Representation nF Higgs mass (GeV)

SU(2) F 8 142

SU(3) F 12 106

SU(2) G 2 414

SU(3) G 2 338

SU(4) G 2 293

SU(5) G 2 262

SU(6) G 2 239

SU(2) S2 2 414

SU(3) S2 2 320

SU(4) S2 2 267

SU(5) S2 2 233

SU(6) S2 4 197

SU(7) S2 4 179

SU(3) A2 12 106

SU(4) A2 8 130

SU(5) A2 6 130

SU(6) A2 6 131

SU(7) A2 6 128

Sp(2) F 8 142

Sp(4) F 12 102

Sp(2) G 2 414

Sp(4) G 2 338

Sp(6) G 2 293

Sp(8) G 2 262

Sp(10) G ¼ S2 2 239

Sp(12) G ¼ S2 2 221

Sp(14) G ¼ S2 2 207

Sp(4) A2 6 177

Sp(6) A2 4 194

Sp(8) A2 4 199

Sp(10) A2 3 188

Sp(12) A2 3 183

Sp(14) A2 3 176

SO(6) F 8 130

SO(7) F 10 103

SO(6) G ¼ A2 2 293

SO(7) G ¼ A2 2 262

SO(8) G ¼ A2 2 239

SO(9) G ¼ A2 2 221

SO(10) G ¼ A2 2 207

SO(14) S2 2 197

SO(15) S2 2 187

SO(16) S2 2 179

SO(17) S2 2 172
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fact that a composite scalar boson could mix with other
scalars, formed, for instance, by technigluons, which is a
problem already discussed for the sigma meson in QCD
[3], but not taken into account here. Techniquarks may
have a current mass and will also introduce an extra con-
tribution to the SDE solution and modify our prediction.
Nevertheless all these are probably minor effects that
should not change drastically the mass values that we
have shown here.

There are experimental constraints on the models shown
in Table I. Since some of the obtained masses are very light
we have a strong constraint coming from the lower direct
bound on the Higgs boson mass [21]:

MH � 114:4 GeV;

and a small window of masses above this value has also
been constrained by Fermilab data [22]. These values when
compared to the ones in Table I and also Figs. 2–4 show
how difficult is to build a realistic model for the dynamical
symmetry breaking of the standard model with walking (or

quasiconformal) gauge theories when the fermions are in
the fundamental representation. No matter the walking
technicolor gauge group is SUðNTCÞ, Spð2NTCÞ, or
SOðNTCÞ with fermions in the fundamental representation
the scalar mass turns out to be very small and, if not
excluded, it is on the verge of being tested by future
experiments.
Looking at Figs. 2–4 we see that when the fermions are

in higher dimensional representations the SUðNÞ, Spð2NÞ,
or SOðNÞ theories in general lead to scalar masses above
the present experimental limit. This is certainly the case for
fermions in the adjoint and 2-index symmetric representa-
tion for all these theories. It is interesting that in the case of
technifermions in the 2-index antisymmetric representa-
tion of SUðNTCÞ and Spð2NTCÞ the scalar masses have an
almost stable value as we increase NTC while we maintain
the walking behavior.
A strong experimental constraint for walking gauge

theories with fermions in the fundamental representation
also comes from the limits on the S parameter [23], whose
perturbative expression is

S ¼ 1

6�

nF
2
dðRÞ; (36)

where dðRÞ is the dimension of the representation R,
obtained from

dðRÞ ¼ TðRÞdðGÞ=C2ðRÞ:
For fermions in the fundamental representation the walk-
ing (or quasiconformal) behavior is obtained only with a
large number of fermions, but this implies large S values.
As discussed by Dietrich and Sannino [20], we can impose
arbitrarily the limit S < ��1 on the models of Table I in
order to be in accordance with the experimental limits [21].
These constraints severely limit the possibility of viable
models of walking technicolor gauge theories with fermi-
ons in the fundamental representation. We still have pos-
sible models with fermions in higher dimensional

3 4 5 6 7
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MH GeV

A2

F

G

S2

FIG. 2 (color online). Higgs mass for SUðNTCÞ in the repre-
sentations F (fundamental), G (adjoint), S2 (2-index symmetric),
and A2 (2-index antisymmetric).
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FIG. 4 (color online). Higgs mass for SOðNTCÞ in the repre-
sentations F (fundamental), G (adjoint), S2 (2-index symmetric),
and A2 (2-index antisymmetric).
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FIG. 3 (color online). Higgs mass for Spð2NTCÞ in the repre-
sentations F (fundamental), G (adjoint), S2 (2-index symmetric),
and A2 (2-index antisymmetric).
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representations in order to discuss a viable standard model
dynamical symmetry breaking. For instance, in the
SUðNTCÞ case, for fermions in the adjoint and 2-index
symmetric and antisymmetric representations, the models
that survive the constraint imposed by the S value are the
same ones described by Dietrich and Sannino [20]. We
have not considered the possibility of partial electroweakly
gauged technicolor, with or without mixed representations.
This case deserves further study and most certainly may
modify the mass values that we obtained.

V. CONCLUSIONS

The scalar boson masses generated in dynamically bro-
ken gauge theories have been computed in technicolor
theories with the help of the Bethe-Salpeter equation. We
have shown that these masses must be written in terms of
measurable standard model quantities and group theoreti-
cal factors, and, particularly in the case of walking (or
quasiconformal) technicolor gauge theories, we verified
that the mass calculation in the BSE approach must be
supplemented with the BSE normalization condition. We
recovered also a constraint on the asymptotic behavior of
the scalar wave function obtained many years ago by Lane
[9].

We obtained an expression for the scalar composite mass
valid for any gauge group and fermion representation. The
scalar masses that appear in the walking limit are much
lighter than the old estimate of Ref. [6]. Considering the
direct limit on the Higgs boson mass and the bound deter-
mined by the high precision standard model data it is
possible to see that a technicolor model with fermions in

the fundamental representation, within our approxima-
tions, will have a quite light Higgs mass, which is on the
verge of the actual direct exclusion limit and may be soon
assessed by the LHC. As can be seen in Figs. 2–4, when the
technifermions are in higher dimensional representations
(adjoint, 2-index symmetric, and antisymmetric) the scalar
masses turn out to be larger, and the models that survive the
limit imposed by the experimental value of the S parameter
are the same ones already discussed in the literature. It
would be interesting to apply the formalism that we dis-
cussed here to the case of partial electroweakly gauged
technicolor, with or without mixed representations, from
which we may expect different spectra of masses.
It is quite interesting that the scalar composite masses

can be computed under certain controllable approxima-
tions, as in the Bethe-Salpeter approach, and the results
shown here confirm the ones obtained in a more compli-
cated calculation as the one of the effective action of
Ref. [12], although there are still differences when com-
paring the methods, which can be considered natural con-
sidering the complexity of these theories. We finally stress
the importance of considering the BSE normalization con-
dition when computing scalar masses in the case of walk-
ing gauge theories through the BSE approach.
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