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The distribution of the phase angle and the magnitude of the fermion determinant as well as its

correlations with the baryon number and the chiral condensate are studied for QCD at non zero quark

chemical potential. Results are derived to one-loop order in chiral perturbation theory. We find that the

distribution of the phase angle is Gaussian for small chemical potential and a periodic Lorentzian when

the quark mass is inside the support of the Dirac spectrum. The baryon number and chiral condensate are

computed as a function of the phase of the fermion determinant and we discuss the severe cancellations

which occur upon integration over the angle. We compute the distribution of the magnitude of the fermion

determinant as well as the baryon number and chiral condensate at fixed magnitude. Finally, we consider

QCD in one Euclidean dimension where it is shown analytically, starting from the fundamental QCD

partition function, that the distribution of the phase of the fermion determinant is a periodic Lorentzian

when the quark mass is inside the spectral density of the Dirac operator.
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I. INTRODUCTION

The phase diagram of strongly interacting matter is
expected to show several phases as a function of the
temperature and the baryon chemical potential. Matter in
nuclei, in compact stars, and in the early universe are in
different parts of the phase diagram and large experimental
and theoretical efforts have been invested to understand
their properties. Of particular intense interest is the critical
end-point. Its existence is expected mainly on the findings
of model studies that the baryon density is discontinuous as
a function of the chemical potential [1]. Lattice QCD,
which has allowed us to determine the nature of the phase
transition at zero baryon chemical potential [2], appears to
be the natural tool to study the nonperturbative phenomena
which take place near the end point. However, probabilistic
lattice QCD methods are not directly applicable at nonzero
baryon chemical potential: Monte Carlo importance sam-
pling, which is at the core of Lattice QCD computations,
requires that the Euclidean action is real. At non zero
chemical potential, though, the quark determinant is com-
plex. This severe obstacle is known as the sign problem.

Recent numerical progress in understanding the phase
diagram of strongly interacting matter at nonzero chemical
potential has reopened the field. Not only has it been
understood that the location of the end point in the
ð�; TÞ-plane is extremely sensitive to the quark mass [3],
it may also be that the dependence of the end point on
quark mass is very different from what was commonly
accepted [3]. Because of the sign problem these conclu-
sions where reached from analytic continuations of lattice
simulations carried out at imaginary values of the chemical
potential. Such an extrapolation [4–7] is not without pit-
falls. It has recently been demonstrated [8] that utmost care

should be taken when attempting to extract information on
the critical end point from a Taylor expansion at� ¼ 0 [9–
13]. Moreover, it was demonstrated in [14] that the nu-
merical implementation of the reweighting approach [15–
17] is extremely delicate even at small values of the
chemical potential.
Lately alternative numerical methods such as the density

of states method and the complex Langevin method have
been explored. Despite early reports of its failure [18–20],
the complex Langevin method has been shown to be able to
deal with sign problems in simple models and for a gas of
relativistic bosons [21]. On the analytical front, the severity
of the sign problem was analyzed for QCD at low energy
and for models of the QCD partition function [22–26]. The
intricate connections between the sign problem, chiral
symmetry, and the Dirac spectrum, have been understood
in the �-regime of QCD [27].
In the present work we focus on the density of states

method [28–33]. In this approach one evaluates an observ-
able numerically for a fixed given quantity and thereby
obtain the distribution of this observable over the fixed
quantity. The full expectation value of the observable is
then obtained by integration over the fixed quantity. This
method has had some success when the baryon number, the
average plaquette or the phase of the fermion determinant
is kept fixed. In this paper we are particularly interested in
the last approach since it goes back to the root of the sign
problem. If we would know the exact distribution function
of the phase of the fermion determinant as well as its
correlations with physical observables, the sign problem
would have been solved: the delicate cancellations due to
the fluctuations of the phase could be realized exactly by an
analytical integration over the phase according to the dis-
tribution function and its correlations.
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We will use chiral perturbation theory to compute the
distribution of the phase of the fermion determinant

h�ð�� �0ÞiNf
d�

¼
R
dAj detðDþ��0 þmÞjNfeiNf�

0
�ð�� �0Þe�SYMR

dAj detðDþ��0 þmÞjNfeiNf�
0
e�SYM

d�:

(1)

Here �0 refers to the phase of the fermion determinant. It is
a function of the gauge field configuration which we aver-
age over, i.e. expð2i�0Þ ¼ detðDðAÞ þ��0 þ
mÞ=det�ðDðAÞ þ��0 þmÞ. Because of the sign problem
the distribution of the phase is not real and positive. The
complex nature, however, is of the simplest possible form:
Since

h�ð�� �0ÞiNf
¼ ei�Nf

ZjNfj
ZNf

h�ð�� �0ÞijNfj: (2)

the �-distribution factorizes into expði�NfÞ and a real and

positive distribution. Here, ZNf
is the Nf flavor partition

function and ZjNfj is the phase-quenched Nf flavor parti-

tion function. The subscripts Nf and jNfj refer to averages
with respect to these two partition functions, in this order.
For Nf ¼ 2 this relation reads

h�ð�� �0Þi1þ1 ¼ e2i�
Z1þ1�

Z1þ1

h�ð�� �0Þi1þ1� ; (3)

where here and below the subscript 1þ 1 refers to QCD
with two ordinary flavors whereas the subscript 1þ 1�
refers to QCD with one ordinary flavor and one conjugate
flavor. By definition the fermion determinant of a quark
and a conjugate quark are each others complex conjugates
so that the total measure is real and positive. The
�-distribution of the phase-quenched theory, h�ð��
�0Þi1þ1� , is necessarily real and positive. Moreover it is
normalized to one. Also the �-distribution of the full theory
h�ð�� �0Þi1þ1 is normalized to one. On the right-hand side
(rhs) of (3), however, the ratio Z1þ1�=Z1þ1 grows exponen-
tially fast with the volume so that the phase factor, e2i�,
must lead to exponentially large cancellations.

As we shall see it is essential to discuss separately the
case when 2�=m� < 1 and the case when the quark mass is
inside the support of the spectral density of the Dirac
operator. (The scale m�=2 appears in the spectrum of the
Dirac operator because the generating functionals for the
eigenvalue density has quarks and conjugate quarks. The
link between the Dirac spectrum of the full theory and the
phases of the phase-quenched theory are discussed in detail
in [34–37]). We will show below that the real and positive
part of the �-distribution becomes a periodic superposition
of Gaussians when the quark massm is outside the support
of the Dirac spectrum. When the quark mass is inside the
support of the Dirac spectrum the sign problem becomes
much more severe [24,27]. Figure 1 gives a schematic

picture of the phase diagram of QCD as well as the region
where the quark mass is inside the spectral support of the
Dirac operator. As we will show below, the �-distribution
in this region is not only very wide/flat, it also changes
shape into a periodic superposition of Lorentzians. A hint
of this dramatic change is already present in (3). When the
quark mass enters the spectral support of the Dirac operator
a phase transition occurs in the phase-quenched theory
while the full theory remains unaltered [27]. The exponen-
tial growth of the ratio Z1þ1�=Z1þ1 with the volume is thus
particularly rapid when the quark mass enters the spectral
support of the Dirac operator.
The Gaussian shape of the �-distribution for small �

was first observed numerically by Ejiri in [33] where it is
also argued that this form is a natural consequence of the
central limit theorem. The change from the Gaussian to the
Lorentzian form for larger values of� therefore suggests a
breakdown of the conditions for the application of the
central limit theorem. To cast further light on this we
also compute the distribution of the phase, h�ð�� �0Þi,
for lattice QCD in one Euclidean dimension. As we will
show, it is possible to derive the Lorentzian form of the
�-distribution directly from the one-dimensional lattice
QCD partition function, when the quark mass is inside
the support of the Dirac spectrum.
In addition to the distribution of the phase of the fermion

determinant we also consider the direct dependence of
observables O on the phase � through the distribution-
function

hO�ð�� �0Þi: (4)

The integral over � obviously gives the full expectation

T

µm  /2 m  /3π N

inside eigenvalues
Quark mass

FIG. 1 (color online). A schematic picture of the phase dia-
gram of QCD as a function of the quark chemical potential �
and the temperature T. Chiral symmetry is spontaneously broken
below the full curve. The dashed curve indicates where the quark
mass enters the Dirac spectrum. As this happens the nature of the
sign problem changes. To the left of the dashed curve the
distribution of phase of the fermion determinant is a periodic
superposition of Gaussians whereas it is a periodic superposition
of Lorentzians to the right of the dashed curve. We stress that the
dashed curve does not indicate a phase transition in QCD.
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value hOi. The �-dependence of the observable shows if
severe cancellations take place in this integral.
Furthermore, the distribution of the observable with the
phase allows us to address which range of the phase is
essential for the full expectation value of O.

We will compute the distribution of the baryon number
operator, its square as well as the distribution of the chiral
condensate over �. It is found that the distributions,
hO�ð�� �0Þi, take complex values and that drastic cancel-
lations occur when integrating over �.

This paper is organized as follows. In Secs. II and III we
briefly recall a few facts about chiral perturbation theory
which are relevant for the calculation of the average phase
factor and the distribution of the phase angle. Then we turn
to the distributions of the baryon number (Sec. IV), the off-
diagonal susceptibility (Sec. V) and the chiral condensate
(Sec. VI) over the phase angle of the fermion determinant.
These one-loop results are all valid for�<m�=2. Next we
discuss the distribution of the phase for an ensemble gen-
erated at � ¼ 0. The difference in the phase distribution
for �-counting rather than the p-counting in pointed out in
Sec. VIII. In Sec. IX it is shown that the leading order
prediction for the �-distribution takes a Lorentzian shape
for �>m�=2. The Lorentzian form is then obtained as an
exact result for lattice QCD in one Euclidean dimension in
Sec. XI. The remainder of the paper discusses the radial
distribution of the fermion determinant.

II. 1-LOOP CHIRAL PERTURBATION THEORY
AND THE AVERAGE PHASE FACTOR

The first step towards obtaining the distribution of the
phase is to understand the average of the phase factor. In
this section we review the calculation of the average phase
factor in chiral perturbation theory.

Chiral perturbation theory [38] is the low energy effec-
tive theory of QCD in the phase where chiral symmetry is
broken spontaneously. It describes the dynamics of the
Goldstone modes, i.e. the pions and the kaons. We shall
work in the so called p-expansion of chiral perturbation
theory where the small expansion parameter is

p�m� ��� T � 1

L
: (5)

For �<m�=2 the chemical potential modifies the pion
propagator in the standard way for relativistic bosons. The
one-loop contribution to the free energy from a pair of
charge conjugate pions (the chemical potentials are there-
fore � and ��) is thus given by

G0ð�;��Þ � �X
pk�

logðj ~p2
k� þm2

� þ ðpk0 � 2i�Þ2j2Þ;

(6)

where

pk� ¼ 2�k�
L�

; k� integer: (7)

After a Poisson resummation this can be expressed as [23]

G0ð�;��Þ ¼ �V
X
l�

Z ddp

ð2�Þd e
iL�p�l�

� logðj ~p2 þm2
� þ ðp0 � 2i�Þ2j2Þ; (8)

where the sum is over all integers. The thermodynamic
limit is given by the term l� ¼ 0. Here, two facts about this
term, which we denote by G0jV¼1, are essential: i) it is
independent of � ii) it includes the entire 1-loop diver-
gence (see [39] for a discussion). In dimensional regulari-
zation it is given by

G0jV¼1 ¼ 2

ð4�Þd=2 �
�
� d

2

�
md

�: (9)

The finite part of the 1-loop free energy, denoted by g0ð�Þ,
contains the sum over the terms with l� � 0. This results in
the decomposition

G0ð�;��Þ ¼ G0jV¼1 þ g0ð�;��Þ: (10)

If we wish to keep track of the leading 1=V corrections to
the infinite volume result we have to evaluate the sum over
all four components of the momentum. The finite,�, L and
T dependent part then reads [23] (this expression general-
izes the result of [40] for � ¼ 0 to nonzero chemical
potential)

g0ð�;��Þ ¼ 2
Z 1

0

d�

�3
e�m2

�L
2�=4�

�
�Y3
�¼0

X
l�

e�2�l0L0��0e��ððl2�L2
�Þ=ð�L2ÞÞ � 1

�
;

(11)

where l� runs over all integers and L � ðL0L
3
i Þ1=4.

When the length of the box is considerably larger than
the Compton wavelength of the pion the sum over mo-
menta can be replaced by an integral, and the 1-loop
contribution to the free energy simplifies to the familiar
expression

g0ð�;��Þ ¼ Vm2
�T

2

�2

X1
n¼1

K2ðm�n
T Þ

n2
cosh

�
2�n

T

�
: (12)

As the simplest relevant example let us now consider the
average phase factor for the phase-quenched theory. By
definition we have that

he2i�0 i1þ1� ¼ Z1þ1

Z1þ1�
: (13)

The phase-quenched theory in the denominator is identical
to QCD at nonzero chemical potential for the third com-
ponent of isospin [41]. This has an immediate conse-
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quence: since the pions carry isospin charge but no baryon
charge the free energy of Z1þ1� depends on � while the
usual free energy of Z1þ1 is independent of � when
evaluated in chiral perturbation theory. It is this depen-
dence on the chemical potential which makes it possible to
compute the average phase factor in chiral perturbation
theory despite the fact that pions have baryon charge zero.

For small � the leading (mean field) term in the chiral
Lagrangian, 2mh �c c iV, is identical in the two cases and
hence the phase factor is determined to leading order by the
one-loop effect

he2i�0 i1þ1� ¼ eG0ð�;�Þ

eG0ð�;��Þ ¼ eg0ð�¼0Þ�g0ð�Þ: (14)

With p-counting (5) we have that g0ð�Þ � g0ð� ¼ 0Þ �
V�2T2 � 1 as was discussed in detail in [24].

For �>m�=2 a Bose Einstein condensate of pions
forms in the phase-quenched theory and the mean field
terms in the chiral Lagrangian contribute to hexpð2i�0Þi.
These terms are of order �2F2V � V=L2 � L2. Hence, for
�>m�=2, the strength of the sign problem depends on L
even if we scalem� and� with L according to p-counting.

Since the difference of the finite parts of the one-loop
free energy appears repeatedly below, it will be convenient
to introduce the notation

�G0 � �G0ð�;��;m;mÞ
� G0ð�;��;m;mÞ �G0ð�;�;m;mÞ
¼ g0ð�;��;m;mÞ � g0ð�;�;m;mÞ: (15)

Below we will also meet free energies where the chemi-
cal potentials are not of opposite sign and where the quark
masses are different. To be precise we reserve the notation
�G0 as defined in (15), and explicitly write the dependence
on the chemical potentials and quark masses when
necessary.

III. THE DISTRIBUTION OF THE PHASE
(� <m�=2)

The distribution of the phase angle can be obtained from
the moments of the phase factor [24]

h�ð�� �0ÞiNf
¼ 1

2�

X1
p¼�1

e�ip�heip�0 iNf
: (16)

The even moments are ratios of a partition function with p
additional determinants and inverse conjugate determi-
nants and the usual Nf flavor partition function

he2ip�0 iNf
¼ 1

ZNf

�
detpðDþ��0þmÞ
detpðD���0þmÞdet

Nf ðDþ��0þmÞ
�
:

(17)

Since the number of charged Goldstone modes of the
partition function in the numerator is pðpþ NfÞ whereas

the contributions of the neutral Goldstone bosons from the
numerator and the denominator cancel, we obtain

he2ip�0 iNf
¼ e�pðNfþpÞ�G0 : (18)

When the quark mass is outside the support of the Dirac
spectrum, the contribution to the phase angle of individual
eigenvalues is in the range ½��=2; �=2�, and we expect
half-integer powers of the determinants in (17) are
smoothly connected to results obtained for integer powers.
In other words, we expect that the replica trick [42,43] can
be used to analytically continue the moments to half-
integer values of p. We then find

h�ð�� �0ÞiNf
¼ 1

2�

X1
p¼�1

e�ip��ðp=2Þððp=2ÞþNfÞ�G0

¼ 1

2�
eiNf�þð1=4ÞN2

f
�G0

X1
u¼�1

e�iu��u2�G0=4

¼ 1

2�
eiNf�þð1=4ÞN2

f
�G0#3ð�=ð2�Þ; e��G0=4Þ:

(19)

After a Poisson resummation this can be rewritten as [24]

h�ð�� �0ÞiNf
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��G0

p eiNf�þð1=4ÞN2
f
�G0

� X1
n¼�1

e�ð�þ2n�Þ2=�G0 ;

� 2 ½��;�� (20)

valid for a compact phase angle � 2 ½��;��.
Notice that

ZNf

ZjNfj
¼ e�ð1=4ÞN2

f
�G0 (21)

so that to be consistent with the general form given in (3),
the result (20) shows that the quenched and the phase-
quenched �-distributions are identical. Also note that the
�-distribution depends only on �G0. Plots for �G0 ¼ 0:2
and �G0 ¼ 10 are shown in Fig. 2. Notice the different
scales in the two plots. For �G0 ¼ 10, when the sign
problem is severe, the normalization to one requires a
delicate cancellation.
As long as the contribution to the phase of the fermion

determinant from individual eigenvalue pairs does not
exceed �=2 one can unambiguously define the phase of
the determinant on ½�1;1� as was done by Ejiri [33]. To
obtain this distribution simply interpret the angle in (20) as
ranging from �1 to 1. This leads to the Gaussian distri-
bution (here for Nf ¼ 2)

h�ð�� �0Þi1þ1 ¼ e2i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��G0

p e��2=�G0þ�G0 ;

� 2 ½�1;1�: (22)
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However, when the quark mass is inside the support of the
spectrum of the Dirac operator only the phase restricted
½��;�� can be defined uniquely. We return to this point in
Sec. IX where we derive the �-distribution for �>m�=2.

When the angles are noncompact and replica trick can
be used, it is useful to represent the �-function in Eq. (19)
by an integral over p instead of a sum over p. Below this
will be exploited on several occasions to simplify our
expressions.

IV. THE BARYONNUMBEROPERATOR (� <m�=2)

Since the pions have zero baryon charge the baryon
number in chiral perturbation theory is automatically
zero. We will see below that the baryon number at fixed
� is a total derivative.

To derive hnB�ð�� �0Þiwe first compute the correlation
between the baryon number and all moments of the phase
factor

hnBe2ip�0 i1þ1 ¼ 1

2Z1þ1

lim
~�!�

d

d ~�

�
detpðDþ��0 þmÞ
detpðD���0 þmÞ

� det2ðDþ ~��0 þmÞ
�
: (23)

To one-loop order in chiral perturbation theory we obtain

hdetpðDþ��0þmÞ
detpðD���0þmÞ det

2ðDþ ~��0 þmÞi
hdet2ðDþ��0 þmÞi

¼ e�2pð�G0ð��; ~�Þ��G0ð�; ~�ÞÞ�p2�G0ð��;�Þ: (24)

To keep track of the combinatorics it is essential to recall
that the one-loop free energy does not depend on the
baryon chemical potential, that is G0ð�;�Þ ¼ G0ð� ¼
0Þ. We conclude that

hnBe2ip�0 i1þ1 ¼ �
�
lim
~�!�

d

d ~�
p�G0ð��; ~�Þ

�

� e�pð2þpÞ�G0ð��;�Þ: (25)

The delta function �ð�� �0Þ is obtained after summing
over p. Interpreting the phase angle on h�1;1i and
proceeding in the same way as for the distribution of �
we obtain

hnB�ð�� �0Þi1þ1 ¼
�
lim
~�!�

d

d ~�
�G0ð��; ~�Þ

��
1þ i

�

�G0

�

� e2i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��G0

p e��2=�G0þ�G0 : (26)

The total baryon number density should vanish because
chiral perturbation theory does not include baryonic de-
grees of freedom. This can be seen simply by writing the
above expression as a total derivative

hnBi1þ1 ¼
�
lim
~�!�

d

d ~�
�G0ð��; ~�Þ

�

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��G0

p Z 1

�1
d�

1

2i

d

d�
e2i�e��2=�G0þ�G0 ¼ 0:

(27)

−1

0

1

2

Re[<δ(θ−θ’)>1+1]
Re[<nB δ(θ−θ’)>1+1]/<nI>

0−π π

θ

−5000

−3000

−1000

1000

3000

5000 Re[<δ(θ−θ’)>1+1]
Re[<nB δ(θ−θ’)>1+1]/<nI>

0−π π

θ

FIG. 2 (color online). The real part of the distribution of the phase h�ð�� �0Þi1þ1 (solid curve) for �G0 ¼ 0:2 left and �G0 ¼ 10
right. Also shown is the real part of the distribution of the baryon number over � (dashed curve). For better comparison the latter has
been rescaled by (lim~�!�

d
d ~��G0ð��; ~�Þ). The fact that the �-distribution is normalized to unity while the distribution of the baryon

number over � integrates to zero is not easy to see when �G0 ¼ 10. This directly illustrates the severity of the sign problem. Note that
the phase is constrained to � 2 ½��;��.

DISTRIBUTIONS OF THE PHASE ANGLE OF THE . . . PHYSICAL REVIEW D 80, 054509 (2009)

054509-5



The total derivative appears because all one-loop contri-
butions to the 2p’th moment of the phase factor are pro-
portional to p or p2 so that the differentiation to obtain the
baryon density leads to an overall factor p. This factor can
be expressed as a total derivative with respect to �. Notice
that when �G0 � 1 the extreme tail of the distribution
over � can contribute significantly to the cancellation of the
total baryon number.

If we, as is usually the case, consider the phase on
½��;�� we get instead

hnB�ð�� �0Þi1þ1 ¼
�
lim
~�!�

d

d ~�
�G0ð��; ~�Þ

�

� X1
n¼�1

�
1þ i

�þ 2�n

�G0

�

� e2i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��G0

p e�ð�þ2�nÞ2=�G0þ�G0 : (28)

An illustration of hnB�ð�� �0Þi1þ1 is given in Fig. 2. For
small �G0, a small phase angle gives an excess of baryons
over antibaryons, which is cancelled by the opposite effect
at larger phase angle, resulting in nB ¼ 0. For large �G0

the plot is quite similar to the �-distribution which is also
shown in this figure. There is however an important differ-
ence: The integral over � of the �-distribution is unity
while the total baryon number is zero.

The importance of the tail for the cancellation of the
total baryon number translates into the importance of the
terms with large values of jnj.

V. THE OFF-DIAGONAL SUSCEPTIBILITY
(� <m�=2)

Even though pions have zero baryon charge chiral per-
turbation theory gives a nontrivial prediction for the off-
diagonal quark number susceptibility. To compute this
expectation value we start from

Z1þ1ð�;�aÞ ¼ hdetðDþ��0 þmÞdetðDþ�a�0 þmÞi:
(29)

where h. . .i is the quenched average. The average of the
off-diagonal susceptibility is then given by

h	i1þ1 ¼ 1

Z1þ1ð�;�Þ lim
�a!�

d

d�

d

d�a

Zð�;�aÞ: (30)

To one-loop order in chiral perturbation theory we find

Z1þ1ð�a;�bÞ
Z1þ1ð�;�Þ ¼ eG0ð�a;�bÞ�G0ð�¼0Þ: (31)

The one-loop contribution G0ð�a;�bÞ to the free energy
from a charged pion pair made out of quarks with chemical
potentials �a and �b only depends on the absolute
value of the difference �a ��b. Moreover, since
lim�a!�d=d�G0ð�;�aÞ ¼ 0 we immediately get

h	i1þ1 ¼ lim
�a!�

d

d�

d

d�a

�G0ð�;�aÞ: (32)

A. The distribution

To compute the contribution of configurations with a
specific phase to the off-diagonal susceptibility we first

compute the moments h	e2ip�0 i1þ1. We start from

Z1þ1þpjp� ð�a;�b;�j�Þ ¼
�
detpðDþ��0 þmÞ
detpðD���0 þmÞ

� detðDþ�a�0 þmÞ
� detðDþ�b�0 þmÞ

�
; (33)

and evaluate the limit

h	e2ip�0 i1þ1 ¼ 1

Z1þ1ð�;�Þ lim
�a;�b!�

d

d�a

� d

d�b

Z1þ1þpjp� ð�a;�b;�j�Þ: (34)

For the fermionic Goldstone modes we have an additional
minus sign leading to

Z1þ1þpjp� ð�a;�b;�j�Þ
Z1þ1ð�;�Þ ¼ e�p�G0ð�a;��Þ�p�G0ð�b;��Þ�p2�G0ð�;��Þþp�G0ð�a;�Þþp�G0ð�b;�Þþ�G0ð�a;�bÞ: (35)

Keeping track of p we find

h	e2ip�0 i1þ1 ¼ lim
�a!�

�
p2

�
d

d�
�G0ð�a;��Þ

�
2 þ d

d�

d

d�a

��G0ð�a;�Þ
�
e�pð2þpÞ�G0ð�;��Þ: (36)

For a noncompact phase angle � 2 ½�1;1� we obtain a
�-function in the left-hand side (lhs) after integrating over
p. Proceeding in the same way as for the distribution
function of the phase we find

h	�ð�� �0Þi1þ1 ¼
���

1þ i
�

�G0

�
2 þ 1

2�G0

�

�
�
d

d�
�G0ð�a;��Þ

�
2

�a¼�

þ d

d�

d

d�a

�G0ð�a;�Þ�a¼�

�

� e2i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��G0

p e��2=�G0þ�G0 : (37)
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The first term between round brackets results from the term
�p2 in Eq. (36) which, before summing over p can be
simply rewritten as second derivative with respect to �,

�
d

d�
�G0ð�a;��Þ

�
2

�a¼�

1

ð2iÞ2
d2

d�2

� e2i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��G0

p e��2=�G0þ�G0 : (38)

and vanishes upon integration over �. The � dependence of
the second term is the same as for the �-distribution which
is normalized to 1. Upon integration over the angle � we
thus recover the expectation value of the susceptibility
(32). Again we emphasize that for �G0 � 1 contributions
from the extreme tail may give important contributions to
the off-diagonal quark number susceptibility.

VI. THE CHIRAL CONDENSATE (� <m�=2)

In this section we compute the chiral condensate when
the phase angle of the fermion determinant is constrained
to �. This quantity is defined as

h �c c�ð�� �0Þi: (39)

Since the chiral condensate is nonzero for T ¼ 0 and � ¼
0 this derivation requires also the divergent part of the free
energy. The required generating functional has different
masses

hdetpðDþ��0þmÞ
detpðD���0þmÞ detðDþ��0 þ ~mÞ2i

hdetðDþ��0 þmÞ2i
: (40)

The desired expectation value he2ip�0 �c c i1þ1 is obtained
by taking the derivative with respect to ~m and subsequently
the limit ~m ! m. The combinatorics is much like for the
baryon number, but here we have to keep track of both
mass derivatives and the chemical potentials. This leads to

h �c c e2ip�
0 i1þ1 ¼ 1

2
lim
~m!m

d

d ~m

� hdetpðDþ��0þmÞ
detpðD���0þmÞ det

2ðDþ��0 þ ~mÞi
hdet2ðDþ��0 þmÞi

¼
�
h �c c i01þ1 þ

d

d ~m
½�pðG0ð�;��; ~m;mÞ

�G0ð�;�; ~m;mÞÞ þ ðG0ð�;�; ~m; ~mÞ
�G0ð�;�;m;mÞÞ� ~m¼m

�
e�pð2þpÞ�G0 :

(41)

Where h �c c i01þ1 is the one-loop renormalized chiral con-

densate at zero temperature and zero chemical potential.
For p ¼ 0 we obtain the one-loop renormalized chiral
condensate at nonzero temperature and nonzero chemical
potential

h �c c i1þ1 ¼ h �c c i01þ1 þ
d

d ~m
½ðG0ð�;�; ~m; ~mÞ

�G0ð�;�;m;mÞÞ� ~m¼m; (42)

which is independent of the chemical potential.
The distribution of the chiral condensate over the phase

� is obtained after multiplication by expð�ip�Þ and inte-
grating over p

h �c c�ð�� �0Þi1þ1 ¼
�
h �c c i01þ1 þ lim

~m!m

d

d ~m

��
1þ i

�

�G0

�

� ðG0ð�;��; ~m;mÞ
�G0ð�;�; ~m;mÞÞ þ ðG0ð�;�; ~m; ~mÞ
�G0ð�;�;m;mÞÞ

��

� e2i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��G0

p e��2=�G0þ�G0 : (43)

The factor 1þ i�=�G0 can again be written as a total
derivative of the exponential factors. Upon integration
the contribution from this term vanishes, and we recover
the full condensate (42)

h �c c i1þ1 ¼
Z 1

�1
d�h �c c�ð�� �0Þi1þ1: (44)

Again important tail contributions arise for �G0 � 1.

VII. THE �-DISTRIBUTION FOR AN ENSEMBLE
GENERATED AT � ¼ 0

In the method of Ejiri [33] one evaluates the
�-distribution as a function of the chemical potential for
an ensemble generated at zero chemical potential. Here we
compute this partially quenched �-distribution within one-
loop chiral perturbation theory.
We start out evaluating the moments of the phase factor

for an ensemble generated at zero chemical potential

1

Z1þ1ð� ¼ 0Þ
�
detpðDþ��0 þmÞ
detpðD���0 þmÞ det

2ðDþmÞ
�

¼ e�p2�G0ð�;��Þ: (45)

We then obtain the distribution (for �<m�=2)

h�ð�� �0Þi�¼0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��G0

p e��2=�G0 : (46)

This one-loop prediction is identical to that for the
quenched and phase-quenched ensemble: Whether we
compute the width of the Gaussian for the �-distribution
in the full ensemble generated at �, or the full ensemble
generated at � ¼ 0, or in the quenched ensemble, or the
phase-quenched ensemble, we find exactly the same result.
Ejiri also has studied distributions of F ¼ j detðDþ

��0 þmÞj= detðDþmÞ. His assumption is that the � dis-
tribution remains Gaussian even for a fixed value of F. As
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we shall see below, this assumption is justified for �<
m�=2 to one-loop order in chiral perturbation theory.

VIII. THE �-REGIME

The above analysis suggests that the chemical potential

has to be of the order of 1=
ffiffiffiffi
V

p
to suppress the correlation

between the phase and the chiral condensate or baryon
density. Such a scaling corresponds to the �-regime
[44,45] where the dimensionless quantities

m̂ � m�V and �̂2 � �2F2V; (47)

are kept fixed for V ! 1. Here and below � and F are the
chiral condensate and the pion decay constant as they
appear in the chiral Lagrangian. Note that it is possible
to go smoothly between the �- and p-regime see [46].

In the �-regime the moments of the phase factor remain
finite for V ! 1 [22,23]

he2ip�0 iNf
¼ ð1� 2�̂2=m̂ÞpðpþNfÞ; (48)

where we quote the result valid for m̂, �̂ � 1 and 2�̂2 <
m̂. To obtain the distribution of the phase in the �-regime
let us rewrite this as

he2ip�0 iNf
¼ e�pðpþNfÞ�Ĝ0 ; (49)

with

�Ĝ0 ¼ � logð1� 2�̂2=m̂Þ: (50)

It is of exactly the same form as Eq. (18). So we again find

the distribution (22) but now with �Ĝ0 instead of �G0

h�ð�� �0Þi1þ1 ¼ e2i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��Ĝ0

q e��2=�Ĝ0þ�Ĝ0 : (51)

The variance of the Gaussian envelope starts out at zero for
small � (i.e. for 2�̂2 � m̂) and approaches infinity as
logð1� x2Þ for x ! 1.

IX. THE �-DISTRIBUTION FOR � >m�=2

We now turn to the distribution of the phase of the
fermion determinant when the quark mass is inside the
support of the Dirac operator. For low T this means that
�>m�=2.

Because the Dirac operator is only determined up to an
operator with determinant equal to unity,

det½Dþ��0 þm� ¼ det½AðDþ��0 þmÞ�
with detA ¼ 1; (52)

the sum of the phases of individual eigenvalues of the Dirac
operator may differ by multiples or 2� depending on the
choice of A. As will be illustrated below the occurrence of
jumps by 2� will be qualitatively different whether or not
the quark mass is inside the support of the Dirac spectrum.
We now consider a family of matrices A that depend

continuously on a parameter 
 such that for 
 ¼ 0 the
matrix A is equal to the identity and for
 ¼ 1 the matrix A
is far from the identity. The spectral domain is then de-
formed continuously as a function of 
, and as long a no
eigenvalues cross the negative real axis, the sum of the
phases of the individual eigenvalues of the Dirac operator
is defined uniquely. When the quark mass is outside the
Dirac spectrum (�<m�=2) the cloud of eigenvalues will
not enclose the negative real axis for a finite range of 
.
This is not the case when the quark mass is inside the cloud
of eigenvalues and the sum of the individual phases is only
defined up to a multiple of 2�.
As example we consider

A ¼ cos
þ i�0 sin
 (53)

and a Dirac operator D with matrix elements given by the
chiral random matrix model [44]. In Figs. 3 and 4 we show
the spectrum of the operator AðDþmþ��0Þ as a func-
tion of 
 for an ensemble of 4 1600� 1600 matrices and
parameters as indicated in the caption of the figures. In
Fig. 3 the quark mass is just outside the spectral support
(�<m�=2), and in Fig. 4 the quark mass is just inside the
spectral support (�>m�=2). In the upper right corner of
each figure we give the overall phase of the fermion
determinant for each of the 4 configurations. The origin
is denoted by a red dot. We observe that in Fig. 3 the overall
phase does not change until the cloud of eigenvalues
crosses the negative real axis which happens close to 
 ¼
1. In Fig. 4, on the other hand, the phase jumps by multiples
of 2� for all values of 
. We also have considered other
choices for A such as a an random unimodular complex
matrix and similar behavior has been found.
For �<m�=2 it therefore makes sense to extend the

total phase to h�1;1i. For�>m�=2, the origin is inside
the cloud of eigenvalues and the phase of the determinant
can differ by multiples of 2� for any choice of A.
Therefore, when �>m�=2, it only makes sense to define
the phase modulo 2�.
As before, the �-function, �ð�� �0Þ, will be obtained

from the moments of the phase factor which now are
dominated by the leading order term in the chiral expan-
sion. Not surprisingly, this leads to a much wider
�-distribution. What is perhaps somewhat surprising is
that, as will be shown below, the distribution now takes a
Lorentzian shape. Because of ambiguities in the phase
angle we do not expect that we can use the replica trick
to calculate half-integer moments of the phase factor.
Therefore we will only evaluate the even moments,
hexpð2ip�0Þi, with integer values of p. This is sufficient
to obtain the full distribution of the total phase angle, 2� 2
½��;��, of detðDþ��0 þmÞ2 relevant for the two flavor
theory

h�ð2�� 2�0Þi ¼ 1

�

X1
p¼�1

e�2ip�he2ip�0 i: (54)
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Alternatively this can be seen as the combination 1
2 ½h�ð��

�0Þi þ h�ð�� �0 þ �Þi� of the distribution of the phase
angle, �, of detðDþ��0 þmÞ.

A. Bosonic partition function

The moments of the phase factor involve inverse powers
of determinants, c.f. Eq. (17). As was realized when inves-
tigating the partition function with one bosonic flavor such
inverse determinants lead to a phase transition at � ¼
m�=2. In order to compute the moments of the phase factor
for �>m�=2 to leading order in chiral perturbation the-
ory we therefore first recall the explanation of the exact
results for the bosonic partition function (obtained by
integration over the Goldstone manifold [47] or from the
Cauchy transform of the fermionic partition function [48–
50]) in terms of a mean field argument.

The observation of [48] is that the bosonic partition
function

�
1

detðDþ��0 þmÞ
�

¼
�

detðD���0 þmÞ
detðDþ��0 þmÞðD���0 þmÞ

� (55)

at a mean field level behaves like

hdetðD���0 þmÞi
hdetðDþ��0 þmÞðD���0 þmÞi : (56)

The reason is loosely speaking that the inverse determinant
must be regularized in order to be convergent and that
Grassmannian mean field terms are absent.
The denominator of Eq. (56) is the phase-quenched

theory which has a phase transition at � ¼ m�=2. The
mean field result for the phase-quenched theory is given by

hdetðDþ��0 þmÞðD���0 þmÞi ¼ e�VLI ; (57)

where [51,52]

FIG. 3 (color online). Scatter plot of the spectrum of the Dirac operator that interpolates between a basis where the mass matrix is
diagonal and a basis where ��0 is diagonal. Results are shown for an ensemble of 4 1600� 1600 matrices with mass, chemical
potential and interpolation parameter as shown in the caption of the figure. The origin is indicated by a red dot. The sum of the phases
of the eigenvalues of the fermion determinant denoted by � and is also shown in the figure (the values correspond to each of the 4
configurations).
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LI ¼ �2�2F2 � �2m2

2�2F2
(58)

is the static Lagrangian for �>m�=2. The average of the
determinant in the numerator of Eq. (56) is the familiar one
flavor partition function (which is independent of � in
chiral perturbation theory)

hdetðD���0 þmÞi ¼ e�VL0=2; (59)

where

L0 ¼ �2m� (60)

is the mean field Lagrangian at � ¼ 0. In conclusion, the
mean field result for the bosonic partition function is given
by �

1

detðDþ��0 þmÞ
�
¼ e�VL0=2þVLI : (61)

As shown in detail in [47,48] this gives the correct mean
field physics. Note the striking difference with the fermi-

onic partition function (59) which is independent of the
chemical potential.

B. The quenched �-distribution

Let us now use what we learned from the bosonic case to
compute the quenched distribution of the phase of the
fermion determinant for�>m�=2: Wewill first show that

he2ip�0 i ¼ e�VLBjpj; (62)

where LB ¼ L0 � LI withL0 and LI given above (note that
LB 	 0).
Since by charge conjugation symmetry hexpð2ip�0Þi ¼

hexpð�2ip�0Þi this expectation value only depends on the
absolute value of p, and we only need to consider p > 0.
First, we rewrite the moments as

he2ip�0 i ¼
�ðdetðDþ��0 þmÞ detðDþ��0 þmÞÞp
ðdetðDþ��0 þmÞ detðD���0 þmÞÞp

�
:

(63)

Now the contribution from the denominator is the inverse

FIG. 4 (color online). Scatter plot of the spectrum of the Dirac operator that interpolates between a basis where the mass matrix is
diagonal and a basis where ��0 is diagonal. The mass is such that the origin is inside the cloud of eigenvalues but otherwise the
parameters are the same as in Fig. 3. The overall phase changes by multiples of 2� as 
 varies. For further explanation, see the caption
of Fig. 3.
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of the replicated phase-quenched theory. This was worked
out in [37]

1

hðdetðDþ��0 þmÞ detðD���0 þmÞÞpi ¼ epVLI :

(64)

The contribution from the numerator is just

hðdetðDþ��0 þmÞ detðDþ��0 þmÞÞpi ¼ e�pVL0 ;

(65)

which together with the previous result reproduces
Eq. (62). The sum over p results in

h�ð2�� 2�0Þi ¼ 1

�

X1
p¼�1

e�2i�pe�VLBjpj

¼ 1

�

X1
n¼�1

2VLB

ðVLBÞ2 þ ð2�þ 2�nÞ2 : (66)

The sum over n can be evaluated as

h�ð2�� 2�0Þi ¼ 1

�

sinhðVLBÞ
coshðVLBÞ � cosð2�Þ : (67)

This is a compactified Lorentzian, centered at zero. We
recall that 2� 2 ½��;�� is the phase of detðDþ��0 þ
mÞ2.

C. The unquenched �-distribution

To calculate the unquenched �-distribution function we
again consider the moments hexpð2ip�0ÞiNf

. They can be

rewritten as

he2ip�0 iNf
¼ 1

ZNf

�
detuðDþ��0þmÞ
det�uðDþ��0þmÞ

�ðdet�ðDþ��0þmÞdetðDþ��0þmÞÞNf=2

�
;

(68)

where we have introduced u ¼ pþ Nf=2. By charge con-

jugation, this expectation values does not depend on the
sign of u ¼ pþ Nf=2, i.e. it only depends on juj, and it

only has to be calculated for p 	 �Nf=2. We separately

consider the cases p > 0 and 0 	 p 	 �Nf=2.

For p > 0 there are inverse powers of det�, and we apply
the rules of Sec. IXA

1

ZNf

he2ip�0detNf ðDþ��0 þmÞi

¼ 1

ZNf

�
det2pþNf ðDþ��0 þmÞ

ðdetðDþ��0 þmÞ detðD���0 þmÞÞp
�

’ 1

ZNf

hdet2pþNf ðDþ��0 þmÞi
hðdetðDþ��0 þmÞ detðD���0 þmÞÞpi ;

(69)

where the final equality holds at the mean field level. The
contribution from the denominator follows again from the
result of the replicated fermionic theory hðdetdet�Þpi, see
Eq. (65). The numerator is equal to expð�ðpþ Nf=2ÞL0Þ
and the normalization, 1=ZNf

, gives expðNf=2L0Þ.
Therefore the Nf dependence cancels, and we find the

quenched result for p > 0

he2ip�0 iNf
¼ e�pVLB; p 	 0: (70)

Here, we extended the equality to p ¼ 0 which is satisfied
trivially.
Now, let us look at negative values of p. This means that

det� is in the numerator and det is in the denominator. For
�Nf=2 
 p 
 0 the moments can be rewritten as

1

ZNf

�
detpðDþ��0 þmÞ
det�pðDþ��0 þmÞ det

Nf ðDþ��0 þmÞ
�

¼ 1

ZNf

�
det�jpjðDþ��0 þmÞ
detjpjðDþ��0 þmÞ det

Nf ðDþ��0 þmÞ
�
;

¼ 1

ZNf

hðdetðDþ��0 þmÞdet�ðDþ��0 þmÞÞjpj

� detNf�2jpjðDþ��0 þmÞi: (71)

Note that both exponents are positive. The jpj pairs of
conjugate quarks form a pion condensate while, at the
mean field level, theNf � jpj quarks are passive spectators
resulting in the average phase factor

he2ip�0 iNf
¼ eVNf=2L0�VjpjLI�VðNf=2�jpjÞL0 ;

¼ eVjpjðL0�LIÞ ¼ eVjpjLB

�Nf=2 
 p 
 0: (72)

Note that it smoothly connects to the p 	 0 result (70).
Combining the above results we find

he2ip�0 iNf
¼ e�VLBðjpþNf=2j�Nf=2Þ (73)

for any integer values of p.
The general result (73) implies that the �-distribution is

a Lorentzian times the phase factor:

h�ð2�� 2�0Þi1þ1 ¼ 1

�

X1
p¼�1

e�2i�pe�VLBðjpþ1j�1Þ

¼ e2i�
eVLB

�

sinhðVLBÞ
coshðVLBÞ � cosð2�Þ :

(74)

As we have seen previously, the unquenched 1þ 1 distri-
bution is related to the phase-quenched 1þ 1� distribution

h�ð2�� 2�0Þi1þ1 ¼ e2i�
Z1þ1�

Z1þ1

h�ð2�� 2�0Þi1þ1� : (75)

Comparing this with Eq. (67) and (74) we see that the
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quenched and phase-quenched �-distributions are identical
also for �>m�=2.

In conclusion, we have shown that the �-distribution is
nonanalytic at the point where the quark mass enters the
support of the Dirac spectrum. This implies, for example,
that the distribution of the phase in this regime cannot be
obtained by analytic continuation from imaginary values of
� (see [53,54] for a discussion of the analytic continuation
of the phase factor to imaginary values of the chemical
potential).

X. THE DISTRIBUTION OF THE BARYON
NUMBER AND THE CHIRAL CONDENSATE

(� >m�=2)

In this section we compute the distribution of the baryon
number and the chiral condensate over the phase angle. As
for the distribution of the angle itself we will work to
leading order in chiral perturbation theory which is the
mean field result for �>m�=2.

A. The baryon number

In order to work out hnB�ð2�� 2�0ÞiNf
we need the

moments

1

ZNf

�
detpðDþ��0 þmÞ
detpðD���0 þmÞ detðDþ ~��0 þmÞNf

�
; (76)

where the chemical potential for the Nf quarks is denoted

by ~�. The distribution is then obtained after differentiation
w.r.t. ~� at ~� ¼ �, multiplication by expð�2ip�Þ and
summation over p.

For p 	 0 the bosonic mean field rules discussed in
previous section lead to a factorization of the moments as
follows

1

ZNf

hdet2pðDþ��0 þmÞ detðDþ ~��0 þmÞNf i
hdetpðD���0 þmÞdetpðDþ��0 þmÞi : (77)

Since j ~���j<m� there is no condensation of pions for
the partition function in the numerator. It follows that there
is no dependence on ~� and hence all terms with p 	 0
vanish after differentiation w.r.t. ~�.

When p is negative the detjpjðD���0 þmÞ is in the
numerator and condensation of pions occurs. This leads to
a dependence on ~� through the mean field Lagrangian

LIð��; ~�Þ ¼ �2F2ð�þ ~�Þ2=4� 2�2m2

ð�þ ~�Þ2F2
: (78)

Note that this reduces to LI given in (58) for ~� ¼ �.
As in the previous section we must consider separately

the cases�Nf=2 
 p < 0 and p <�Nf=2. For�Nf=2 

p < 0 the moments are given by

1

ZNf

he2pi�0ð�ÞdetNf ðDþ ~��0 þmÞi

¼ e�2jpjVLIð��; ~�ÞþjpjVLIð��;�ÞþjpjVL0 (79)

at mean field level. While for p <�Nf=2 we find

1

ZNf

he2pi�0ð�ÞdetNf ðDþ ~��0 þmÞi

¼ e�NfVLIð��; ~�ÞþjpjVLIð��;�Þ�ðjpj�NfÞVL0 : (80)

In both cases the derivative w.r.t. ~� pulls down the pre-
factor V½d=d ~��LIð��; ~�Þ but multiplied with a different
numerical factor. This leads to

hnB�ð2�� 2�0ÞiNf

¼ 1

�

�
d

d ~�
LIð��; ~�Þ

�
~�¼�

�
� X
�Nf=2
p<0

ð�2Þjpje�2ip�e�VLBðjpþNf=2j�Nf=2Þ

þ X
p<�Nf=2

ð�NfÞe�2ip�e�VLBðjpþNf=2j�Nf=2Þ
�
: (81)

For Nf ¼ 2 there is only one term in the first sum, namely

p ¼ �1, and it can be included in the second sum

hnB�ð2�� 2�0Þi1þ1 ¼ 1

�

�
VLI

�

�

�ð�2Þ X
p
�1

e�2ip�e�VLBðjpþ1j�1Þ:

(82)

The sum can be performed analytically,

hnB�ð2�� 2�0Þi1þ1 ¼ � 2

�

�
VLI

�

�
e2i�e2VLB

1

eVLB � e2i�

¼ � 2

�

�
VLI

�

�
e2VLB

�1

2i

� d

d�
logðeVLB � e2i�Þ: (83)

The total baryon number density is given by the integral
over the distribution (recall that 2� 2 ½��;��) and van-
ishes. The distribution of the baryon number over the phase
angle is proportional to a total derivative but not of the
distribution of the phase as was the case for �<m�=2.

B. The chiral condensate

As in Sec. VI we now denote the mass of the Nf quarks

by ~m and differentiate with respect to this mass. The
computation is somewhat analogous to the one given in
the previous section except that the terms with positive p
also contribute. For Nf ¼ 2 we find
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h �c c�ð2�� 2�0Þi1þ1 ¼ 2�V

�

X1
p¼0

e�2ip�e�VLBðjpþ1j�1Þ

� 2

�

�
d

d ~m
LIðm; ~mÞ

�
~m¼m

� X�1

p¼�1
e�2ip�e�VLBðjpþ1j�1Þ

(84)

where

LIðm; ~mÞ ¼ �2�2F2 ��2ðmþ ~mÞ2
8�2F2

: (85)

The sums can be rewritten as

h �c c�ð2�� 2�0Þi1þ1 ¼ 2�V

�

e�VLB

e2i� � e�VLB
þ 2�V

�

þ 2

�

�2m

�2F2
e2i�eVLB

eVLB

eVLB � e2i�
:

(86)

The first and the last term both vanish upon integration
over � 2 ½��=2; �=2� and leaves, 2V�, which, after di-
viding by the volume, is the expected mean field value of
the chiral condensate for Nf ¼ 2. Note that the amplitude

of the first term is exponentially small while that of the last
term is exponentially big. The severe cancellations which
take place upon integration of the last term over � are just
like those for the baryon number.

XI. QCD IN ONE EUCLIDEAN DIMENSION

In this section we will show that for one-dimensional
QCD the distribution of the phase of the fermion determi-
nant changes from Gaussian to Lorentzian shape when the
quark mass enters the Dirac spectrum.

Lattice QCD in one Euclidean dimension (time only)
with gauge group UðNcÞ is sufficiently simple that we can
solve the partition function and moments of the phase
factor analytically starting from the fundamental partition
function. The reason is twofold. First, there is no Yang-
Mills action, and second, the staggered Dirac operator, M,

can be reduced to the determinant a Nc � Nc matrix [55]

detM ¼ 2�nNc det½en�c þ e�n�c þ en�Uþ e�n�Uy�;
(87)

where U 2 UðNcÞ. The analogue of m�=2 or mN=Nc is
�c ¼ sinh�1m and n is the number of lattice points. The
eigenvalues of M are located on an ellipse of width sinh�
along the real axis. This means that the quark mass is inside
the eigenvalue domain when �>�c. In the limit nNc !
1 the ratio of the full partition function and the phase-
quenched partition function approaches one for the SUðNcÞ
theory whereas this ratio the UðNcÞ partition functions
shows a phase transition when the quark mass enters the
Dirac spectrum exactly as in QCD [56]. For this reason we
study the UðNcÞ lattice model rather than the SUðNcÞ
lattice model. In adddtion, the UðNcÞ model is mathemati-
cally simpler than the SUðNcÞ lattice model. The partition
function is defined by

ZNf
ð�c;�Þ ¼

Z
UðNcÞ

dU detM: (88)

Despite its simplicity many interesting things can be
learned from QCD in one dimension. For example, in
[56] it was found that spectral density of the Dirac operator
is a highly oscillatory function when the quark mass is
inside the ellipse of eigenvalues, and that the link between
these oscillations and the chiral condensate is exactly the
same as what was found for 4d QCD with dynamical
quarks [27].
Below we will show that the distribution of the phase of

the fermion determinant in one-dimensional QCD also
undergoes a transition from a Gaussian to a Lorentzian
shape when the quark mass enters the eigenvalue spectrum.
For simplicity we only work out the quenched distribution.
As above we start from the moments of the phase factor

he2ip�0 i ¼
Z
UðNcÞ

dU
detpM

detpMy : (89)

Notice that the expectation value only depends on jpj.
Following [56], where the first moment (p ¼ 1) was
worked out, we rewrite the U-integral as

he2ip�0 i ¼
Z
UðNcÞ

dU
detpð1�Uen��n�cÞdetpð1�Uye�n��n�cÞ
detpð1�Ue�n��n�cÞdetpð1�Uyen��n�cÞ : (90)

In this form the Conrey-Farmer-Zirnbauer formula [57]
can be applied directly for �<�c. In the large Nc limit
the result simplifies to

he2ip�0 i ¼ he2i�0 ip2 ¼
�
1��2

�2
c

�
p2

: (91)

If �c is interpreted as the chemical potential for which the
quark mass enters the eigenvalue domain, this is exactly

the same form as we obtained for the �-regime of QCD in
Sec. VIII. Hence we find the expected Gaussian form for
the distribution of the phase of the fermion determinant,

h�ð�� �0Þi ¼ 1ffiffiffiffiffiffiffiffi
��

p e��2=� for �<�c; Nc ! 1;

(92)

where � � � logð1��2=�2
cÞ.
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For �>�c the conditions for applying the Conrey-
Farmer-Zirnbauer formula directly are violated. Now, how-
ever, we instead can rewrite the determinants containing
Uy as

detpð1�Uye�n��n�cÞ
detpð1�Uyen��n�cÞ ¼ e�2pnNc�

detpð1�Uen�þn�cÞ
detpð1�Ue�n�þn�cÞ ;

(93)

so that the entire integrand in Eq. (90) only depends on U.
This implies that when we expand the denominator in U
(which is allowed for �>�c) only the constant term is
nonzero upon integration over U. Using that the moments
of the phase factor only depend on jpj we obtain the exact
result

he2ip�0 i ¼ e�2njpjNc�; for �>�c: (94)

Summing over p in Eq. (54) results in the compact
Lorentzian c.f. Eq. (66)

h�ð2�� 2�0Þi ¼ 1

�

sinhð2nNc�Þ
coshð2nNc�Þ � cosð2�Þ

for �>�c; 2� 2 ½��;��: (95)

We stress that this exact result is valid for any value of Nc.
Note that we have computed the distribution of the phase

angle of the square of the fermion determinant, i.e. of 2�.
The reason is that this does not require the use of the
replica trick. By comparing the numerical result for half-
integer moments with the analytical result (94) obtained
for integer moments one finds that the replica trick does not
work when quark mass is inside the eigenvalues. See Fig. 5.
The only exception is the case �c ¼ 0: Then the rewriting
in Eq. (93) results in 2p powers of the determinants [58]
which are then well-defined for half-integer p. The expres-
sion for the odd moment when �c ¼ 0 is therefore also
given by (94).

XII. DISTRIBUTION OF
f ¼ logjdetðDþ��0 þmÞj=detðDþmÞ

FOR � <m�=2

So far we have considered distributions of the phase of
the fermion determinant. As we now show it is also pos-
sible to compute the distributions as a function of the
absolute value of the fermion determinant. We will do
this to one-loop order in chiral perturbation theory using
the replica trick. Since only the case �<m�=2 will be

considered there are no issues with the use of the replica
trick.
Since the absolute value of the fermion determinant

depends on the large eigenvalues of the Dirac operator
we analyze the distribution of f � log½j detðDþ��0 þ
mÞj= detðDþmÞ� which, as we shall see below, depends
only on the finite difference of the one-loop free energy at
� and at� ¼ 0. In [33] the distribution of F � expðfÞwas
studied in lattice QCD using the Taylor expansion method.
Since determinants fluctuate by many orders of magnitude
we feel that it is more appropriate to analyze the distribu-
tion of the logarithm of their magnitude instead. The two
distributions are related by a simple transformation

h�ðf� f0Þi ¼ Fh�ðF� F0Þi; (96)

where f0 is the magnitude of the logarithm of the ratio of
the determinants—its fluctuations are induced by the gauge
field fluctuations.
To compute the distribution of the magnitude of the

logarithm of the determinants we rewrite the �-function as

h�ðf� f0Þi1þ1 ¼
Z 1

�1
dp

2�
he�ipðf�f0Þi1þ1

¼ 1

Z1þ1

Z 1

�1
dp

2�
e�ipf

��
detðDþ��0 þmÞ detðD���0 þmÞ

det2ðDþmÞ
�
ip=2

det2ðDþ��0 þmÞ
�
: (97)

For even ip the average can be interpreted as a partition function with bosonic and fermionic flavors. We will calculate this
partition function to one-loop order in chiral perturbation theory. Since we consider the magnitude of the determinant we

0 0.5 1 1.5 2 2.5 3

p

−25

−15

−5

lo
g[

<
ex

p(
2i

pθ
’)>

]

µ=0.12
µ=0.28

FIG. 5 (color online). Numerical evaluation of the quenched
moments of the average phase factor in one-dimensional QCD
versus p for �c ¼ 0:1, n ¼ 4 and Nc ¼ 3. As indicated by the
lines the even moments join smoothly in accordance with (94).
However, the even and odd moments are not smoothly connected
for 0<�c < �. Since the replica trick works when �c ¼ 0 the
odd moments at the largest value of � fall closer to the line than
those at the smaller values of �.
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expect that the moments will be analytic in p and can be
analytically continued to imaginary ip As far as we know
this is the first case where the replica trick is used this way.

Using the same one-loop combinatorics as before, we
find after analytical continuation to imaginary ip,

h�ðf� f0Þi1þ1 ¼
Z 1

�1
dp

2�
e�ipðf�EfÞ�ð1=2Þ�2

f
p2

; (98)

where

Ef ¼ 2�G0ð�Þ � 4�G0ð�=2Þ; (99)

�2
f ¼ 1

2
�G0ð�Þ � 2�G0ð�=2Þ: (100)

The integral over p is Gaussian and can be evaluated by
completing squares. This results in

h�ðf� f0Þi1þ1 ¼ 1

�f

ffiffiffiffiffiffiffi
2�

p e�ðf�EfÞ2=ð2�2
f
Þ: (101)

Both Ef and �
2
f are positive. In the thermodynamic limit at

nonzero T and � we can see this using Eq. (12)

�2
f ¼

Vm2
�T

2

2�2

X1
n¼1

K2ðm�n
T Þ

n2

�
cosh

�
2�n

T

�
�4cosh

�
�n

T

�
þ3

�
;

¼Vm2
�T

2

2�2

X1
n¼1

K2ðm�n
T Þ

n2
8sinh4

�
�n

2T

�
: (102)

Similarly we can write Ef as

Ef ¼Vm2
�T

2

�2

X1
n¼1

K2ðm�n
T Þ

n2

�
cosh

�
2�n

T

�
�2cosh

�
�n

T

�
þ1

�
;

¼ 2
Vm2

�T
2

�2

X1
n¼1

K2ðm�n
T Þ

n2
cosh

�
�n

T

��
cosh

�
�n

T

�
�1

�
:

(103)

Exactly the same combinatorics can be applied to the finite
L expressions for �2

f and Ef (see (11)) resulting in the

positivity of these quantities at finite L and L0.
Let us make a simple cross check of the formula for Ef

and �2
f. Since f ¼ 0 for � ¼ 0 the expectation value and

the variance of the f-distribution must vanish in the limit
� ! 0 which is indeed the case (see Fig. 6).

In order to better understand the structure of the result it
is useful to work out the combinatorics for an arbitrary
number of flavors Nf

h�ðf� f0ÞiNf
¼ 1

�f

ffiffiffiffiffiffiffi
2�

p e�ðf�NfEf=2Þ2=ð2�2
f
Þ: (104)

We note that, an increasing number of flavors simply shifts
the average value of f.

A. The distribution of the baryon number over f

Even though the baryon number is zero when evaluated
in chiral perturbation theory it does not necessarily vanish
when evaluated for a constrained fermion determinant. In
Sec. IV we derived the distribution of the baryon number
for fixed phase. Here we compute the distribution of the
baryon number as a function of f.
In order to compute hnB�ðf� f0Þi1þ1 we denote the

chemical potential in the usual two flavor determinant by
~� instead of �, then differentiate with respect to ~� and
finally take the limit ~� ! �. The � function is represented
as in the previous sections

hnB�ðf� f0Þi1þ1 ¼ 1

2Z1þ1

lim
~�!�

d

d ~�

Z 1

�1
dp

2�
e�ipf

��
detðDþ��0 þmÞ detðD���0 þmÞ

det2ðDþmÞ
�
ip=2

det2ðDþ ~��0 þmÞ
�
:

(105)

To one-loop order in chiral perturbation theory this becomes

hnB�ðf� f0Þi1þ1 ¼
�
d

d ~�
ðG0ð��; ~�Þ � 2G0ð0; ~�ÞÞ

�
~�¼�

Z 1

�1
dp

2�
ipe�ipðf�EfÞ�ð1=2Þ�2

f
p2

: (106)
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f
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<
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f−
f’)

>
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µ=0.3mπ
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T=0.5mπ

FIG. 6 (color online). The f-distribution in 1-loop chiral per-
turbation theory. The distribution of the partition function with
f ¼ logðj detðDþ��0 þmÞj= detðDþmÞÞ in a box with
Vm4

� ¼ 10. The temperature is fixed and as � increases the
distribution becomes broader and moves away from zero.
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The Gaussian integral over p results in

hnB�ðf� f0Þi1þ1 ¼�
�
d

d ~�
ðG0ð��; ~�Þ � 2G0ð0; ~�ÞÞ

�
~�¼�

�Ef � f

�2
f

h�ðf� f0Þi1þ1: (107)

The baryon number operator is not positive definite and
neither is its distribution over f. It changes sign at the
expectation value of the Gaussian distribution so that the
total baryon density vanishes

hnBi1þ1 ¼
Z 1

�1
dfhnB�ðf� f0Þi1þ1 ¼ 0: (108)

As is the case for the distribution of the baryon number
over � the zero value can also be obtained by noting that
the integrand is a total derivative.

B. The distribution of the chiral condensate over f

In this section we derive the distribution of the chiral
condensate over f. As above we represent �ðf� f0Þ by an
integral over the moments so that

h �c c�ðf� f0Þi1þ1 ¼ 1

Z1þ1

lim
~m!m

d

d ~m

Z 1

�1
dp

2�
e�ipf

��
detðDþ��0 þmÞ detðD���0 þmÞ

det2ðDþmÞ
�
ip=2

det2ðDþ��0 þ ~mÞ
�
:

(109)

The combinatorics of possible one-loop contributions of Goldstone bosons leads to

h �c c�ðf� f0Þi1þ1 ¼
Z 1

�1
dp

2�

�
ip

d

d ~m
ðG0ð�;�;m; ~mÞ þG0ð��;�;m; ~mÞ � 2G0ð0; �;m; ~mÞÞ

þ 4
d

d ~m
ðG0ð0; ~mÞ �G0ð0; mÞÞ

�
~m¼m

e�ð1=2Þ�2
f
p2þipðEf�fÞ;

¼ h �c c i1þ1h�ðf� f0Þi1þ1 � d

d ~m
½G0ð�;�;m; ~mÞ þG0ð��;�;m; ~mÞ � 2G0ð0; �;m; ~mÞ� ~m¼m

� Ef � f

�2
f

h�ðf� f0Þi1þ1: (110)

The first term in the last line gives the chiral condensate upon integration over f while the second term in the final line
integrates to zero in precisely the same way as in the case of the baryon density.

C. The f-distribution evaluated in an ensemble generated at � ¼ 0

In [33] the distribution of F ¼ j detðDþ��0 þmÞj= detðDþmÞ is studied in lattice QCD for an ensemble generated at
� ¼ 0. We will again study the distribution of f � logF for this case. It is given by

1

Z1þ1ð� ¼ 0Þ h�ðf� f0Þdet2ðDþmÞi ¼ 1

Z1þ1ð� ¼ 0Þ
Z 1

�1
dp

2�
e�ipf

�
��

detðDþ��0 þmÞ detðD���0 þmÞ
det2ðDþmÞ

�
ip=2

det2ðDþmÞ
�
: (111)

When evaluated to one-loop order in chiral perturbation
theory we find

1

Z1þ1

h�ðf� f0Þdet2ðDþmÞi

¼
Z 1

�1
dp

2�
e�ipðf� ~EfÞ�ð1=2Þ�2

f
p2

¼ 1

�f

ffiffiffiffiffiffiffi
2�

p e�ðf� ~EfÞ2=ð2�2
f
Þ; (112)

where

~E f ¼ 2�G0ð�=2Þ: (113)

In comparison to (101) we see that only the expectation
value of f has changed whereas the variance takes the same
value as in previous sections.
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XIII. CONSTRAINING BOTH � AND F FOR (� <m�=2)

In order to understand what happens if both the phase and the magnitude of the fermion determinant are fixed we need to
compute the correlation between the moments of the phase factor and F.

Let us consider the correlation of any moment of the phase factor and F�
detpðDþ��0 þmÞ
detpðD���0 þmÞ

detqðDþ��0 þmÞdetqðD���0 þmÞ
detqðDþmÞdetqðDþmÞ

�
�

�
detpðDþ��0 þmÞ
detpðD���0 þmÞ

�

�
�
detqðDþ��0 þmÞdetqðD���0 þmÞ

detqðDþmÞdetqðDþmÞ
�

¼ e�p2�G0þq2�G0�4q2�G0ð�=2Þ � e�p2�G0eq
2�G0�4q2�G0ð�=2Þ ¼ 0: (114)

The reason is that terms linear in p in the first exponent
cancel completely. In other words, even though there are
bound states (Goldstone bosons) with non zero charge
which potentially can couple the phase factor to the abso-
lute value of the determinant, their contributions exactly
cancel each other. This is also the case if the average is
calculated for Nf dynamical flavors.

We have thus shown there are no correlations between
the absolute value of the fermion determinant and the
phase to one-loop order in chiral perturbation theory (for
�<m�=2). Hence we automatically find

h�ðf� f0Þ�ð�� �0Þi1þ1 ¼ h�ðf� f0Þi1þ1h�ð�� �0Þi1þ1

(115)

and

hnB�ðf� f0Þ�ð�� �0Þi1þ1

¼ hnB�ðf� f0Þi1þ1h�ð�� �0Þi1þ1

þ h�ðf� f0Þi1þ1hnB�ð�� �0Þi1þ1: (116)

One can convince oneself that this factorization does not
hold for �>m�=2.

XIV. CONCLUSIONS

The distribution of the phase of the fermion determinant
for QCD with nonzero quark chemical potential has been
computed to leading order in chiral perturbation theory.
When the quark mass is outside the support of the Dirac
spectrum (small �) the distribution becomes Gaussian
whereas the distribution is Lorentzian (modulo 2�) when
the quark mass is inside the support. This nonanalytic
behavior is also found for QCD in one Euclidean dimen-
sion by a direct evaluation of the involved partition
functions.

The distribution of the baryon number and the chiral
condensate as a function over the phase angle has also been
computed in chiral perturbation theory. The results show
analytically that extreme cancellations are essential for the
vacuum expectation values of these fundamental
quantities.

The ratio of the magnitude of the fermion determinant to
its value at � ¼ 0 is ultraviolet finite and can be studied
within chiral perturbation theory. We have computed the
distribution of the logarithm of this ratio, f, as well as the
distribution of the baryon number and the chiral conden-
sate over f. Contrary to the �-distribution the distribution
of f is real and positive. In fact, within one-loop chiral
perturbation theory for�<m�=2 there are no correlations
between the phase and the absolute value of the fermion
determinant.
The results obtained here are complementary to lattice

results obtained by Ejiri [33]. The results for one-loop
chiral perturbation theory when the quark mass is outside
the eigenvalue distribution of the Dirac operator, confirms
the Gaussian shape of the �-distribution first found in
lattice simulations [33]. The analytical results, however,
also show that exponentially large cancellations may take
place when integrating over �. Not only are these cancel-
lations essential in order to measure the baryon number and
the chiral condensate correctly, the extreme tail of the
distribution may contribute significantly to the final result.
A small non Gaussian term in the tail of the �-distribution
therefore could be the dominant term after integration over
�. The precise form of this tail is of course difficult to
access numerically.
The Lorentzian shape of the distribution of the phase

valid for larger values of the chemical potentially shows
that one should not take for granted that the conditions for
the central limit theorem are satisfied. The nonanalyticity
means that the Lorentzian shape cannot be obtained by
analytic continuation from imaginary values of the chemi-
cal potential. Since the Lorentzian form is present also for
quenched QCD this prediction can be tested in lattice QCD
without worrying about the sign problem. Numerical con-
vergence is however expected to slow because of the large
fluctuations of the phase. If staggered fermions are used
one also has to address the issues raised in [59].
Finally let us stress that both the Gaussian and the

Lorentzian forms for the �-distributions found here are
leading order predictions of chiral perturbation theory. It
would be of considerable interest to work out the next to
leading order corrections. It seems natural that these terms
will give corrections to both the shape of the �-distribution
and to its width.

DISTRIBUTIONS OF THE PHASE ANGLE OF THE . . . PHYSICAL REVIEW D 80, 054509 (2009)

054509-17



The analytical work of this paper was inspired by new
developments in the numerical density of states method.
Such interplay between numerical lattice QCD and ana-
lytical methods, is essential for progress towards our
understanding of strongly interacting matter. In this paper
this was illustrated by simulations of one-dimensional
lattice QCD. Even if the analytical results do not yet offer
a direct solution of the sign problem, they allow us to better
understand the regions where current numerical methods
can be applied [60].
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