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We discuss a robust projection method for the extraction of excited-state masses of the nucleon from a

matrix of correlation functions. To illustrate the algorithm in practice, we present results for the positive

parity excited states of the nucleon in quenched QCD. Using eigenvectors obtained via the variational

method, we construct an eigenstate-projected correlation function amenable to standard analysis tech-

niques. The method displays its utility when comparing results from the fit of the projected correlation

function with those obtained from the eigenvalues of the variational method. Standard nucleon inter-

polators are considered, with 2� 2 and 3� 3 correlation matrix analyses presented using various

combinations of source-smeared, sink-smeared, and smeared-smeared correlation functions. Using these

new robust methods, we observe a systematic dependency of the extracted nucleon excited-state masses

on source- and sink-smearing levels. To the best of our knowledge, this is the first clear indication that a

correlation matrix of standard nucleon interpolators is insufficient to isolate the eigenstates of QCD.
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I. INTRODUCTION

Lattice QCD provides a nonperturbative tool to explore
many properties of hadrons from first principles. In the
case of the hadron mass spectrum there are well developed
methods to compute the mass spectra. However, while the
extraction of the ground states of the hadron spectrum is a
well understood problem, and has provided impressive
agreement with experimental results [1], the excited states
still prove a significant challenge. The Euclidean-time
correlation function provides access to a tower of states
since it is a sum of decaying exponentials with the masses
of the states in the exponents. The ground-state mass, being
the lowest energy state and thereby having the slowest
decay rate, is obtained by analysis of the large time behav-
ior of this function. The excited states, however, belong to
the subleading exponentials of the two-point correlation
function. Extracting excited states masses from these sub-
leading exponents is difficult as the correlation functions
decay quickly and the signal to noise ratio deteriorates
more rapidly.

One of the long-standing puzzles in hadron spectroscopy
has been the low mass of the first positive parity, JP ¼ 1

2
þ,

excitation of the nucleon, known as the Roper resonance
N�ð1440 MeVÞ. In constituent or valence quark models
with harmonic oscillator potentials, the lowest-lying odd
parity states naturally occurs below the N ¼ 1

2
þ state (with

principal quantum number N ¼ 2) [2,3] whereas, in nature
the Roper resonance is almost 100 MeV below the
N ¼ 1

2
�(1535 MeV) state. Similar difficulties in the level

orderings appear for the JP ¼ 3
2
þ��ð1600Þ and

1
2
þ��ð1690Þ resonances, which have led to the speculation

that the Roper resonance may be more appropriately
viewed as a hybrid baryon state with explicitly excited
glue field configurations [4,5] or as a breathing mode of
the ground state [6] or states that can be described in terms
of meson-baryon dynamics alone [7]. The first detailed
analysis of the positive parity excitation of nucleon was
performed in Ref. [8] using Wilson fermions and an op-
erator product expansion spectral ansatz. Since then sev-
eral attempts have been made to address these issues in the
lattice framework [9–16], but in many cases no potential
identification of the Roper state has been made [9–13].
Recently however, in the analysis of [14,15,17], a low-
lying Roper state has been observed by using advanced
fitting techniques [18,19] based on Bayesian priors.
Significant finite volume effects on the first positive parity

N
1
2
þ
state have been observed in Refs. [16,20,21] using the

maximum entropy method [18,19,22–24]. Here, we use
another state-of-the-art approach, namely, ‘‘the variational
method’’ [25–27], which is based on the correlation matrix
analysis and has been used quite extensively in
Refs. [1,11,12,27–43] with the first analysis of the nucleon
performed by Sasaki et al. [11]. Though the ground-state
mass of the nucleon has been described successfully, an
unambiguous determination of the Roper state has not been
successful to date with this method, though significant
amounts of research have been carried out in
Refs. [11,28], the CSSM Lattice Collaboration
[12,29,31], the BGR Collaboration [1,32–35] and in
Refs. [41,42].
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In this paper, we discuss an analysis method to extract
masses of the nucleon from the correlation functions using
a variational analysis. Employing standard interpolating
operators �1, �2, and �4, we discuss the method for 2�
2 and 3� 3 correlation matrices with the point and a range
of sweeps of Gaussian smearing [44] at the source, sink,
and at both source and sink. This analysis shows for the
first time (and despite the fact that people have been using
source-smeared correlation functions for quite a long time
[1,12,13,30–33,36,38,45–49]) that, unexpectedly, the ex-
cited states of the nucleon are smearing dependent. This
analysis indicates that significant caution should be taken
when employing a particular level of smearing. To ensure
the maximal independence of our results on human input
and minimal errors, we construct a ‘‘robot’’ algorithm,
governed by defined fitting criteria, that automatically
performs a standardized fitting procedure. We present
here results from this algorithm and also those obtained
from the eigenvalues to provide confidence in the extrac-
tion of the nucleon mass spectrum.

This paper is arranged as follows: Section II contains the
general description of the extraction of masses with the
introduction of different nucleon interpolating fields. The
lattice details are in Sec. III, the analysis method is pre-
sented in Sec. IV, and conclusions are presented in Sec. V.

II. MASS OF HADRONS

The masses of hadrons are extracted from two-point
correlation functions using operators chosen to have over-
lap with desired states. Let us consider a baryon state B of
spin half, if we suppress Dirac indices a two-point function
can be written as

Gijðt; ~pÞ ¼
X
~x

e�i ~p: ~xh�jTf�iðxÞ ��jð0Þgj�i: (1)

The operator �jð0Þ creates states from the vacuum at space-

time point 0 and, following the evolution of the states in
time t, the states are destroyed by the operator �iðxÞ at
point x. T stands for the time ordered product of operators.
Having a complete set of momentum eigenstates requires
that X

B; ~p0;s
jB; ~p0; sihB; ~p0; sj ¼ I; (2)

where B can include multiparticle states. The substitution
of Eq. (2) into the Eq. (1) yields

Gijðt; ~pÞ ¼
X
~x

X
B; ~p0;s

e�i ~p: ~xh�j�iðxÞjB; ~p0; si

� hB; ~p0; sj ��jð0Þj�i: (3)

We can express the operator �iðxÞ as
�iðxÞ ¼ eiP:x�ið0Þe�iP:x; (4)

where, P� ¼ P ¼ ðH; ~PÞ and ~P is the momentum operator

whose eigenvalue is the total momentum of the system.
Equation (3) can now be written as

Gijðt; ~pÞ ¼
X
~x

X
B; ~p0;s

e�i ~p: ~xh�jeiPx�ið0Þe�iPxjB; ~p0; si

� hB; ~p0; sj ��jð0Þj�i
¼ X

~x

X
B; ~p0;s

e�iEBte�i ~x:ð ~p� ~p0Þh�j�ið0ÞjB; ~p0; si

� hB; ~p0; sj ��jð0Þj�i: (5)

As we move from Minkowski space to Euclidean space,
the time t ! �it and the above equation then can be
written as

Gijðt; ~pÞ ¼
X
B; ~p0;s

e�EBt� ~p; ~p0 h�j�ið0ÞjB; ~p0; si

� hB; ~p0; sj ��jð0Þj�i
¼ X

B

X
s

e�EBth�j�ið0ÞjB; ~p; sihB; ~p; sj ��jð0Þj�i:

(6)

The overlap of the interpolating fields �ð0Þ and ��ð0Þ with
positive and negative parity baryon states jB�i can be
parametrized by a complex quantity called the coupling
strength, �B� , which can be defined for positive parity
states by

h�j�ð0ÞjBþ; ~p; si ¼ �Bþ

ffiffiffiffiffiffiffiffiffiffi
MBþ

EBþ

s
uBþð ~p; sÞ; (7)

hBþ; ~p; sj ��ð0Þj�i ¼ ��Bþ

ffiffiffiffiffiffiffiffiffiffi
MBþ

EBþ

s
�uBþð ~p; sÞ: (8)

For the negative parity states the definition is

h�j�ð0ÞjB�; ~p; si ¼ �B�

ffiffiffiffiffiffiffiffiffiffi
MB�

EB�

s
�5uB�ð ~p; sÞ; (9)

hB�; ~p; sj ��ð0Þj�i ¼ � ��B�

ffiffiffiffiffiffiffiffiffiffi
MB�

EB�

s
�uB�ð ~p; sÞ�5: (10)

Here, �B� and ��B� are the couplings of the interpolating
functions at the sink and the source, respectively, andMB�

is the mass of the state B�. EB� is the energy of the state

B�, where EB� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B� þ ~p2
q

, and uB�ð ~p; sÞ and

�uB�ð ~p; sÞ are the Dirac spinors,
�u �
B�ð ~p; sÞu�B�ð ~p; sÞ ¼ ���: (11)

Thus, Eq. (6) contains a projection operator �� ¼P
su

�
B�ð ~p; sÞ �u�B�ð ~p; sÞ, through which the contributions to

the even and odd parity states from the correlation function
can be obtained. For positive parity, this can be expressed
as
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X
s

u�
Bþð ~p; sÞ �u�Bþð ~p; sÞ ¼ �:pþMBþ

2EBþ
; (12)

and for the negative parity,

�5

�X
s

u�B�ð ~p; sÞ �u�B�ð ~p; sÞ
�
�5 ¼ ��:pþMB�

2EB�
: (13)

By substituting the above Eqs. for the positive and negative
parity states in Eq. (6) we obtain

G ijðt; ~pÞ ¼
X
Bþ

�Bþ ��Bþe�EBþ t �:pBþ þMBþ

2EBþ

þX
B�

�B� ��B�e�EB� t ��:pB� þMB�

2EB�
: (14)

At momentum ~p ¼ ~0, EB� ¼ MB� , and a parity projection
operator �� can be introduced,

�� ¼ 1
2ð1� �0Þ: (15)

We can isolate the masses of the even and odd parity states
by taking the trace of G with the operators �þ and ��. The
positive parity state propagates through the (1,1) and (2,2)
elements of the Dirac matrix, whereas, negative parity state
propagates through the (3,3) and (4,4) elements.

The correlation function for positive and negative parity
states can then be written as

G�
ij ðt; ~0Þ ¼ Trsp½��Gijðt; ~0Þ� ¼

X
B�

��
i
���
j e

�MB� t: (16)

The correlation function contains a superposition of states.
The mass of the lowest state,M0� can be extracted at large
t where the contributions from all other states are sup-
pressed,

G�
ij ðt; ~0Þ ¼t!1

��
i0
���
j0e

�M0� t: (17)

The source-smearing [44] technique is applied to in-
crease the overlap of the interpolators with the lower-lying
states. A fixed boundary condition in the time direction is
applied for the fermions by setting Utð ~x; NtÞ ¼ 08 ~x in the
hopping terms of the fermion action with periodic bound-
ary conditions imposed in the spatial directions. Gauge
invariant Gaussian smearing [44] in the spatial dimensions
is applied through an iterative process. The smearing pro-
cedure is

c iðx; tÞ ¼
X
x0
Fðx; x0Þc i�1ðx0; tÞ; (18)

where

Fðx; x0Þ ¼ ð1� �Þ�x;x0 þ �

6

X3
�¼1

½U�ðxÞ�x0;xþ�̂

þUy
�ðx� �̂Þ�x0;x��̂�; (19)

where the parameter � ¼ 0:7 is used in our calculation.

After repeating the procedures Nsm times on a point source
the resulting smeared fermion field is

c Nsm
ðx; tÞ ¼ X

x0
FNsmðx; x0Þc 0ðx0; tÞ: (20)

The extraction of the ground-state mass is done straight-
forwardly. However access to the excited-state masses
requires additional effort. Here, we consider the variational
method [25–27]. The variational method requires the cross
correlation of operators so that the operator space can be
diagonalized and the excited-state masses extracted from
the exponential nature of the diagonalized basis. To access
N states of the spectrum, one requires a minimum of N
interpolators. Traditionally, only a few interpolators are
considered providing access to a small number of states
of the desired channel.
The parity projected two-point correlation function ma-

trix for ~p ¼ 0 can be written as

GijðtÞ ¼
�X

~x

Trspf��h�j�iðxÞ ��jð0Þj�ig
�
; (21)

¼ XN�1

�¼0

��
i
���
j e

�m�t: (22)

Here, ��
i and ���

j are the couplings of interpolators �i and

��j at the sink and source, respectively, to eigenstates � ¼
0; � � � ; ðN � 1Þ. m� is the mass of the state �. The N
interpolators have the same quantum numbers and provide
an N-dimensional basis upon which to describe the states.
Using this basis we aim to construct N independent inter-
polating source and sink fields that isolate N baryon states
jB�i, i.e.

��� ¼ XN
i¼1

u�i ��i; (23)

�� ¼ XN
i¼1

v�
i �i; (24)

such that,

hB�; p; sj ���j�i ¼ ��� �z
� �uð�;p; sÞ; (25)

h�j��jB�; p; si ¼ ���z
�uð�;p; sÞ; (26)

where z� and �z� are the coupling strengths of�� and ��� to
the state jB�i. Consider a real eigenvector u�j that operates

on the correlation matrix GijðtÞ from the right, one can

obtain [12]

GijðtÞu�j ¼
�X

~x

Trspf��h�j�i ��jj�ig
�
u�j ¼ ��

i �z
�e�m�t:

(27)

For notational convenience, in the remainder of the dis-

ISOLATING EXCITED STATES OF THE NUCLEON IN . . . PHYSICAL REVIEW D 80, 054507 (2009)

054507-3



cussion the repeated indices i, j, k are to be understood as
being summed over, whereas, �, which stands for a par-
ticular state, is not. Since the only t dependence comes
from the exponential term, we can write a recurrence
relation at time (tþ4t) as

Gijðtþ4tÞu�j ¼ e�m�4tGijðtÞu�j : (28)

If we multiply the above equation by ½GijðtÞ��1 from the

left we get

½ðGðtÞÞ�1Gðtþ4tÞ�u� ¼ e�m�4tu� ¼ c�u�: (29)

This is an eigenvalue equation for eigenvector u� with

eigenvalue c� ¼ e�m�4t. We can also solve the left eigen-
value equation to recover the v� eigenvector

v�
i Gijðtþ4tÞ ¼ e�m�4tv�

i GijðtÞ: (30)

Similarly,

v�½Gðtþ4tÞðGðtÞÞ�1� ¼ e�m�4tv�: (31)

The vectors u�j and v�
i diagonalize the correlation matrix at

time t and tþ4t making the projected correlation matrix

v�
i GijðtÞu�j ¼ ���z� �z�e�m�t: (32)

The parity-projected, eigenstate-projected correlator,
v�
i G

�
ij ðtÞu�j � G�� is then used to obtain masses of differ-

ent states. We construct the effective mass

M�
effðtÞ ¼ ln

�
G��ðt; ~0Þ

G��ðtþ 1; ~0Þ
�
¼ M�� (33)

and apply standard analysis techniques as described in the
following.

III. LATTICE DETAILS

We use an ensemble of 200 quenched configurations
with a lattice volume of 163 � 32. Gauge field configura-
tions are generated by using the doubly blocked from
Wilson action in two coupling space gauge action [50,51]
and an OðaÞ-improved fat link irrelevant clover fermion
action [52] is used to generate quark propagators. This
action has excellent scaling properties and provides near
continuum results at finite lattice spacing [53]. The lattice
spacing is a ¼ 0:1273 fm, as determined by the static
quark potential, with the scale set with the Sommer scale,
ro ¼ 0:49 fm [54]. In the irrelevant operators of the fer-
mion action we apply four sweeps of stout-link smearing to
the gauge links to reduce the coupling with the high
frequency modes of the theory [55]. We use the same
method as in Ref. [45] to determine fixed boundary effects,
and the effects are significant only after time-slice 25 in the
present analysis. Beside point operators, various sweeps (1,
3, 7, 12, 16, 26, 35, 48, 65 sweeps corresponding to rms
radii, in lattice units, 0.6897, 1.0459, 1.5831, 2.0639,
2.3792, 3.0284, 3.5237, 4.1868, 5.0067) of gauge invariant

Gaussian smearing [44] are applied at the source (at t ¼ 4)
and at the sink. This is to ensure a variety of overlaps of the
interpolators with the lower-lying states. The analysis is
performed on four different quark masses providing pion
masses m	 ¼ f0:797; 0:729; 0:641; 0:541g GeV. The error
analysis is performed using a second-order single elimina-
tion jackknife method, where the �2=dof is obtained via a
covariance matrix analysis method. We discuss our fitting
method in the next section.
The nucleon interpolators we consider in this analysis

are

�1ðxÞ ¼ 
abcðuTaðxÞC�5d
bðxÞÞucðxÞ; (34)

�2ðxÞ ¼ 
abcðuTaðxÞCdbðxÞÞ�5u
cðxÞ; (35)

�4ðxÞ ¼ 
abcðuTaðxÞC�5�4d
bðxÞÞucðxÞ: (36)

The �1 and �2 interpolators are used in Refs. [8,11,56].
The �4 interpolator is considered as the time component of
the �3 interpolator used in Refs. [29,31,32]. We use the
Dirac representation of the gamma matrices in our
analysis.

IV. ANALYSIS AND DISCUSSION

A. Correlation matrix analysis

We begin this section by outlining the fitting method
used in this paper. The method is based on the maximiza-
tion of the Euclidean-time fit window and the minimization
of the value of the �2=dof commencing at the earliest time
possible [57]. At larger times the lighter states dominate
the correlation function. However, the signal to noise ratio
decreases rapidly, forcing increased errors in the results.
Additionally, ignoring smaller time slices may lead to
eliminating important information about excited states in-
cluded in the two-point correlation function [58]. Data at
larger time slices for excited states extracted using the
variational method can be contaminated by residual con-
tributions from the lower-lying states, resulting in lower
values of excited states mass. In consideration of these
points, in this analysis we use a preference toward earlier
times, which have a high signal to noise ratio and are
therefore heavily constraining in the fit procedure. This
allows us to isolate the energy level from higher state
contamination through the �2=dof and simultaneously
control the errors potentially introduced at higher times
(where the signal to noise ratio is lower) by contamination
from lower-lying states in the variational analysis proce-
dure. Hence, the inclusion of these early times minimizes
the error in the results while an acceptable value of �2=dof
is maintained.
We perform the analysis for 2� 2 and 3� 3 correlation

matrices via the variational method. For the quark masses
considered herein, the interpolator �1 has better overlap
with the lower-energy states [12] and strongly couples to
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the nucleon ground state [11,32], whereas the interpolator
�2 does not have good overlap with the nucleon ground
state and couples to the higher energy state(s) [8,11,12,59].
We have found that the other interpolator, �4, is very
similar to �1 and also couples strongly to the ground state
[32], which suggests that the �1 and �4 operators are
somewhat linearly dependent to each other. We call the
start time, t, of the variational analysis tstart. The diagonal-
ization is accomplished for different values of tstart with a
few values of 4t, here 4t ¼ 1–5 for each tstart.

We now consider fits to the parity and eigenstate-
projected effective mass of Eq. (33), which follows from
the eigenvector analysis. In this presentation, we consider
the cutoff value for an acceptable value of �2=dof as 1.30.
First, we try to fit the effective mass from two time slices
after the source to the largest possible time of the correla-
tion function, i.e., from time slice 6 (since the source is at
4) to time slice 25 (after which the fixed boundary effects
are significant). We call the lower time tmin and the larger
time tmax. If an acceptable fit is not obtained then we keep
tmin fixed and decrease tmax and reattempt a fit. If this is
also unsuccessful, then we iterate the same process until
we reach a time near tmin while maintaining a minimum fit
window size. At this point, if an acceptable fit (as dictated
by the �2=dof) is still not obtained, then we increase tmin

by one time slice and try to fit the new window tmin to tmax.
This process repeats until a fit is obtained. The minimum fit
window size we consider for the ground state is 5 time
slices in the effective mass, which corresponds to 6 time
slices in GðtÞ. For the excited states, the minimum window
size of 3 is considered corresponding to 4 time slices in
GðtÞ. This provides a balance in providing evidence of an
eigenstate while avoiding residual contaminations of
lower-lying states.
Figures 1 and 2 present the ground and excited states of

the nucleon for a 2� 2 correlation matrix with �1 and �2

interpolators for point and smeared source correlation
functions, respectively. The pointlike correlation function
is a difficult correlator to extract a mass from, as it admits
strong overlap with excited states. Nevertheless, we con-
sider the point correlation function as a challenge in this
analysis.
The left and right figures show the mass from the pro-

jected correlation function and the mass from the eigen-
value, respectively. Each point corresponds to the
diagonalization of the matrix for each set of variational
parameters tstart and 4t. The mass coming from eigenval-
ues are intrinsic to the variational analysis since they come
directly from the diagonalization of the matrix, while the
mass from the projected correlation function comes from

FIG. 1 (color online). Mass of the nucleon (N
1
2
þ
) from the projected correlation function as shown in Eq. (32) [left] and from the

eigenvalue (right) for a 2� 2 correlation matrix of �1, �2 interpolators. The figure corresponds to a pion mass of 797 MeV (heaviest)
and for the point source to point sink correlation functions. Each pair of ground and excited states masses correspond to the
diagonalization of the correlation matrix for each set of variational parameters tstart (shown in major tick marks) and 4t (shown in
minor tick marks). Here, the time t as shown in Eqs. (29) and (31) is called tstart.

FIG. 2 (color online). As in Fig. 1, but for source smeared to point sink correlation functions with the number of Gaussian smearing
sweeps set to 7, which corresponds to a smearing radius of 1.5831 in lattice units.
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the ‘‘robot’’ algorithm described above. It is interesting to
note that masses from the projected correlation functions
are almost independent of the variational parameters.
Figure 1 also shows that mass can also be extracted reliably
from the point-to-point correlation function. The behavior
of the eigenvalues at lower tstart and 4t reflects the con-
tamination of higher excited states. Although it can be
difficult to extract a mass directly from the eigenvalues,
it is relatively easy to expose a mass in the projected
correlation function. Figures 3 and 4 show the eigenvectors
for the diagonalization of correlation matrices for the point
(for Fig. 1) and source-smeared (for Fig. 2), correlation

functions, respectively. Eigenvectors are normalized for
each set of variational parameters to unit length. It is
interesting to note that the eigenvectors do not show a
strong sensitivity to excited-state contamination. As with
the mass from the eigenvalue, at larger tstart, the eigenvec-
tors are also dominated by errors. Eigenvectors in Figs. 3
and 4 also indicate that as the �1 and �2 interpolators are
much orthogonal to each other [12], the �1 interpolator has
little influence over the excited state and the �2 interpolator
also contributes very little to the nucleon ground state.
Figures 5 and 6 show the ground and excited-state mass

of the nucleon (as in Figs. 1 and 2) for �1 and �4 inter-

FIG. 3 (color online). Eigenvector values for v�
i (left) and u�i (right), as shown in Eq. (32), for the correlation matrix analysis of

Fig. 1. The superscript � stands for the eigenstates, while the subscript i represents the interpolators. Here, for the 2x2 correlation
matrix, � ¼ 1, 2 and i ¼ 1, 2.

FIG. 4 (color online). As in Fig. 3, but for the correlation matrix analysis of Fig. 2.

FIG. 5 (color online). Mass of the nucleon (N
1
2
þ
) from the projected correlation function as shown in Eq. (32) [left] and from the

eigenvalue (right) for a 2� 2 correlation matrix of �1 and �4 interpolators. The figure corresponds to a pion mass of 797 MeVand for
the point source to point sink correlation functions. Each pair of ground and excited states masses correspond to the diagonalization of
the correlation matrix for each set of variational parameters tstart (shown in major tick marks) and 4t (shown in minor tick marks).
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polators. The excited-state mass for the point correlation
function, Fig. 5, starts a little from below and settles down
after a few values of tstart. It should be noted that similar
effects also persist in the 3� 3 correlation matrix analysis
where both �1 and �4 operators are present. However, this
behavior diminishes with the level of smearing as shown in
Fig. 6.

The correlation matrix analysis of �1 and �4 interpola-
tors provide nontrivial mixing as illustrated in Figs. 7 and
8. As discussed earlier, �1 and �4 are very similar and there
is little to separate them. This is illustrated in Fig. 7, which
shows some drift in the eigenvectors for the ground state,
but with little variance in the ground-state mass. Figure 9
presents eigenvectors of the 3� 3 correlation matrix of �1,
�2, and �4 interpolators for the point-to-point correlation

functions. As �1 and �4 interpolators largely couple to the
ground state, the left figure in Fig. 9 shows the higher
contributions to the ground state come from the �1 and
�4 interpolators, while the first excited state (middle fig-
ure) is completely dominated by �2 interpolator and in the
second excited state (right figure) contributions from all the
interpolators are distributed.
To select a single mass from a series of tstart and 4t, a

value of tstart ¼ 8 is preferred, and4t � 4 (if possible). We
prefer to avoid the value of4t ¼ 1, as it appears that4t ¼
1 is, in a few cases, more prone to fluctuations than larger
values. If a mass is not obtained for these parameters (this
is the case for the lighter quark masses), then we decrease
4t by one time slice and try to obtain a diagonalization.
This procedure is repeated until the value tstart þ4t ¼ 10

FIG. 6 (color online). As in Fig. 5, but for the source smeared to point sink correlation functions with the number of Gaussian
smearing sweeps at 7, which corresponds to a smearing radius of 1.5831 in lattice unit.

FIG. 7 (color online). Eigenvector values of v�
i (left) and u�i (right), as shown in Eq. (32), for the correlation matrix analysis of

Fig. 5.

FIG. 8 (color online). As in Fig. 7, but for the correlation matrix analysis of Fig. 6 and for the excited state.
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is reached. If the diagonalization is still not obtained then
we decrease tstart and repeat the same procedure. We note
that our experience is in accord with that of Refs. [60,61].
In practice we emphasize the importance of keeping tstart þ
4t large [61].

B. Smearing dependency of excited states

Now we discuss the smearing dependency we have
observed in the masses of the excited states. In Figs. 1
and 2, a careful comparison of the masses for point- and
source-smeared correlation functions reveals that the

excited-state mass for the source-smeared case is lower
in value than for the point source. In contrast, the ground-
state masses agree within 1 standard deviation for almost
all sets of variational parameters.
Here, we extend the analysis for various amounts of

source-smearing sweeps in the correlation functions. Our
new robust analysis techniques reveal that the excited-state
mass is smearing dependent. In Figs. 10 and 11, the
ground-state mass reveals no significant dependence on
smearing. However, the masses of the excited state show
a distinct systematic dependence on the smearing radius.

FIG. 9 (color online). Eigenvector values of v�
i and u�i , for the 3� 3 correlation matrix analysis of �1, �2 and �4 interpolators, for

point source to point sink correlation functions and for the pion mass of 797 MeV. The left figure corresponds to the contributions of
the interpolators to the ground state, while the middle and right figures are for the first and second excited states.

FIG. 10 (color online). Mass of the nucleon (N
1
2
þ
) from the projected correlation functions for the pion mass of 797 MeV, for point

(leftmost point) and for the source smeared to point sink correlation functions (all other points) with rms radii 0.6897, 1.0459, 1.5831,
2.0639, 2.3792, 3.0284, 3.5237, 4.1868, 5.0067, for 2� 2 correlation matrices of �1, �2 (left) and �1, �4 (right). Horizontal lines are
drawn through the points corresponding to radius 3.5237.

FIG. 11 (color online). As in Fig. 10, but for the pion mass of 541 MeV (lightest).
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Horizontal lines are drawn at the radius 	3:52 (no. of
sweeps ¼ 35) to aid in illustrating the absence of source
invariance. Figure 11 presents similar results for the light-
est quark mass considered in this analysis.

One might search for an optimal level of smearing where
the excited-state mass plateaus indicating overlap with a
neighboring state is minimized. However, there is no evi-
dence of a plateau in Figs. 10 and 11.

This behavior is also present for our 3� 3 correlation
matrix analysis as illustrated in Fig. 12. Here, it is found
that the two excited states are almost degenerate and dis-
play a similar dependence on the source-smearing
parameters.
Thus, we must conclude that the standard analysis of the

3� 3 correlation matrix of �1, �2, and �4 interpolators is
insufficient to isolate the energy eigenstates. The first
excited-state mass revealed here is due to a linear combi-
nation of mass eigenstates and therefore is likely to sit high
relative to the first excited eigenstate mass.
In Fig. 13, we present results for a variational analysis of

smeared-smeared correlation functions. The result from
the 3� 3 correlation matrix analysis is shown in Fig. 14.
In this case we also observe two nearly degenerate excited
states. While there is some suggestion of a plateau in this
case, it seems unlikely to us that the masses revealed here
are true eigenstate masses.
It is important to consider the impact of the finite volume

of the lattice on our observations. It is well known that the
eigenstate energies have a volume dependence and will
change as one changes the volume [16,20,21]. However, as
we consider only one fixed volume, the eigenstate energies
are fixed. Thus, the variation of the excited-state mass
revealed as our interpolating fields change can only be
due to a superposition of eigenstates in the effective mass
function.

V. CONCLUSION

In this study we have defined and demonstrated a robust
technique for the analysis of correlation function matrices.
We have observed that the eigenvectors describing the
optimal overlap of interpolating fields for isolating the first
excited state are insensitive to the parameters of the eigen-
vector analysis. This approximate invariance of the eigen-
vectors is in sharp contrast to the eigenvalue itself. The
latter changes significantly as the starting time and the
change in time is varied. To create a robust technique for
the extraction of the excited-state mass, we exploit the
invariance of the eigenvectors and construct an eigen-

FIG. 12 (color online). As in Fig. 10, but for the 3� 3 correlation matrix of �1, �2 and �4 interpolators. The left figure corresponds
to the pion mass of 797 MeV, whereas the right figure corresponds to a 541 MeV pion mass.

FIG. 13 (color online). Mass of the nucleon (N
1
2
þ
) from the

projected correlation functions for the pion mass of 797 MeV, for
point (leftmost point) and for smeared-smeared correlation
functions (all other points) with rms radii 0.6897, 1.0459,
1.5831, 2.0639, 2.3792, 3.0284, 3.5237, 4.1868, 5.0067, for 2�
2 correlation matrices of �1, �2 interpolators. Straight lines are
drawn through the points corresponding to radius 3.0284.

FIG. 14 (color online). As in Fig. 13, but for the 3� 3 corre-
lation matrix of �1, �2, and �4 interpolators.
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projected correlation function. This correlation function is
analyzed using standard analysis techniques.

To reduce human intervention in the fitting procedure, a
fitting algorithm has been developed, which is governed by
specific fitting criteria based on the maximization of the fit
window and the minimization of the value of the �2=dof
while commencing at the earliest time slice possible. This
study has shown for the first time that the excited-state
masses are fermion-source-smearing dependent for all
three types of smearing combinations; i.e., the smeared
source with point sink, the point source with smeared sink,
and smeared-smeared combinations. This is a somewhat
unexpected result given that the ground-state mass is inde-
pendent of smearing.

All our 3� 3 correlation matrix analyses provide two
nearly degenerate excited-state masses. However, our con-
cern is that these two masses correspond to strongly mixed
QCD eigenstates that our analysis using the standard cor-
relation matrix of �1, �2, and �4 interpolators is unable to
resolve.

In particular, this technique has been used by several
research collaborations to determine the mass of the Roper
resonance [31,43]. Remarkably, mass estimates based on
these correlation matrix techniques tend to sit high relative
to other approaches. This investigation provides a plausible
explanation for these discrepancies.
Finally, it is clear that changing the smearing level of the

fermion source and sink changes the relative overlap of the
superposition of the true eigenstates of QCD. Thus, it
would be interesting to use the robust analysis techniques
presented here with large correlation matrices built not
only on the �1, �2, and �4 interpolators but also on several
levels of fermion source and sink smearing. This will be the
subject of a future investigation.
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