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The electromagnetic properties of the baryon decuplet are calculated in quenched QCD on a 203 � 40

lattice with a lattice spacing of 0.128 fm using the fat-link irrelevant clover fermion action with quark

masses providing a pion mass as low as 300 MeV. Magnetic moments and charge radii are extracted from

the electric and magnetic form factors for each individual quark sector. From these, the corresponding

baryon properties are constructed. We present results for the higher-order moments of the spin-3=2

baryons, including the electric-quadrupole moment E2 and the magnetic-octupole moment M3. The

world’s first determination of a nonzero M3 form factor for the � baryon is presented. With these results

we provide a conclusive analysis which shows that decuplet baryons are deformed. We compare the

decuplet-baryon results from a similar lattice calculation of the octet baryons. We establish that the

environment sensitivity is far less pronounced for the decuplet baryons compared to the octet baryons. A

surprising result is that the charge radii of the decuplet baryons are generally smaller than those of the

octet baryons. The magnetic moment of the �þ reveals a turnover in the low quark-mass region, making it

smaller than the proton magnetic moment. These results are consistent with the expectations of quenched

chiral perturbation theory. A similar turnover is also noticed in the magnetic moment of the ��0, but not
for �� where only kaon loops can appear in quenched QCD. The electric-quadrupole moment of the ��

baryon is positive when the negative charge factor is included, and is equal to 0:86� 0:12� 10�2 fm2,

indicating an oblate shape.

DOI: 10.1103/PhysRevD.80.054505 PACS numbers: 12.38.Gc, 12.39.Fe, 13.40.Em, 14.20.Dh

I. INTRODUCTION

The study of the electromagnetic properties of baryons
provides valuable insight into the nonperturbative structure
of QCD (see Refs. [1–5] for recent reviews). Baryon
charge radii and magnetic moments provide an excellent
opportunity to observe the nonanalytic behavior predicted
by chiral effective field theory (�EFT). Since these are
inherently nonperturbative properties of hadrons, first-
principles calculations on the lattice are essential for our
understanding of hadronic structure, and indeed there has
been much progress in this direction, mainly for the nu-
cleon and pseudoscalar states (see [6] for a review). For
decuplet baryons, however, there has been very little
progress since Ref. [7] which appeared almost 15 years
ago. However, renewed interest appeared recently [8,9].

The Adelaide group has been investigating the electro-
magnetic structure of hadrons for several years now. In
Refs. [10,11], we presented a novel method for determin-
ing the strange quark contribution to the nucleon’s elec-
tromagnetic form factors, the results of which were later
confirmed by an improved analysis of old experimental
data [12] and new data from parity violating experiments at
JLab [13]. This was followed by an in-depth study in
quenched QCD of the electromagnetic properties of the
octet baryons [14]. Of particular interest was an observed
environmental isospin dependence of the strange quark
distributions in �0 and �0. More recently, we performed

an investigation into the pseudoscalar and vector meson
electromagnetic form factors [15]. Here we determined
that the �þ meson has a negative quadrupole moment,
indicating that the � meson is oblate.
In this paper we continue our study of the electromag-

netic structure of hadrons and present a quenched lattice
QCD calculation of the electromagnetic form factors of
SUð3Þflavor decuplet baryons. From these form factors we
determine magnetic moments and charge radii, and also
present results for the electric-quadrupole and magnetic-
octupole moments.
On the lattice, decuplet baryons are stable as a result of

the unphysical large quark masses that are used in present
calculations and the finite volume of the lattice. Decay to a
pion and an octet baryon is forbidden by energy conserva-
tion. However, stability of decuplet baryons is common to
most hadronic models. In this sense, lattice results provide
a useful forum in which the strengths and weaknesses of
various models may be identified. The lattice results also
provide access to observables not readily available with
present experiments such as the higher-order multipole
moments of the ��, which is stable to strong interactions.
An examination of decuplet-baryon structure in lattice

QCD enables one to study new aspects of nonperturbative
quark-gluon dynamics. In analyzing the results we make
comparisons within the baryon decuplet and with the octet
results [14] which provide insights into the spin depen-
dence of quark interactions.
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The E2 andM3moments accessible in spin-3=2 systems
provide insights into the shape of the decuplet-baryon
ground state. These higher-order moments also have the
potential to discriminate among various model descrip-
tions of hadronic phenomena.

To put our results into perspective, we compare our
calculations with experimental measurements where avail-
able, and with the predictions of quenched chiral perturba-
tion theory (Q�PT).

The decuplet-baryon interpolating fields used in the
correlation functions are discussed in Sec. II A. The ex-
traction of baryon mass and electromagnetic form factors
proceeds through a calculation of two- and three-point
correlation functions. These are discussed in Sec. II B.
The two- and three-point functions for decuplet baryons
are discussed in Secs. II C and IID. Throughout this analy-
sis we employ the lattice techniques introduced in [7], and
these are summarized in Sec. III. In Sec. IV we outline the
methods used in our analysis of the lattice two- and three-
point functions. Our results are presented and discussed in
Sec. V, and summarized in Sec. VI.

II. THEORETICAL FORMALISM

A. Interpolating fields

The commonly used interpolating field for exciting the
�þþ resonance from the QCD vacuum takes the long
established [16,17] form of

��þþ
� ðxÞ ¼ �abcðuTaðxÞC��u

bðxÞÞucðxÞ: (2.1)

Unless otherwise noted, we follow the notation of Sakurai
[18]. The Dirac gamma matrices are Hermitian and satisfy
f��; ��g ¼ 2���, with��� ¼ 1

2i ½��; ���.C ¼ �4�2 is the

charge conjugation matrix, a, b, and c are color indices,
uðxÞ is a u-quark field, and the superscript T denotes
transpose. The generalization of this interpolating field
for the �þ composed of two u quarks and one d quark
has the form

��þ
� ðxÞ ¼ 1ffiffiffi

3
p �abc½2ðuTaðxÞC��d

bðxÞÞucðxÞ

þ ðuTaðxÞC��u
bðxÞÞdcðxÞ�: (2.2)

Other decuplet-baryon interpolating fields are obtained
with the appropriate substitutions of uðxÞ; dðxÞ !
uðxÞ; dðxÞ or sðxÞ. The interpolating field for ��0 is given
by the symmetric generalization

���0
� ðxÞ ¼

ffiffiffi
2

3

s
�abc½ðuTaðxÞC��d

bðxÞÞscðxÞ

þ ðdTaðxÞC��s
bðxÞÞucðxÞ

þ ðsTaðxÞC��u
bðxÞÞdcðxÞ�: (2.3)

The SUð2Þ-isospin symmetry relationship for �� form

factors

��0 ¼ ��þ þ ���

2
(2.4)

may be easily seen in the ��0 interpolating field by noting

�abcðsTaðxÞC��u
bðxÞÞdcðxÞ ¼ �abcðuTaðxÞC��s

bðxÞÞdcðxÞ:
(2.5)

B. Correlation functions

Two-point correlation functions at the quark level are
obtained through the standard procedure of contracting
pairs of quark fields. Considering the �þ correlation func-
tion at the quark level and performing all possible quark
field contractions gives the two-point function as

hTð��þ
� ðxÞ ���þ

� ð0ÞÞi ¼ 1
3�

abc�a
0b0c0 f4Saa0u ��CS

Tbb0
u C��S

cc0
d

þ 4Saa
0

u ��CS
Tbb0
d C��S

cc0
u

þ 4Saa
0

d ��CS
Tbb0
u C��S

cc0
u

þ 2Saa
0

u tr½��CS
Tbb0
u C��S

cc0
d �

þ 2Saa
0

u tr½��CS
Tbb0
d C��S

cc0
u �

þ 2Saa
0

d tr½��CS
Tbb0
u C��S

cc0
u �g;

(2.6)

where the quark propagator Saa
0

u ¼ TðuaðxÞ �ua0 ð0ÞÞ and
similarly for the other quark flavors. SUð3Þflavor symmetry
is clearly displayed in this equation.
In determining the three-point function, one encounters

two topologically different ways of performing the current
insertion. Figure 1 displays skeleton diagrams for these
two insertions. These diagrams may be dressed with an
arbitrary number of gluons. Diagram (a) illustrates the
connected insertion of the current to one of the valence
quarks of the baryon. Diagram (b) accounts for the alter-
native time ordering where the current first produces a
disconnected q �q pair which in turn interacts with the
valence quarks of the baryon via gluons.
The number of terms in the three-point function is

4 times that in Eq. (2.6). The correlation function relevant
for a �þ three-point function is

(a) (b)

FIG. 1. Diagrams illustrating the two topologically different
insertions of the current within the framework of lattice QCD.
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Tð��þ
� ðx2Þj	ðx1Þ ���þ

� ð0ÞÞ ¼ 1

3
�abc�a

0b0c0 f4Ŝaa0u ��CS
Tbb0
u C��S

cc0
d þ 4Ŝaa

0
u ��CS

Tbb0
d C��S

cc0
u þ 4Ŝaa

0
d ��CS

Tbb0
u C��S

cc0
u

þ 4Saa
0

u ��CŜ
Tbb0
u C��S

cc0
d þ 4Saa

0
d ��CŜ

Tbb0
u C��S

cc0
u þ 4Saa

0
u ��CŜ

Tbb0
d C��S

cc0
u

þ 4Saa
0

u ��CS
Tbb0
d C��Ŝ

cc0
u þ 4Saa

0
d ��CS

Tbb0
u C��Ŝ

cc0
u þ 4Saa

0
u ��CS

Tbb0
u C��Ŝ

cc0
d

þ 2Ŝaa
0

u tr½��CS
Tbb0
u C��S

cc0
d � þ 2Ŝaa

0
u tr½��CS

Tbb0
d C��S

cc0
u � þ 2Ŝaa

0
d tr½��CS

Tbb0
u C��S

cc0
u �

þ 2Saa
0

u tr½��CŜ
Tbb0
u C��S

cc0
d � þ 2Saa

0
d tr½��CŜ

Tbb0
u C��S

cc0
u � þ 2Saa

0
u tr½��CŜ

Tbb0
d C��S

cc0
u �

þ 2Saa
0

u tr½��CS
Tbb0
d C��Ŝ

cc0
u � þ 2Saa

0
d tr½��CS

Tbb0
u C��Ŝ

cc0
u � þ 2Saa

0
u tr½��CS

Tbb0
u C��Ŝ

cc0
d �g

þ X
q¼u;d;s

eq
X
i

tr½Siiq ðx1; x1Þ��� 13 �
abc�a

0b0c0 f4Saa0u ��CS
Tbb0
u C��S

cc0
d þ 4Saa

0
u ��CS

Tbb0
d C��S

cc0
u

þ 4Saa
0

d ��CS
Tbb0
u C��vS

cc0
u þ 2Saa

0
u tr½��CS

Tbb0
u C��S

cc0
d � þ 2Saa

0
u tr½��CS

Tbb0
d C��S

cc0
u �

þ 2Saa
0

d tr½��CS
Tbb0
u C��S

cc0
u �g; (2.7)

where

Ŝ aa0
q ðx2; x1; 0Þ ¼ eq

X
i

Saiq ðx2; x1Þ�	S
ia0
q ðx1; 0Þ (2.8)

denotes the connected insertion of the probing current to a
quark of charge eq. Here we have explicitly selected the
electromagnetic current. However, the present discussion
may be generalized to any quark-field-based current op-
erator bilinear in the quark fields.

The latter term of Eq. (2.7) accounts for the disconnected
quark loop contribution depicted in Fig. 1(b). The sum over
the quarks running around the loop has been restricted to
the flavors relevant to the ground state baryon octet and
decuplet. In the SUð3Þflavor limit the sum vanishes for the
electromagnetic current. However, the heavier strange
quark mass allows for a nontrivial result. Because of the
technical difficulties of numerically estimatingM�1 for the
squared lattice volume of diagonal spatial indices, these
contributions have been omitted from lattice QCD calcu-
lations of electromagnetic structure in the spirit of Q�PT,
and we will also do so here. For other observables such as
the scalar density or forward matrix elements of the axial
vector current relevant to the spin of the baryon, the
‘‘charges’’ running around the loop do not sum to zero.
In this case the second term of Eq. (2.7) can be just as
significant as the connected term [19,20].

An examination of Eq. (2.7) reveals complete symmetry
among the quark flavors in the correlation function. For
example, wherever a d quark appears in the correlator, a u
quark also appears in the same position in another term. An
interesting consequence of this is that the connected in-
sertion of the electromagnetic current for �0 vanishes. All
electromagnetic properties of the �0 have their origin
strictly in the disconnected loop contribution. Physically,
what this means is that the valence wave functions for each
of the quarks in the � resonances are identical under
charge symmetry.

C. Two-point Green functions

In this and the following subsection discussing correla-
tion functions at the hadronic level, the Dirac representa-
tion of the � matrices is used to facilitate calculations of
the �-matrix algebra. It is then a simple task to account for
the differences in �-matrix and metric definitions in report-
ing the final results using Sakurai’s notation.
The extraction of baryon mass and electromagnetic form

factors proceeds through the calculation of the ensemble
average (denoted h. . .i) of two- and three-point Green
functions. The two-point function for decuplet baryons is
defined as

hGBB
�
 ðt; ~p; �Þi ¼

X
~x

e�i ~p� ~x��	h�jTð�	
�ðxÞ ���


 ð0ÞÞj�i:

(2.9)

Here� represents the QCD vacuum, � is a 4� 4matrix in
Dirac space and 	 and � are Dirac indices. The subscripts
� and 
 are the Lorentz indices of the spin-3=2 interpolat-
ing fields. At the hadronic level one proceeds by inserting a
complete set of states jB; p; si and defining

h�j��ð0ÞjB;p; si ¼ ZBðpÞ
ffiffiffiffiffiffi
M

Ep

s
u�ðp; sÞ; (2.10)

where ZB represents the coupling strength of ��ð0Þ to the
baryon B. Our use of smeared interpolators makes this
momentum dependent. Momentum is denoted by p, spin
by s, and u	ðp; sÞ is a spin vector in the Rarita-Schwinger

formalism. Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

p
and Dirac indices have been

suppressed. Using the Rarita-Schwinger spin sum,X
s

u�ðp;sÞ �u
ðp;sÞ

¼�� �pþM

2M

�
g�
 � 1

3
���
 � 2p�p


3M2
þp��
�p
��

3M

�

���
; (2.11)
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our usual definitions for �,

�j ¼ 1

2

�j 0
0 0

� �
; �4 ¼ 1

2

I 0
0 0

� �
; (2.12)

and ~p ¼ ðp; 0; 0Þ, the large Euclidean time limit of the two-
point function takes the form

hGBB
�
 ðt; ~p;�4Þi ¼ ZBðpÞ �ZBðpÞ MEp

e�Ept tr½�4��
�;
(2.13)

where

hGBB
00 ðt; ~p;�4Þi ¼ ZBðpÞ �ZBðpÞ 23

j ~pj2
M2

B

�
Ep þMB

2Ep

�
e�Ept;

(2.14)

hGBB
11 ðt; ~p;�4Þi ¼ ZBðpÞ �ZBðpÞ 23

E2
p

M2
B

�
Ep þMB

2Ep

�
e�Ept;

(2.15)

hGBB
22 ðt; ~p;�4Þi ¼ ZBðpÞ �ZBðpÞ 23

�
Ep þMB

2Ep

�
e�Ept;

(2.16)

hGBB
33 ðt; ~p;�4Þi ¼ ZBðpÞ �ZBðpÞ 23

�
Ep þMB

2Ep

�
e�Ept:

(2.17)

Here �ZBðpÞ denotes the overlap associated with our
smeared source. ZBðpÞ is associated with the sink which
need not have the same smearing.

Equations (2.14), (2.15), (2.16), and (2.17) provide four
correlation functions from which a baryon mass may be
extracted. All baryon masses extracted from the different
selections of Lorentz indices agree within statistical un-
certainties. The combination providing the smallest statis-
tical fluctuations is hGBB

22 ðt; ~p;�4Þ þGBB
33 ðt; ~p;�4Þi and

these results are presented in Sec. V.
It should be noted that the spin-3=2 interpolating field

also has overlap with spin-1=2 baryons. For the � baryons
and �� this poses no problem as these baryons are the
lowest lying baryons in the mass spectrum having the
appropriate isospin and strangeness quantum numbers.
However, �� and�� correlation functions may have lower
lying octet spin-1=2 components allowed by flavor-
symmetry breaking, mu ¼ md � ms. Therefore it is desir-
able to use the spin-3=2 projection operator [21]

P3=2
�� ðpÞ ¼ g�� � 1

3
���� � 1

3p2
ð� �p��p�þp���� �pÞ:

(2.18)

However, our precision results for baryon two-point func-
tions give no indication of a low-lying spin-1=2 component

being excited by the spin-3=2 interpolating fields, and
conclude such excitations are negligible.

D. Three-point functions and multipole form factors

Here we begin with a brief overview of the results of
Ref. [22], where the multipole form factors are defined in
terms of the covariant vertex functions and in terms of the
current matrix elements. The electromagnetic current ma-
trix element for spin-3=2 particles may be written as

hp0; s0jj�ð0Þjp; si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B

EpEp0

vuut �u	ðp0; s0ÞO	��u�ðp; sÞ:

(2.19)

Here p and p0 (s and s0) denote the momentum (spin) of the
initial and final states, respectively, and u	ðp; sÞ is a Rarita-
Schwinger spin vector. The following Lorentz covariant
form for the tensor

O	�� ¼ �g	�
�
a1�

� þ a2
2MB

P�

�

� q	q�

ð2MBÞ2
�
c1�

� þ c2
2MB

P�

�
; (2.20)

where P ¼ p0 þ p, q ¼ p0 � p and MB is the mass of the
baryon, satisfies the standard requirements of invariance
under time reversal, parity, G parity and gauge transforma-
tions. The parameters a1, a2, c1 and c2 are independent
covariant vertex functions.
The multipole form factors are defined in terms of the

covariant vertex functions through the following Lorentz
invariant expressions [22]:

GE0ðq2Þ ¼ ð1þ 2
3
Þfa1 þ ð1þ 
Þa2g

� 1
3
ð1þ 
Þfc1 þ ð1þ 
Þc2g; (2.21)

G E2ðq2Þ ¼ fa1 þ ð1þ 
Þa2g � 1
2ð1þ 
Þfc1 þ ð1þ 
Þc2g;

(2.22)

G M1ðq2Þ ¼ ð1þ 4
5
Þa1 � 2

5
ð1þ 
Þc1; (2.23)

G M3ðq2Þ ¼ a1 � 1
2ð1þ 
Þc1; (2.24)

with 
 ¼ �q2=ð2MBÞ2ð� 0Þ. The multipole form factors
GE0, GE2, GM1 and GM3 are referred to as the charge (E0),
electric-quadrupole (E2), magnetic-dipole (M1) and
magnetic-octupole (M3) multipole form factors.
In a manner similar to that for the two-point function, the

three-point Green function for the electromagnetic current
is defined as
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hGBj�B
�
 ðt2; t1; ~p0; ~p; �Þi

¼ X
~x2; ~x1

e�i ~p0� ~x2eþið ~p0� ~pÞ� ~x1

� ��	h�jTð�	
�ðx2Þj�ðx1Þ ���


 ð0ÞÞj�i: (2.25)

Once again, the subscripts � and 
 are the Lorentz indices
of the spin-3=2 interpolating fields. For large Euclidean
time separations, t2 � t1 	 1 and t1 	 1, the three-point
function at the hadronic level becomes

hGBj�B
�
 ðt2; t1; ~p0; ~p; �Þi

¼ X
s;s0

e�Ep0 ðt2�t1Þe�Ept1��	h�j�	
�jp0; s0i

� hp0; s0jj�jp; sihp; sj ���

 j�i; (2.26)

where the matrix element of the electromagnetic current is
defined in (2.19), and the matrix elements of the interpolat-
ing fields are defined by Eq. (2.10).

The time dependence of the three-point function may be
eliminated through the use of the two-point functions.
Maintaining the lattice Ward identity, which guarantees
the lattice electric form factor reproduces the total charge
of the baryon at q2 ¼ 0, provides an indispensable guide to
the optimum ratio of Green functions. The preferred ratio
of two- and three-point Green functions is [7]

R�
�

ðt2; t1; ~p0; ~p; �Þ

¼
�hGBj�B

�
 ðt2; t1; ~p0; ~p; �ÞihGBj�B
�
 ðt2; t1;� ~p;� ~p0; �Þi

hGBB
�
 ðt2; ~p0; �4ÞihGBB

�
 ðt2;� ~p; �4Þi
�
1=2

;

(2.27)

’
�
Ep þM

2Ep

�
1=2

�
Ep0 þM

2Ep0

�
1=2

�R�
�

ð ~p0; ~p; �Þ; (2.28)

where we have defined the reduced ratio �R�
�

ð ~p0; ~p; �Þ.

Note that there is no implied sum over � and 
 in
Eq. (2.27). Also, the square root in Eq. (2.27) spoils the
covariant/contraviant nature of R�

�

 and no meaning

should be attached to the location of the indices. We still

prefer this notation due to the close connection withGBj�B
�
 .

Using our standard definitions for � given in Eq. (2.12)
and the Rarita-Schwinger spin sum of Eq. (2.11), the multi-
pole form factors may be isolated and extracted from the
following combinations of �R�

�

ð ~p0; ~p; �Þ:

G E0ðq2Þ ¼ 1
3ð �R1

4
1ð ~q1; 0; �4Þ þ �R2

4
2ð ~q1; 0; �4Þ

þ �R3
4
3ð ~q1; 0; �4ÞÞ; (2.29)

G E2ðq2Þ ¼ 2
MðEþMÞ

j ~q1j2
ð �R1

4
1ð ~q1; 0; �4Þ

þ �R2
4
2ð ~q1; 0; �4Þ � 2 �R3

4
3ð ~q1; 0; �4ÞÞ;

(2.30)

GM1ðq2Þ ¼ � 3

5

EþM

j ~q1j ð �R1
3
1ð ~q1; 0; �2Þ þ �R2

3
2ð ~q1; 0; �2Þ

þ �R3
3
3ð ~q1; 0; �2ÞÞ; (2.31)

G M3ðq2Þ ¼ �4
MðEþMÞ2

j ~q1j3
�
�R1

3
1ð ~q1; 0; �2Þ

þ �R2
3
2ð ~q1; 0; �2Þ � 3

2
�R3

3
3ð ~q1; 0; �2Þ

�
;

(2.32)

where ~q1 ¼ ðq; 0; 0Þ. We note that smaller statistical un-
certainties may be obtained for GE2 by using the symmetry

�R 2
4
2ð ~q1; 0; �4Þ ¼ �R3

4
3ð ~q1; 0; �4Þ; (2.33)

in Eq. (2.30). Hence, we define an average �R4
avg as

�R 4
avgð ~q1; 0; �4Þ ¼ 1

2½ �R2
4
2ð ~q1; 0; �4Þ þ �R3

4
3ð ~q1; 0; �4Þ�:

(2.34)

With this definition the expression for GE2ðq2Þ used in our
simulations is

G E2ðq2Þ ¼ 2
MðEþMÞ

j ~q1j2
ð �R1

4
1ð ~q1; 0; �4Þ

� �R4
avgð ~q1; 0; �4ÞÞ: (2.35)

III. LATTICE TECHNIQUES

The three-point functions discussed in Sec. II are con-
structed using the sequential source technique outlined in
Refs. [7,23,24]. Our quenched gauge fields are generated
with the Oða2Þ mean-field improved Lüscher-Weisz pla-
quette plus rectangle gauge action [25] using the plaquette
measure for the mean link. The simulations are performed
on a 203 � 40 lattice with a lattice spacing of 0.128 fm as
determined by the Sommer scale [26] r0 ¼ 0:50 fm. This
provides a spatial length of 2.56 fm, allowing us to safely
simulate at the lowest pion mass of 300 MeV. The large
volume lattice also ensures a good density of low-lying
momenta which are key to giving rise to chiral nonanalytic
behavior in the observables simulated on the lattice
[10,11]. Future studies should include additional volumes,
in order to investigate any possible volume dependence of
the three-point functions used to extract the form factors.
We perform a high-statistics analysis using a large sam-

ple of 400 configurations for our lightest eight quark
masses. We also consider a subset of 200 configurations
for the three heaviest quark masses in order to explore the
approach to the heavy-quark regime. A small subensemble
bias correction is applied multiplicatively to the heavy-
quark results, by matching the central values of the
200 configuration subensemble and 400 configuration en-
semble averages at � ¼ 0:127 80. All tables display the
raw, unbiased data for the first four kappa values. The first
row of the � ¼ 0:127 80 results gives the results from the
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200 configuration subensembles, and the second gives the
400 configuration ensemble results. The scaled results
from the 200 configuration subensembles are shown in
the figures.

We use the fat-link irrelevant clover (FLIC) Dirac op-
erator [27] which provides OðaÞ improvement [28]. The
improved chiral properties of FLIC fermions allow effi-
cient access to the light-quark-mass regime [29], making
them ideal for dynamical fermion simulations now under-
way [30]. For the vector current, we use anOðaÞ-improved
FLIC conserved vector current [14]. We use a smeared
source at t0 ¼ 8, and a current insertion centered at t1 ¼
14. Complete details are described in Ref. [14].

Table I provides the kappa values used in our simula-
tions, together with the calculated 
 and decuplet-baryon
masses. While we refer tom2


 to infer the quark masses, we
note that the critical value where the pion mass vanishes is
�cr ¼ 0:131 35.

We select � ¼ 0:128 85 to represent the strange quark in
this simulation. At this � the s�s pseudoscalar mass is
0.697 GeV, which compares well with the experimental
value of 2m2

K �m2

 ¼ ð0:693 GeVÞ2, motivated by lead-

ing order chiral perturbation theory.
The error analysis of the correlation function ratios is

performed via a third-order, single-elimination jackknife,
with the �2 per degree of freedom ð�2

dofÞ obtained via

covariance matrix fits. We perform a series of fits through
the ratios after the current insertion at t1 ¼ 14. By exam-
ining the �2

dof we are able to establish a valid window

through which we may fit in order to extract our observ-
ables. In all cases, we required a value of �2

dof no larger

than 1.5. The values of the static quantities quoted in this
paper on a per quark-sector basis correspond to values for
single quarks of unit charge.

When extracting form factors from the lattice cor-
relation functions via the ratios defined in Eqs. (2.29),

(2.30), (2.31), and (2.32) in Sec. II D, we employ the
advanced analysis techniques outlined in detail in
Ref. [14].
The following calculations are performed in the lab

frame ~p ¼ 0, ~p0 ¼ ~q ¼ j ~qjx̂ at j ~qja ¼ 2
=Lx with Lx ¼
20, the minimum nonzero momentum available on our
lattice. While q2 is dependent on the mass of the baryon,
we find this mass dependence to be small. Indeed all form
factors may be regarded as being calculated at Q2 ¼
�q2 ¼ 0:230� 0:001 GeV2 where the error is dominated
by the mass dependence of the target baryon. Where a
spatial direction of the electromagnetic current is required,
it is chosen to be the z direction.

IV. CORRELATION FUNCTION ANALYSIS

A. Baryon masses

Figure 2 is a plot of the decuplet-baryon masses along
with the masses of the octet baryon from our previous
calculation [14]. We observe the SUð3Þflavor limit at our
sixth quark mass when m2


 ¼ 0:485ð3Þ GeV2. The mass of
the �� is the mass of the � at the SUð3Þflavor limit, i.e.,
1:732� 0:012 GeV which differs from the experimentally
measured value of 1.67 GeV by only about 3.6%. The
higher value from the quenched simulation is in accord
with the expectations of quenched �EFT [31,32]. The mass
of the � baryon begins to show an upward chiral curvature
as them2


 becomes smaller. This behavior has already been
discussed in Refs. [29,31,33].
In Fig. 3 we show the effective mass of the � as a

function of time at the SUð3Þflavor limit. The fit result and
error are denoted by the asterisk symbol on the left edge of

TABLE I. Hadron masses in units of GeV for various values of
the hopping parameter �. Pion masses are in GeV2 while the
baryon masses are in GeV.

� m2

 � �� ��

0.126 30 0.9960(56) 1.999(9) 1.908(10) 1.815(11)

0.126 80 0.8936(56) 1.945(10) 1.871(11) 1.797(12)

0.127 30 0.7920(55) 1.890(10) 1.834(11) 1.779(13)

0.127 80 0.6920(54) 1.836(11) 1.798(12) 1.761(13)

0.127 80 0.6910(35) 1.845(10) 1.807(11) 1.770(11)

0.128 30 0.5925(33) 1.791(11) 1.771(11) 1.752(12)

0.128 85 0.4854(31) 1.732(12) 1.732(12) 1.732(12)

0.129 40 0.3795(31) 1.673(14) 1.693(13) 1.712(13)

0.129 90 0.2839(33) 1.622(16) 1.659(15) 1.695(13)

0.132 05 0.2153(35) 1.592(17) 1.638(15) 1.685(13)

0.130 60 0.1384(43) 1.565(18) 1.620(16) 1.676(14)

0.130 80 0.0939(44) 1.549(19) 1.609(16) 1.670(14)

Experiment 0.0196 1.232 1.382 1.531

FIG. 2. Masses of the decuplet and the octet baryons [14] at
different quark masses. At the lightest quark mass the lowest
point is the nucleon (open circle), followed by � (open dia-
mond), � (open triangle) and the � (open square). The decuplet
baryon with lowest mass is the � (closed triangle) followed by
�� (closed diamond) and �� (closed circle).
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the plot. Figure 4 shows the fit of the effective mass
splitting for the � between the eighth and ninth quark
masses. The final uncertainty combines this uncertainty
with the error of the previous quark mass, the eighth in
this case.

B. Form factor correlators

The baryon form factors are calculated on a quark-
sector-by-quark-sector basis with each sector normalized
to the contribution of a single quark with unit charge.
Hence to calculate the corresponding baryon property,
each quark-sector contribution should be multiplied by

the appropriate charge and quark number. Under such a
scheme for a generic form factor f, the�þ form factor f�þ

is obtained from the u- and d-quark sectors normalized for
a single quark of unit charge via

f�þ ¼ 2� 2
3 � fu þ 1� ð�1

3Þ � fd: (4.1)

Figure 5 depicts the electric form factor E0 of the u
quark in the � as a function of time at the SUð3Þflavor limit.
The u and d quarks in the � states are identical as dis-
cussed in regard to Eq. (2.7). The straight lines indicate the

FIG. 3. Effective mass function of the � as a function of
Euclidean time for m2


 ¼ 0:485ð3Þ GeV2, the SUð3Þflavor limit.
The line indicates the fitting window and the best fit value. The
asterisk at the left gives the fit result and the corresponding error.

FIG. 4. Effective mass function of the � as a function of
Euclidean time at the ninth quark mass where m2


 ¼
0:215ð4Þ GeV2. The correlator is obtained from the splitting
between the ninth and eighth quark-mass results. The line
indicates the fitting window and the best fit value, and the
asterisk gives the best fit with the corresponding error.

FIG. 5. E0 electric form factor of the u quark in the � at Q2 ¼
0:230ð1Þ GeV2 as a function of Euclidean time for m2


 ¼
0:485ð3Þ GeV2, the SUð3Þflavor limit. The line indicates the fitting
window and the best fit value with its error is shown by the
asterisk on the left edge of the figure.

FIG. 6. E0 electric form factor of the u quark in the � at Q2 ¼
0:230ð1Þ GeV2 as a function of Euclidean time at the ninth quark
mass where m2


 ¼ 0:215ð4Þ GeV2. The correlator is obtained
from the splitting between the ninth and eighth quark-mass
results. The line indicates the fitting window and the best fit
value with its error is shown by the asterisk on the left edge of
the figure.
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TABLE II. Quark-sector contributions to the electric form factor E0 of the � at Q2 ¼
0:230ð1Þ GeV2. Sector contributions are for a single quark of unit charge. The fit windows
are selected using the criteria outlined in Ref. [14]. The quark contribution at the SUð3Þ limit
when m2


 ¼ 0:485ð3Þ GeV2 provides the s quark contribution in ��.

m2

 u� d�

(GeV2) Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9960(56) 0.800(5) 20–24 1.47 0.800(5) 20–24 1.47

0.8936(56) 0.794(6) 20–24 0.95 0.794(6) 20–24 0.95

0.7920(55) 0.788(7) 20–24 0.79 0.788(7) 20–24 0.79

0.6920(54) 0.783(8) 20–24 0.59 0.783(8) 20–24 0.59

0.6910(35) 0.773(6) 20–24 1.46 0.773(6) 20–24 1.46

0.5925(33) 0.764(7) 20–24 1.07 0.764(7) 20–24 1.07

0.4854(31) 0.755(10) 20–24 0.53 0.755(10) 20–24 0.53

0.3795(31) 0.744(11) 17–20 0.73 0.744(11) 17–20 0.73

0.2839(33) 0.733(13) 17–20 0.79 0.733(13) 17–20 0.79

0.2153(35) 0.725(16) 17–19 0.46 0.725(16) 17–19 0.46

0.1384(43) 0.717(22) 17–19 0.23 0.717(22) 17–19 0.23

0.0939(44) 0.693(33) 17–19 0.34 0.693(33) 17–19 0.34

TABLE III. Quark-sector contributions to the electric form factor E0 of �� at Q2 ¼
0:230ð1Þ GeV2. Sector contributions are for a single quark having unit charge. The fit windows
are selected using the criteria outlined in Ref. [14].

m2

 u�� or d�� s��

(GeV2) Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9960(56) 0.804(6) 20–24 0.85 0.759(9) 20–24 0.54

0.8936(56) 0.798(7) 20–24 0.65 0.761(9) 20–24 0.50

0.7920(55) 0.792(8) 20–24 0.63 0.763(10) 20–24 0.49

0.6920(54) 0.786(9) 20–24 0.56 0.766(10) 20–24 0.48

0.6910(35) 0.774(6) 20–24 1.15 0.752(8) 20–24 0.97

0.5925(33) 0.764(8) 20–24 0.91 0.753(8) 20–24 0.79

0.4854(31) 0.755(10) 20–24 0.53 0.755(10) 20–24 0.53

0.3795(31) 0.744(11) 17–20 0.89 0.754(10) 17–20 0.22

0.2839(33) 0.733(12) 17–20 0.81 0.754(11) 17–20 0.37

0.2153(35) 0.727(14) 17–19 0.15 0.753(11) 17–19 0.21

0.1384(43) 0.719(18) 17–19 0.07 0.753(12) 17–19 0.05

0.0939(44) 0.710(23) 17–19 0.22 0.746(14) 17–19 0.63

TABLE IV. Quark-sector contributions to the electric form factor E0 of �� at Q2 ¼
0:230ð1Þ GeV2. Sector contributions are for a single quark having unit charge. The fit windows
are selected using the criteria outlined in Ref. [14].

m2

 s�� u��

(GeV2) Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9960(56) 0.765(10) 20–24 0.47 0.809(8) 20–24 0.66

0.8936(56) 0.766(11) 20–24 0.47 0.802(8) 20–24 0.58

0.7920(55) 0.767(11) 20–24 0.49 0.795(9) 20–24 0.61

0.6920(54) 0.769(12) 20–24 0.50 0.788(10) 20–24 0.58

0.6910(35) 0.753(9) 20–24 0.73 0.775(7) 20–24 0.89

0.5925(33) 0.754(9) 20–24 0.66 0.765(8) 20–24 0.75

0.4854(31) 0.755(10) 20–24 0.53 0.755(10) 20–24 0.53

0.3795(31) 0.754(10) 17–20 0.19 0.744(10) 17–20 1.19

0.2839(33) 0.754(10) 17–20 0.22 0.734(11) 17–20 0.77

0.2153(35) 0.754(10) 17–19 0.03 0.727(13) 17–19 0.09

0.1384(43) 0.755(11) 17–19 0.11 0.720(14) 17–19 0.10

0.0939(44) 0.754(11) 17–19 0.66 0.714(17) 17–19 0.19

S. BOINEPALLI et al. PHYSICAL REVIEW D 80, 054505 (2009)

054505-8



fits which were selected using the �2
dof considerations out-

lined in Ref. [14]. For light-quark masses smaller than the
strange quark mass, we fit the change in the form factor
correlation functions from one quark mass to the next and
add this to the previous result at the heavier quark mass.
This provides significant cancellation of correlated system-
atic errors and makes the selection of the fit regime
transparent.

Figure 6 shows the fitting of the electric form factor
splitting for the �þ between the eighth and ninth quark
masses, the latter having m2


 ¼ 0:215ð4Þ GeV2. The im-
provement of the plateau is apparent in Fig. 6. Still, sub-
stantial Euclidean time evolution is required to obtain an
acceptable �2

dof .

Tables II, III, and IV list the electric form factors for all
the decuplet baryons at the quark level for the 11 quark

masses considered. In the tables, the selected time frame,
the fit value and the associated �2

dof are indicated. Table V

provides collected results for the various decuplet baryons.
The magnetic form factor M1 for the u quark sector in

the � at the SUð3Þ limit is plotted in Fig. 7 as a function of
Euclidean time. Here the conversion from the natural
magneton e=ð2mBÞ, where the mass of the baryon under
investigation appears, to the nuclear magneton e=ð2mNÞ,
where the physical nucleon mass appears, has been done by
multiplying the lattice form factor results by the ratio
mN=mB. In this way the form factors are presented in terms
of a constant unit, i.e., the nuclear magneton.
In Fig. 8 we present the Euclidean time dependence of

the M1 magnetic form factors of the �, calculated at the
ninth quark mass where m2


 ¼ 0:215ð4Þ GeV2 using the

TABLE V. The E0 form factors of the various charged decuplet baryons for different m2



values. The E0 form factor of the�� at the SUð3Þflavor limit [m2

 ¼ 0:485ð3Þ GeV2] provides the

E0 form factor of the ��.

m2

 (GeV2) �þþ �þ �� ��þ ��� ���

0.9972(55) 1.601(10) 0.803(5) �0:803ð5Þ 0.819(6) �0:789ð7Þ �0:780ð9Þ
0.8936(56) 1.589(11) 0.794(6) �0:794ð6Þ 0.810(6) �0:786ð7Þ �0:778ð10Þ
0.7920(55) 1.577(13) 0.788(7) �0:788ð7Þ 0.801(7) �0:782ð8Þ �0:777ð10Þ
0.6920(54) 1.566(16) 0.783(8) �0:783ð8Þ 0.792(8) �0:779ð9Þ �0:775ð11Þ
0.6910(35) 1.545(11) 0.773(6) �0:773ð6Þ 0.781(6) �0:766ð7Þ �0:760ð8Þ
0.5925(33) 1.527(14) 0.764(7) �0:764ð7Þ 0.768(7) �0:761ð8Þ �0:757ð9Þ
0.4854(31) 1.509(19) 0.755(10) �0:755ð10Þ 0.755(10) �0:755ð10Þ �0:755ð10Þ
0.3795(31) 1.487(22) 0.744(11) �0:744ð11Þ 0.740(11) �0:747ð10Þ �0:751ð10Þ
0.2839(33) 1.465(26) 0.733(13) �0:733ð13Þ 0.726(13) �0:741ð12Þ �0:747ð11Þ
0.2153(35) 1.451(31) 0.725(16) �0:725ð16Þ 0.718(15) �0:736ð13Þ �0:745ð11Þ
0.1384(43) 1.433(44) 0.717(22) �0:717ð22Þ 0.708(20) �0:730ð15Þ �0:743ð12Þ
0.0939(44) 1.386(65) 0.693(33) �0:693ð33Þ 0.698(27) �0:722ð19Þ �0:741ð13Þ

FIG. 7. M1 magnetic form factor of the u quark in � at Q2 ¼
0:230ð1Þ GeV2 as a function of Euclidean time for m2


 ¼
0:485ð3Þ GeV2, the SUð3Þ-flavor limit. The line indicates the
fitting window and the best fit value with its corresponding error
is given by the asterisk on the left edge of the figure.

FIG. 8. M1 magnetic form factor of the u quark in � at Q2 ¼
0:230ð1Þ GeV2 at the ninth quark mass where m2


 ¼
0:215ð4Þ GeV2. The correlator is obtained from the splitting
between the ninth and eighth quark-mass results. The line
indicates the fitting window and the best fit value with its error
is shown by the asterisk on the left edge of the figure.
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TABLE VI. Quark-sector contributions to the magnetic form factor M1 of the � at Q2 ¼
0:230ð1Þ GeV2. Sector contributions are for a single quark having unit charge. The fit windows
are selected using the criteria outlined in Ref. [14]. The quark contribution at the SUð3Þflavor limit
when m2


 ¼ 0:4854ð31Þ GeV2 provides the s quark contribution in the ��.

m2

 (GeV2) u�ð�NÞ d�ð�NÞ

Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9960(56) 1.173(25) 19–24 1.45 1.173(25) 19–24 1.45

0.8936(56) 1.201(29) 19–24 1.14 1.201(29) 19–24 1.14

0.7920(55) 1.230(33) 19–24 0.95 1.230(33) 19–24 0.95

0.6920(54) 1.256(40) 19–24 0.75 1.256(40) 19–24 0.75

0.6910(35) 1.248(32) 19–24 1.25 1.248(32) 19–24 1.25

0.5925(33) 1.269(41) 19–24 0.79 1.269(41) 19–24 0.79

0.4854(31) 1.280(56) 19–24 0.31 1.280(56) 19–24 0.31

0.3795(31) 1.301(64) 17–21 1.37 1.301(64) 17–21 1.37

0.2839(33) 1.312(75) 17–19 1.14 1.312(75) 17–19 1.14

0.2153(35) 1.309(89) 17–19 0.91 1.309(89) 17–19 0.91

0.1384(43) 1.28(12) 17–18 1.26 1.28(12) 17–18 1.26

0.0939(44) 1.11(21) 17–18 1.79 1.11(21) 17–18 1.79

TABLE VII. Quark-sector contributions to the magnetic form factor M1 of the �� at Q2 ¼
0:230ð1Þ GeV2. Sector contributions are for a single quark having unit charge. The fit windows
are selected using the criteria outlined in Ref. [14].

m2

 (GeV2) u�� or d�� ð�NÞ s�� ð�NÞ

Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9960(56) 1.191(31) 19–24 1.07 1.268(40) 19–24 0.51

0.8936(56) 1.216(35) 19–24 0.90 1.275(42) 19–24 0.49

0.7920(55) 1.242(39) 19–24 0.82 1.282(45) 19–24 0.47

0.6920(54) 1.264(45) 19–24 0.69 1.289(50) 19–24 0.47

0.6910(35) 1.254(37) 19–24 0.94 1.275(41) 19–24 0.69

0.5925(33) 1.272(45) 19–24 0.64 1.278(47) 19–24 0.51

0.4854(31) 1.280(56) 19–24 0.31 1.280(56) 19–24 0.31

0.3795(31) 1.297(62) 17–21 1.72 1.289(60) 17–21 0.70

0.2839(33) 1.306(68) 17–19 1.88 1.299(65) 17–19 0.04

0.2153(35) 1.305(76) 17–19 1.84 1.309(69) 17–19 0.08

0.1384(43) 1.299(89) 17–19 3.44 1.330(74) 17–19 0.44

0.0939(44) 1.25(12) 17–18 2.55 1.303(88) 17–18 0.16

TABLE VIII. Quark-sector contributions to the magnetic form factor M1 of the �� at Q2 ¼
0:230ð1Þ GeV2. Sector contributions are for a single quark having unit charge. The fit windows
are selected using the criteria outlined in Ref. [14].

m2

 (GeV2) s�� ð�NÞ u�� or d�� ð�NÞ

Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9960(56) 1.286(50) 19–24 0.45 1.208(39) 19–24 0.84

0.8936(56) 1.289(52) 19–24 0.46 1.231(42) 19–24 0.79

0.7920(55) 1.293(54) 19–24 0.46 1.254(46) 19–24 0.76

0.6920(54) 1.297(56) 19–24 0.45 1.273(51) 19–24 0.63

0.6910(35) 1.278(48) 19–24 0.48 1.260(44) 19–24 0.68

0.5925(33) 1.280(51) 19–24 0.40 1.274(49) 19–24 0.52

0.4854(31) 1.280(56) 19–24 0.31 1.280(56) 19–24 0.31

0.3795(31) 1.285(58) 17–21 0.70 1.293(60) 17–21 2.56

0.2839(33) 1.289(60) 17–19 0.04 1.300(63) 17–19 2.66

0.2153(35) 1.293(62) 17–19 0.02 1.303(66) 17–19 1.44

0.1384(43) 1.302(64) 17–18 0.73 1.303(72) 17–18 2.36

0.0939(44) 1.301(67) 17–18 0.23 1.313(81) 17–18 0.56
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splittings analysis. The onset of noise at this lighter quark
mass is particularly apparent at time slice 20.

Results for the quark-sector contributions to the M1
magnetic form factors of the decuplet baryons are summa-
rized in Tables VI, VII, and VIII. While some of the �2

dof

are somewhat large we note that neighboring regimes with
acceptable �2

dof have a variation in the central value that is

small with respect to the statistical uncertainty. Results for
the various decuplet baryons are given in Table IX.

V. DISCUSSION OF RESULTS

A. Charge radii

It is well known that the experimental electric (and
magnetic) form factor of the proton is well described by
a dipole ansatz at small Q2

G EðQ2Þ ¼ GEð0Þ
ð1þQ2=m2Þ2 ; Q2 � 0: (5.1)

This behavior has also been observed in recent lattice
calculations [34]. Using this observation, together with
the standard small Q2 expansion of the Fourier transform
of a spherical charge distribution,

hr2Ei ¼ �6
d

dQ2
GEðQ2ÞjQ2¼0; (5.2)

we arrive at an expression which allows us to calculate the
electric charge radius of a baryon using our two available
values of the Sachs electric form factor [GEðQ2

minÞ, GEð0Þ],
namely,

hr2Ei
GEð0Þ

¼ 12

Q2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GEð0Þ
GEðQ2Þ

s
� 1

�
: (5.3)

However to calculate the charge radii of the neutral bary-
ons, the above equation cannot be used, due to the fact that
in those cases GE ¼ 0. For the neutral baryons it becomes

a simple matter to construct the charge radii by first cal-
culating the charge radii for each quark sector. These quark
sectors are then combined using the appropriate charge and
quark number factors as described in Sec. IVB to obtain
the total baryon charge radii. Indeed all baryon charge
radii, including the charged states, are calculated in this
manner.
Tables X, XI, and XII provide the electric charge radii of

the decuplet baryons and the quark-sector contributions.
Figures 9 and 10 depict plots of the quark contributions to
the decuplet charge radii. At the SUð3Þ limit (sixth quark
mass) the quark contributions are identical in all cases as
expected.
In Figs. 11 and 12 we compare the charge radii of the

quark sectors in the decuplet baryons to those in the octet
baryons at the ninth quark mass. From the figures it is

TABLE IX. The magnetic M1 form factor of the charged decuplet baryons for different m2



values. The M1 form factor of the �� at the SUð3Þflavor limit [m2

 ¼ 0:485ð3Þ GeV2] provides

the M1 form factor of ��.

m2

 (GeV2) �þþ �þ �� ��þ ��� ���

0.9972(55) 2.35(5) 1.17(2) �1:17ð2Þ 1.16(3) �1:22ð3Þ �1:26ð5Þ
0.8936(56) 2.40(6) 1.20(3) �1:20ð3Þ 1.20(3) �1:24ð4Þ �1:27ð5Þ
0.7920(55) 2.46(7) 1.23(3) �1:23ð3Þ 1.23(4) �1:26ð4Þ �1:28ð5Þ
0.6920(54) 2.51(8) 1.26(4) �1:26ð4Þ 1.26(4) �1:27ð4Þ �1:29ð5Þ
0.6910(35) 2.50(6) 1.25(3) �1:25ð3Þ 1.25(4) �1:26ð4Þ �1:27ð5Þ
0.5925(33) 2.54(8) 1.27(4) �1:27ð4Þ 1.27(4) �1:27ð5Þ �1:28ð5Þ
0.4854(31) 2.56(11) 1.28(6) �1:28ð6Þ 1.28(6) �1:28ð6Þ �1:28ð6Þ
0.3795(31) 2.60(13) 1.30(6) �1:30ð6Þ 1.30(6) �1:29ð6Þ �1:29ð6Þ
0.2839(33) 2.62(15) 1.31(7) �1:31ð7Þ 1.31(7) �1:30ð7Þ �1:29ð6Þ
0.2153(35) 2.62(18) 1.31(9) �1:31ð9Þ 1.30(8) �1:31ð7Þ �1:30ð6Þ
0.1384(43) 2.56(24) 1.28(12) �1:28ð12Þ 1.29(10) �1:31ð8Þ �1:30ð6Þ
0.0939(44) 2.22(43) 1.11(22) �1:11ð22Þ 1.23(14) �1:27ð10Þ �1:30ð7Þ

TABLE X. Charge radii of the � baryons for different m2

.

Quark-sector contributions for a single quark of unit charge are
included. The charge radii of the �þþ are twice that of the �þ
and the results for the �0 are 0 in quenched QCD. At the
SUð3Þflavor limit we find the charge radius of the �� to be equal
to �0:307ð15Þ fm2.

m2

 (GeV2) u� (fm2) d� (fm2) �þ (fm2) �� (fm2)

0.9960(56) 0.238(7) 0.238(7) 0.238(7) �0:238ð7Þ
0.8936(56) 0.247(8) 0.247(8) 0.247(8) �0:247ð8Þ
0.7920(55) 0.256(10) 0.256(10) 0.256(10) �0:256ð10Þ
0.6920(54) 0.264(12) 0.264(12) 0.264(12) �0:264ð12Þ
0.6910(35) 0.279(9) 0.279(9) 0.279(9) �0:279ð9Þ
0.5925(33) 0.293(11) 0.293(11) 0.293(11) �0:293ð11Þ
0.4854(31) 0.307(15) 0.307(15) 0.307(15) �0:307ð15Þ
0.3795(31) 0.324(17) 0.324(17) 0.324(17) �0:324ð17Þ
0.2839(33) 0.343(21) 0.343(21) 0.343(21) �0:343ð21Þ
0.2153(35) 0.355(26) 0.355(26) 0.355(26) �0:355ð26Þ
0.1384(43) 0.370(37) 0.370(37) 0.370(37) �0:370ð37Þ
0.0939(44) 0.410(57) 0.410(57) 0.410(57) �0:410ð57Þ
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TABLE XI. Charge radii of the �� baryons for different m2

. Quark-sector contributions for a

single quark of unit charge are included.

m2

 (GeV2) u�� (fm2) s�� (fm2) ��þ (fm2) ��0 (fm2) ��� (fm2)

0.9960(56) 0.233(8) 0.299(13) 0.212(8) �0:022ð3Þ �0:255ð10Þ
0.8936(56) 0.242(10) 0.296(14) 0.224(9) �0:018ð2Þ �0:260ð11Þ
0.7920(55) 0.251(11) 0.293(15) 0.237(10) �0:014ð2Þ �0:265ð12Þ
0.6920(54) 0.260(13) 0.289(16) 0.250(12) �0:010ð2Þ �0:270ð14Þ
0.6910(35) 0.278(10) 0.311(12) 0.267(9) �0:011ð1Þ �0:289ð10Þ
0.5925(33) 0.292(12) 0.309(13) 0.286(11) �0:006ð1Þ �0:298ð12Þ
0.4854(31) 0.307(15) 0.307(15) 0.307(15) 0.000(1) �0:307ð15Þ
0.3795(31) 0.324(17) 0.308(16) 0.330(17) 0.006(1) �0:319ð16Þ
0.2839(33) 0.341(20) 0.309(17) 0.352(21) 0.011(1) �0:330ð19Þ
0.2153(35) 0.352(23) 0.309(17) 0.366(25) 0.014(2) �0:338ð21Þ
0.1384(43) 0.365(29) 0.311(18) 0.383(33) 0.018(5) �0:347ð25Þ
0.0939(44) 0.380(39) 0.321(22) 0.399(45) 0.020(7) �0:360ð32Þ

TABLE XII. Charge radii of the �� baryons for different m2



values. Quark-sector contributions for a single quark of unit
charge are included.

m2

 (GeV2) s�� (fm2) u�� (fm2) ��0 (fm2) ��� (fm2)

0.9960(56) 0.291(16) 0.227(11) �0:042ð5Þ �0:269ð14Þ
0.8936(56) 0.289(16) 0.236(12) �0:035ð5Þ �0:271ð14Þ
0.7920(55) 0.287(17) 0.246(13) �0:027ð4Þ �0:273ð15Þ
0.6920(54) 0.285(17) 0.256(14) �0:019ð3Þ �0:275ð16Þ
0.6910(35) 0.309(13) 0.276(11) �0:022ð3Þ �0:298ð12Þ
0.5925(33) 0.308(14) 0.291(13) �0:011ð2Þ �0:302ð14Þ
0.4854(31) 0.307(15) 0.307(15) 0.000(0) �0:307ð15Þ
0.3795(31) 0.307(15) 0.324(16) 0.011(1) �0:313ð16Þ
0.2839(33) 0.308(16) 0.341(19) 0.022(3) �0:319ð17Þ
0.2153(35) 0.307(16) 0.351(21) 0.029(4) �0:322ð17Þ
0.1384(43) 0.307(16) 0.363(24) 0.037(7) �0:326ð19Þ
0.0939(44) 0.308(17) 0.372(29) 0.043(10) �0:330ð20Þ

〈
〉

FIG. 9 (color online). Charge radii of the u quark in the �, ��
and �� at different quark masses. The values for the � are
plotted at m2


 while that of the �� and �� are plotted at shifted
m2


 for clarity.

〈
〉

FIG. 10 (color online). Charge radii of the s quark in �� and
�� at different quark masses. The values for �� are plotted at
shifted m2


 values for clarity.

〈
〉

FIG. 11. Charge radii of the u quark sector in the octet (open
squares) and the decuplet (filled squares) baryons at the ninth
quark mass where m2


 ¼ 0:215ð4Þ GeV2.
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evident that the contribution of the quarks is very much
baryon dependent in the octet case, while for the decuplet
baryons there is much less environmental sensitivity to the
individual quark contributions. More specifically, in the
case of the u quark in the octet baryons, the charge radius
decreases with the inclusion of the s quark, while such an
influence of the s quark on the u quark charge radius is
absent in the decuplet baryons. Furthermore, we note that
the charge radius of the u quark distribution in the decuplet
baryons is smaller than that in the octet baryons.

From Fig. 11 it is evident that the charge radius of the u
quark in the proton (up) is larger than that of the u quark in

the �þ (u�þ). In order to investigate this difference more
accurately, we compute the ratios of charge distributions of
similar quarks in the octet to that in the decuplet. The
uncertainty in the ratio hr2iðupÞ=hr2iðu�þÞ is calculated

using the jackknife method. Figures 13 and 14 depict the

ratios of quark contributions in the octet baryons to those in
the decuplet baryons at the SUð3Þflavor limit and the ninth
quark mass, respectively. In both cases, the doubly repre-
sented u quark contribution to the charge radius of octet
baryons is larger than the singly represented octet quarks
and decuplet quarks. At the SUð3Þ limit, all quarks take the
strange quark mass, and hence one would expect the quark
model picture to dominate. This suggests that the u�
should have a broader distribution than that of the up due

to hyperfine interactions. Our results contrast this predic-
tion. The smaller charge radius of u� compared to that of
up also rules out any suggestion of a hyperfine attraction

leading to ud diquark clustering in the nucleon or hyperon
states [35].
The charge radii of the various decuplet-baryon states

are shown in Figs. 15–17 as a function of m2

. The charge

〈
〉

FIG. 12. Charge radii of the s quark sector in the octet (open
squares) and the decuplet (filled squares) baryons at the ninth
quark mass where m2


 ¼ 0:215ð4Þ GeV2.

FIG. 13. Ratio of charge radii of the quark-sector contributions
in the octet/decuplet baryons at the SUð3Þflavor limit where m2


 ¼
0:485ð3Þ GeV2.

FIG. 14. Ratio of charge radii of the quark-sector contributions
in the octet/decuplet baryons at the ninth quark mass where
m2


 ¼ 0:215ð4Þ GeV2.

〈
〉

FIG. 15 (color online). Charge radii of the �þ and ��þ at
different quark masses. The values for �� are plotted at shifted
m2


 for clarity.
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radius of �� is numerically equal to that of the �þ with a
negative sign. The charge radius of �� is taken as that of
the �� in the SUð3Þflavor limit, and is numerically equal to
�0:307� 0:015 fm2. As our calculations neglect the
�� ! �0
� dressing, we anticipate our result to under-
estimate the magnitude.

The decuplet-baryon form factors are dominated by the
net charge of the light quarks. For the �0 the symmetry of
the u and d quarks makes the form factors vanish. This is in
contrast to the neutron where the three quarks are in mixed-
symmetric states, giving rise to a nonzero form factor and
charge radius. Charge radii of the neutral �� and �� are
also close to zero and are dominated by the light-quark
sectors.

The presence of the s quark as one moves from the � to
�� and �� reduces the magnitude of the charge radius as
indicated in Figs. 15–17. By examining the ratio of the
charge radii of the octet to decuplet baryons in Fig. 18, we
observe that the octet baryons have a slightly larger charge
radius than their decuplet counterparts.

B. Magnetic moments

The magnetic moment is provided by the value of the
magnetic form factor at zero momentum transfer Q2 ¼ 0,

� ¼ GMð0Þ e

2MB

; (5.4)

in units of the natural magneton, where MB is the mass of
the baryon. Since the magnetic form factors must be cal-
culated at a finite value of momentum transfer Q2, the
magnetic moment must be inferred from our results,
GMðQ2Þ, obtained at the minimum nonvanishing momen-
tum transfer available on our periodic lattice. We choose to
scale our results from GMðQ2Þ to GMð0Þ. We do this by
assuming that the Q2 dependences of the electric and
magnetic form factors are similar at the quark masses
simulated herein. This is supported by experiment where

the proton ratio GMðQ2Þ
�GEðQ2Þ ’ 1 for values of Q2 similar to that

probed here. In this case

G Mð0Þ ¼ GMðQ2Þ
GEðQ2Þ GEð0Þ: (5.5)

The strange and light sectors of hyperons will scale differ-
ently, and therefore we apply Eq. (5.5) to the individual
quark sectors for all the decuplet baryons. Decuplet-baryon
properties are then reconstructed via

G B
Mð0Þ ¼ Gl

Mð0Þ þ Gs
Mð0Þ; (5.6)

where l labels the light quarks and s labels the strange
quark, and quark numbers and charges are included.

〈
〉

FIG. 16 (color online). Charge radii (magnitude) of the ���
and ��� at different quark masses. The values for ��� are
plotted at shifted m2


 for clarity.

〈
〉

FIG. 17 (color online). Charge radii of the ��0 and ��0 at
different quark masses. The values for ��0 are plotted at shifted
m2


 for clarity.

FIG. 18. Ratio of charge radii of the octet/decuplet baryons at
the ninth quark mass where m2


 ¼ 0:215ð4Þ GeV2.
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Similar calculations are performed for the u and d sectors
of the �.

In Figs. 19–21, we display the quark-sector contribu-
tions to the decuplet magnetic moments, which are equal in
the SUð3Þflavor limit (sixth quark mass) for single quarks of
unit charge. Here we observe that the quark contributions
in the�� and�� are very similar, which provides evidence
that there is little environmental sensitivity. The behavior
of the u� as we approach the chiral regime is also very
interesting.

C. Effective moments

In order to compare the decuplet moments with the octet
moments from our previous lattice calculation [14], we
construct so-called effective moments by equating the

lattice quark-sector contributions to the same sector of
the SUð6Þ-magnetic moment formula derived from
SUð6Þ-spin-flavor-symmetry wave functions.
The simple quark model formula from SUð6Þ-spin-

flavor symmetry gives the magnetic moment of the proton
as

�p ¼ 4
3�u � 1

3�d; (5.7)

where�u and�d are the intrinsic magnetic moments of the
doubly represented u and singly represented d constituent
quarks, respectively, per single quark. This can be gener-
alized for any baryon with two doubly represented quarks
D and one singly represented quark S. Focusing on the
proton and using the charge factors of the doubly repre-
sented and singly represented quarks as 2=3 and (� 1=3),
respectively, we define effective moments for single quarks
of unit charge �Eff by

�u ¼ 2
3�

Eff
D ; �d ¼ �1

3�
Eff
S ; (5.8)

such that Eq. (5.7) becomes

�p ¼ ð43Þð23Þ�Eff
D � ð13Þð�1

3Þ�Eff
S ; (5.9)

where the charge factors within �u and �d are now
explicit.
On the lattice we calculate the baryon magnetic mo-

ments from the individual quark-sector contributions using

�p ¼ 2ð23Þ�Latt
D þ 1ð�1

3Þ�Latt
S : (5.10)

In the above equation the factors 2 and 1 in the first and
second terms account for the number of doubly and singly
represented quarks, respectively, while the charges are
indicated in parentheses. Equating quark sectors in
Eqs. (5.9) and (5.10) yields for the effective moments

�Eff
S ¼ �3�Latt

S ; �Eff
D ¼ 3

2�
Latt
D : (5.11)

FIG. 19 (color online). Magnetic moments of a u quark in �
and �� as a function of quark mass. The values for �� are
plotted at shifted m2


 for clarity.

FIG. 20 (color online). Magnetic moments of a u quark in ��
and �� as a function of quark mass. The values for �� are
plotted at shifted m2


 for clarity.

FIG. 21 (color online). The magnetic moments of the s quark
sectors in the �� and �� for different quark masses. The values
for �� are plotted at shifted m2


 for clarity.

ELECTROMAGNETIC STRUCTURE OF DECUPLET BARYONS . . . PHYSICAL REVIEW D 80, 054505 (2009)

054505-15



One could also define a constituent-quark mass via

�Eff
S ¼ e

2mEff
S

; �Eff
D ¼ e

2mEff
D

; (5.12)

revealing that �Eff
S ’ �Eff

D in most constituent-quark

models.
For the decuplet baryons, the magnetic moment is the

sum of the individual constituent-quark contributions.
Hence Eq. (5.9) for the � baryons becomes

��þ ¼ 2ð23Þ�Eff
D þ 1ð�1

3Þ�Eff
S : (5.13)

On the lattice this is exactly the equation we use to build
the decuplet-baryon moments from the quark-sector con-
tributions. Therefore, the quark level magnetic moments
that we calculate are the effective moments of the quarks
for both the doubly and singly represented quarks, i.e.,

�Eff ¼ �Latt: (5.14)

In Figs. 22 and 23 we plot the effective moments of the u
and s quark sectors of the octet and decuplet baryons at the
ninth quark mass. Here we observe that the quarks in the
octet baryons show far more environmental sensitivity than
their counterparts in the decuplet baryons.
The baryon magnetic moments are plotted in Figs. 24–

26. For the magnetic moment of the �� we take the value
of ��� at the SUð3Þ limit viz., �1:697� 0:065�N, which
is smaller than the value given by the Particle Data Group
(� 2:02� 0:05�N).
This discrepancy could be partly due to the fact that the

mass of �� from our lattice calculation (1:73�
0:012 GeV) is slightly larger than the experimentally mea-
sured value (1.67 GeV).

FIG. 22. Effective moments of the u quark sector in the octet
and the decuplet baryons at the ninth quark mass where m2


 ¼
0:215ð4Þ GeV2.

FIG. 23. Effective moments of the s quark sector in the octet
and the decuplet baryons at the ninth quark mass where m2


 ¼
0:215ð4Þ GeV2.

FIG. 24 (color online). Magnetic moments of �þ and ��þ at
different quark masses. The values for ��þ are plotted at shifted
m2


 for clarity.

FIG. 25 (color online). Magnetic moments (magnitude) of���
and ��� at different quark masses. The values for ��� are
plotted at shifted m2


 for clarity.
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Another reason for this discrepancy is likely to reside in
the absence of K� loops in the virtual decay of ��. The
virtual transition� ! �K requires the presence of a light
sea-quark flavor, while in quenched QCD, there is only a
heavy valence strange quark. In reality this would provide
an important contribution, since � is a lower mass state
than ��. The predominant contribution is �0 ! �0K�
with the z component of angular momentum in the positive
direction. This process will act to enhance the magnitude
of the negative moment. The absence of such loops in
quenched QCD represents missing physics and causes the
discrepancy from the values of full QCD. This is certainly a
good place to search for dynamical sea-quark effects.
Figure 27 compares the magnetic moment of the �þ

with our earlier result for the proton magnetic moment on
the same set of gauge field configurations [14]. A simple
quark model predicts that the proton and the�þ have equal
magnetic moments. However the interplay between the
different pion-loop contributions to the �þ magnetic mo-
ments indicate that the proton magnetic moment should be
greater than that of the �þ in full QCD [36].
The presence of the � ! N
 decay channel is particu-

larly important for the quark-mass dependence of � prop-
erties [37]. Rapid curvature associated with this
nonanalytic behavior is shifted to larger pion masses near
the N-� mass splitting, m
 
M� �MN . As described
below, quenched-QCD decay-channel contributions come
with a sign opposite to that of full QCD. This artifact holds
tremendous promise for revealing unmistakable signatures
of the quenched meson cloud.
The change in sign for the decay-channel contributions

is easily understood through the consideration of the quark-
flow diagrams in Fig. 28, illustrating the meson-cloud
contributions to the �þþ resonance in full QCD. Quark-
flow diagram (a) corresponds to the hadronic process de-
scribed in the top left diagram of Fig. 28. Since QCD is
flavor-blind, the process illustrated in diagram (b) is
equivalent to diagram (a) provided the masses of the u
and d quarks are taken to be equal. On its own, diagram (b)
describes the decay of the �þþ to a doubly charged uuu

FIG. 26 (color online). Magnetic moments of ��0 and ��0 at
different quark masses. The values for ��0 are plotted at shifted
m2


 for clarity.

FIG. 27 (color online). Magnetic moments of �þ and the
proton at different quark masses.

FIG. 28 (color online). Quark-flow diagrams for the meson-cloud contributions to the �þþ in full QCD.
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TABLE XIII. Magnetic moments of the �þ in nuclear magnetons for different m2

. Quark-

sector contributions for single quarks of unit charge are also provided. The magnetic moment of
�� is equal in magnitude to that of �þ with a negative sign and the magnetic moment of the �0

is 0. Charge symmetry also requires that the �þþ has a magnetic moment twice that of �þ. The
magnetic moment of �� is that of �� at the SUð3Þflavor limit where m2


 ¼ 0:4854ð31Þ GeV2,
and takes the value �1:697ð65Þ�N .

m2

 GeV2 u�ð�NÞ d�ð�NÞ �þð�NÞ

0.9960(56) 1.466(31) 1.466(31) 1.466(31)

0.8936(56) 1.512(36) 1.512(36) 1.512(36)

0.7920(55) 1.559(42) 1.559(42) 1.559(42)

0.6920(54) 1.604(50) 1.604(50) 1.604(50)

0.6910(35) 1.615(38) 1.615(38) 1.615(38)

0.5925(33) 1.662(48) 1.662(48) 1.662(48)

0.4854(31) 1.697(65) 1.697(65) 1.697(65)

0.3795(31) 1.749(74) 1.749(74) 1.749(74)

0.2839(33) 1.792(87) 1.792(87) 1.792(87)

0.2153(35) 1.80(11) 1.80(11) 1.80(11)

0.1384(43) 1.79(15) 1.79(15) 1.79(15)

0.0939(44) 1.60(28) 1.60(28) 1.60(28)

TABLE XIV. Magnetic moments of ��, ��0 and ��� in nuclear magnetons with quark-sector
contributions for a single quark of unit charge at different m2


 values.

m2

 GeV2 u�� ð�NÞ s�� ð�NÞ ��þð�NÞ ��0ð�NÞ ���ð�NÞ

0.9960(56) 1.482(38) 1.671(51) 1.418(36) �0:063ð7Þ �1:545ð42Þ
0.8936(56) 1.524(43) 1.675(54) 1.474(41) �0:050ð7Þ �1:574ð46Þ
0.7920(55) 1.568(48) 1.680(57) 1.531(47) �0:037ð6Þ �1:605ð51Þ
0.6920(54) 1.609(55) 1.683(62) 1.585(54) �0:025ð5Þ �1:634ð57Þ
0.6910(35) 1.621(44) 1.696(48) 1.596(43) �0:025ð3Þ �1:646ð45Þ
0.5925(33) 1.664(52) 1.698(54) 1.653(51) �0:011ð2Þ �1:675ð53Þ
0.4854(31) 1.697(65) 1.697(65) 1.697(65) 0.000(0) �1:697ð65Þ
0.3795(31) 1.744(72) 1.709(69) 1.755(72) 0.012(2) �1:732ð71Þ
0.2839(33) 1.781(80) 1.724(75) 1.800(82) 0.019(5) �1:762ð78Þ
0.2153(35) 1.796(90) 1.738(80) 1.816(95) 0.020(10) �1:777ð85Þ
0.1384(43) 1.81(11) 1.766(86) 1.82(12) 0.013(21) �1:793ð97Þ
0.0939(44) 1.76(15) 1.75(10) 1.76(18) 0.004(38) �1:75ð13Þ

TABLE XV. Magnetic moments of ��0 and ��� in nuclear magnetons with quark-sector
contributions for a single quark of unit charge at different m2


 values.

m2

 GeV2 s�� ð�NÞ u�� ð�NÞ ��0ð�NÞ ���ð�NÞ

0.9960(56) 1.681(63) 1.494(48) �0:124ð18Þ �1:619ð57Þ
0.8936(56) 1.683(65) 1.534(52) �0:099ð16Þ �1:633ð60Þ
0.7920(55) 1.685(67) 1.576(56) �0:073ð14Þ �1:649ð63Þ
0.6920(54) 1.687(69) 1.615(62) �0:048ð11Þ �1:663ð67Þ
0.6910(35) 1.697(56) 1.626(51) �0:047ð6Þ �1:674ð54Þ
0.5925(33) 1.698(59) 1.666(57) �0:021ð4Þ �1:687ð58Þ
0.4854(31) 1.697(65) 1.697(65) 0.000(0) �1:697ð65Þ
0.3795(31) 1.703(67) 1.738(69) 0.023(4) �1:714ð68Þ
0.2839(33) 1.709(69) 1.772(73) 0.042(9) �1:730ð70Þ
0.2153(35) 1.714(71) 1.792(78) 0.052(16) �1:740ð73Þ
0.1384(43) 1.725(73) 1.811(86) 0.057(31) �1:753ð75Þ
0.0939(44) 1.725(77) 1.84(10) 0.076(48) �1:763ð79Þ
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‘‘proton,’’ which we denote pþþ. Of course, such states do
not exist in full QCD and diagram (c) provides a contribu-
tion which is exactly equal but opposite in sign to
diagram (b) when the intermediate state is a uuu proton.
Upon quenching the theory, both diagrams (a) and (b) are
eliminated, leaving only diagram (c). Hence the physics of
the � ! N
 decay is present in the quenched approxima-
tion [32] but its contribution has the wrong sign. This
signature of quenched chiral physics is manifest in our
results.

All the decuplet baryons show, to some extent, a turn-
over of the magnetic moment in the low quark-mass region
just above the opening of the N
 decay channel. The
magnitude of the turnover is dampened by the presence
of a strange quark, which is seen by the fact that the �� has
a smaller turnover than the �. The � baryons with two s
quarks only admit kaon loops and do not display a turn-
over, further clarifying a link to chiral physics.

The magnetic moments of the decuplet baryons are
listed in Tables XIII, XIV, and XV.

D. Electric-quadrupole form factors

The E2 form factors of the spin-3=2 decuplet baryons
provide interesting information about the distribution of
charge and its deviation from spherical symmetry. In
Fig. 29 we show the correlation function proportional to
the E2 quadrupole form factor of the u quark in the� at the
SUð3Þflavor limit, in units of e=M2

N , as a function of
Euclidean time. Figure 30 indicates the quadrupole form
factor of the u quark in the � at the ninth quark mass. Here
the employment of the splittings technique facilitates the
extraction of the signal. In both cases a nontrivial result is
obtained. As mentioned in Sec. II D, we consider the
symmetry of the last two terms in Eq. (2.35) as the deciding
factor in selecting the upper limit of the fit window.

The quark-sector contributions to the form factors in
units of e=M2

N of all the decuplet members are indicated

in Tables XVI, XVII, and XVIII. For an axially deformed
object the quadrupole form factor is related to the charge
distribution in the Breit frame through [7]

G E2ð0Þ ¼ M2
B

Z
d3r �c ðrÞð3z2 � r2Þc ðrÞ; (5.16)

where 3z2 � r2 is the standard operator used for quadru-
pole moments. A positive quadrupole form factor for a
positively charged baryon indicates a prolate charge distri-
bution, while a negative quadrupole form factor indicates
an oblate charge distribution. In nonrelativistic models, the
E2 form factor vanishes unless some configuration mixing
of higher orbital-angular momentum states is included in
the baryon ground state.
The E2 form factors of the charged decuplet baryons in

units of fm2 for different values of m2

 are listed in

Table XIX. The E2 form factor of the �0 is identically
equal to zero and for the other neutral baryons, it is close to
zero. The results for the charged decuplet baryons are
nonzero, indicating that they have a deformed shape.
The quark-sector contributions to the E2 form factors

are shown in Figs. 31–33. Once again, the importance of
chiral physics is beginning to manifest itself in these
results. A significant enhancement of the magnitude of
the light-quark-sector contribution to the E2 form factor
is observed in the � as the opening of the N
 decay
channel is approached. A similar effect is seen, to a lesser
extent, in the ��, while for the �� no chiral curvature is
observed due to the two s quarks admitting only kaon
loops, as discussed in the previous section. The E2 form
factors for the various decuplet baryons are shown in
Figs. 34–36.
From our simulation we conclude that the E2 form

factor of the �� baryon [the value of the �� form factor
at SUð3Þflavor limit] is ð0:86� 0:12Þ � 10�2 fm2. The ac-
curacy of our result indicates a definite nonzero value of

FIG. 29. E2 electric form factor of the u or d quark sector of
the � at the SUð3Þflavor limit as a function of Euclidean time.

FIG. 30. E2 electric form factor of the u or d quark sector of
the � as a function of Euclidean time at the ninth quark mass
where m2


 ¼ 0:215ð4Þ GeV2.
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TABLE XVI. Quark-sector contributions to the E2 form factor of� atQ2 ¼ 0:230ð1Þ GeV2 in
fixed units of e=m2

N . Sector contributions are for a single quark having unit charge. The fit

windows are selected using the criteria outlined in Ref. [14].

m2

 (GeV2) u� d�

Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9960(56) �0:117ð16Þ 16–20 1.63 �0:117ð16Þ 16–20 1.63

0.8936(56) �0:123ð18Þ 16–20 1.39 �0:123ð18Þ 16–20 1.39

0.7920(55) �0:130ð22Þ 16–20 1.16 �0:130ð22Þ 16–20 1.16

0.6920(54) �0:137ð26Þ 16–20 1.01 �0:137ð26Þ 16–20 1.01

0.6910(35) �0:163ð17Þ 16–20 0.76 �0:163ð17Þ 16–20 0.76

0.5925(33) �0:177ð21Þ 16–20 0.75 �0:177ð21Þ 16–20 0.75

0.4854(31) �0:194ð27Þ 16–20 0.86 �0:194ð27Þ 16–20 0.86

0.3795(31) �0:218ð40Þ 16–19 1.03 �0:218ð40Þ 16–19 1.03

0.2839(33) �0:263ð67Þ 16–19 1.57 �0:263ð67Þ 16–19 1.57

0.2153(35) �0:32ð11Þ 16–19 1.20 �0:32ð11Þ 16–19 1.20

0.1384(43) �0:52ð20Þ 16–18 0.72 �0:52ð20Þ 16–18 0.72

0.0939(44) �0:68ð26Þ 15–16 1.06 �0:68ð26Þ 15–16 1.06

TABLE XVII. Quark-sector contributions to the E2 form factor of �� at Q2 ¼ 0:230ð1Þ GeV2

in units of e=m2
N . Sector contributions are for a single quark having unit charge. The fit windows

are selected using the criteria outlined in Ref. [14].

m2

 (GeV2) u�� or d�� s��

Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9960(56) �0:132ð19Þ 16–20 1.52 �0:113ð29Þ 16–20 0.75

0.8936(56) �0:136ð22Þ 16–20 1.36 �0:118ð31Þ 16–20 0.71

0.7920(55) �0:145ð25Þ 16–20 1.20 �0:124ð33Þ 16–20 0.66

0.6920(54) �0:147ð29Þ 16–20 1.07 �0:131ð36Þ 16–20 0.65

0.6910(35) �0:172ð18Þ 16–20 0.91 �0:170ð22Þ 16–20 0.48

0.5925(33) �0:183ð22Þ 16–20 0.89 �0:180ð24Þ 16–20 0.61

0.4854(31) �0:194ð27Þ 16–20 0.86 �0:194ð27Þ 16–20 0.86

0.3795(31) �0:208ð36Þ 16–20 0.48 �0:211ð32Þ 16–20 1.89

0.2839(33) �0:225ð51Þ 16–17 0.41 �0:231ð38Þ 16–17 0.61

0.2153(35) �0:233ð73Þ 16–19 1.08 �0:257ð48Þ 16–19 1.84

0.1384(43) �0:29ð11Þ 16–17 1.71 �0:300ð67Þ 16–17 1.07

0.0939(44) �0:42ð16Þ 16–17 0.94 �0:325ð88Þ 16–17 0.31

TABLE XVIII. Quark-sector contributions to the E2 form factor of �� at Q2 ¼
0:230ð1Þ GeV2 in units of e=m2

N . Sector contributions are for a single quark having unit charge.

The fit windows are selected using the criteria outlined in Ref. [14].

m2

 (GeV2) s�� u�� or d��

Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9960(56) �0:127ð36Þ 16–20 0.64 �0:157ð25Þ 16–20 1.75

0.8936(56) �0:131ð37Þ 16–20 0.64 �0:157ð27Þ 16–20 1.52

0.7920(55) �0:136ð39Þ 16–20 0.64 �0:159ð30Þ 16–20 1.35

0.6920(54) �0:141ð40Þ 16–20 0.66 �0:159ð33Þ 16–20 1.18

0.6910(35) �0:180ð24Þ 16–20 0.65 �0:184ð20Þ 16–20 1.17

0.5925(33) �0:186ð25Þ 16–20 0.73 �0:190ð23Þ 16–20 1.04

0.4854(31) �0:194ð27Þ 16–20 0.86 �0:194ð27Þ 16–20 0.86

0.3795(31) �0:201ð29Þ 16–17 0.82 �0:198ð33Þ 16–21 0.62

0.2839(33) �0:208ð31Þ 16–17 0.59 �0:200ð41Þ 16–17 0.23

0.2153(35) �0:214ð34Þ 16–17 0.80 �0:191ð52Þ 16–17 0.06

0.1384(43) �0:222ð38Þ 16–17 0.92 �0:184ð71Þ 16–18 0.34

0.0939(44) �0:222ð41Þ 15–16 0.17 �0:183ð82Þ 15–16 0.70
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TABLE XIX. E2 form factors at Q2 ¼ 0:230ð1Þ GeV2 of the charged decuplet baryons in
units of 10�2 fm2 for different m2


 values. The E2 form factor of the �� at the SUð3Þflavor limit
where m2


 ¼ 0:485ð3Þ provides the E2 form factor of the ��.

m2

 (GeV2) �þþ �þ �� ��þ ��� ���

0.9972(55) �1:03ð14Þ �0:517ð69Þ 0.517(69) �0:613ð77Þ 0.555(97) 0.60(14)

0.8936(56) �1:08ð16Þ �0:541ð80Þ 0.541(80) �0:629ð88Þ 0.57(11) 0.62(15)

0.7920(55) �1:15ð19Þ �0:575ð96Þ 0.575(96) �0:65ð10Þ 0.60(12) 0.63(16)

0.6920(54) �1:21ð23Þ �0:61ð12Þ 0.61(12) �0:67ð12Þ 0.63(14) 0.65(17)

0.6910(35) �1:44ð15Þ �0:718ð75Þ 0.718(75) �0:765ð77Þ 0.757(86) 0.80(10)

0.5925(33) �1:56ð18Þ �0:782ð91Þ 0.782(91) �0:813ð92Þ 0.804(99) 0.83(11)

0.4854(31) �1:71ð24Þ �0:86ð12Þ 0.86(12) �0:86ð12Þ 0.86(12) 0.86(12)

0.3795(31) �1:93ð35Þ �0:96ð18Þ 0.96(18) �0:91ð17Þ 0.92(15) 0.88(13)

0.2839(33) �2:32ð59Þ �1:16ð29Þ 1.16(29) �0:99ð25Þ 1.00(20) 0.91(15)

0.2153(35) �2:79ð95Þ �1:40ð48Þ 1.40(48) �0:99ð37Þ 1.07(28) 0.91(17)

0.1384(43) �4:6ð1:8Þ �2:31ð88Þ 2.31(88) �1:28ð58Þ 1.30(41) 0.92(21)

0.0939(44) �6:0ð2:3Þ �3:0ð1:1Þ 3.0(1.1) �1:99ð86Þ 1.71(57) 0.92(23)

FIG. 31 (color online). E2 form factor contributions from the u
quark sectors of the � and ��. The values for the �� are plotted
at shifted m2


 for clarity.

FIG. 32 (color online). E2 form factor contributions from the u
quark sectors of the �� and��. The values for the�� are plotted
at shifted m2


 for clarity.

FIG. 33 (color online). E2 form factor contributions from the s
quark sectors of the �� and��. The values for the�� are plotted
at shifted m2


 for clarity.

FIG. 34 (color online). Values of the E2 form factors in units
of 10�2 fm2 for the �þ and ��þ at different quark masses. The
values for �þ are plotted at shifted m2


 for clarity.
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the E2 form factor of ��, and we favor a positive value.
Since �� is a negatively charged baryon, this result im-
plies that it has an oblate shape, with the equatorial axis
being larger than the polar axis.

Similarly the E2 form factor for the �þ is ð�0:86�
0:12Þ � 10�2 fm2 at the SUð3Þ flavor-symmetry point. Our
results for the �þ compare favorably with the results of
Ref. [8]. Using the closest available pion masses of 533(3)
and 563(4) MeV for this study, and [8] respectively, we find
the E2 form factor to be ð�1:16� 29Þ � 10�2 fm2, to be
compared with ð�1:08� 40Þ � 10�2 fm2. We note how-
ever, that this study is performed at a finite Q2 ¼
0:230ð1Þ GeV2, while [8] reports results at Q2 ¼ 0.

The negative E2 form factor of a positive �þ baryon
implies an oblate shape in the Breit frame. As illustrated in

Fig. 34, the E2 form factor grows substantially in magni-
tude as the chiral limit is approached, taking the value
�0:030ð11Þ fm2 at our lightest quark mass. We note that
the E2 form factor of �þþ is twice that of the �þ E2 form
factor and hence takes the value �0:060ð23Þ fm2 at our
lightest quark mass.

E. Magnetic-octupole moments

The magnetic-octupole form factors are calculated on
the lattice by considering a combination of ratios of three-
and two-point functions as given in Eq. (2.32).
Figure 37 provides a plot of the correlator proportional

to theM3 form factor of a u quark in the � as a function of
Euclidean time at the SUð3Þ flavor limit. Figure 38 pro-
vides the M3 form factor at the ninth quark mass, where a
plateau is realized using the splittings method. Tables XX,

FIG. 36 (color online). E2 form factors in units of 10�2 fm2

for the ��0 and��0 at different quark masses. The values for ��0
are plotted at shifted m2


 for clarity.

FIG. 35 (color online). E2 form factors in units of 10�2 fm2

for the ��� and ��� at different quark masses. The values for
��� are plotted at shifted m2


 for clarity.

FIG. 37. M3 form factor of the � at the SUð3Þflavor limit as a
function of Euclidean time.

FIG. 38. M3 form factor (splitting) of the u quark sector of the
� at the ninth quark mass where m2


 ¼ 0:215ð4Þ GeV2 as a
function of time.
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TABLE XX. Quark-sector contributions to theM3 form factor of � atQ2 ¼ 0:230ð1Þ GeV2 in
units of e=2m3

N . Sector contributions are for a single quark having unit charge. The fit windows

are selected using the criteria outlined in Ref. [14].

m2

 (GeV2) u� d�

Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9972(55) 0.19(58) 18–22 0.83 0.19(58) 18–22 0.83

0.8936(56) 0.19(68) 18–22 0.63 0.19(68) 18–22 0.63

0.7920(55) 0.18(82) 18–22 0.50 0.18(82) 18–22 0.50

0.6920(54) 0.2(1.0) 18–22 0.44 0.2(1.0) 18–22 0.44

0.6910(35) �0:10ð75Þ 18–22 0.74 �0:10ð75Þ 18–22 0.74

0.5925(33) �0:09ð87Þ 18–20 1.01 �0:09ð87Þ 18–20 1.01

0.4854(31) �0:2ð1:2Þ 18–20 0.92 �0:2ð1:2Þ 18–20 0.92

0.3795(31) �0:4ð1:4Þ 16–18 0.44 �0:4ð1:4Þ 16–18 0.44

0.2839(33) �0:8ð1:6Þ 15–17 0.01 �0:8ð1:6Þ 15–17 0.01

0.2153(35) �1:2ð1:9Þ 15–17 0.12 �1:2ð1:9Þ 15–17 0.12

0.1384(43) �2:4ð2:5Þ 15–17 0.37 �2:4ð2:5Þ 15–17 0.37

0.0939(44) �3:7ð3:3Þ 15–17 0.32 �3:7ð3:3Þ 15–17 0.32

TABLE XXI. Quark-sector contributions to the M3 form factor of �� baryons at Q2 ¼
0:230ð1Þ GeV2 in units of e=2m3

N . Sector contributions are for a single quark having unit

charge. The fit windows are selected using the criteria outlined in Ref. [14].

m2

 (GeV2) u�� or d�� s��

Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9972(55) 0.13(81) 18–22 0.56 0.64(80) 18–22 0.50

0.8936(56) 0.12(91) 18–22 0.50 0.63(90) 18–22 0.44

0.7920(55) 0.1(1.0) 18–22 0.48 0.6(1.0) 18–22 0.39

0.6920(54) 0.1(1.2) 18–22 0.47 0.6(1.2) 18–22 0.38

0.6910(35) �0:16ð89Þ 18–22 0.96 0.10(89) 18–22 0.64

0.5925(33) �0:1ð1:0Þ 18–20 1.03 �0:1ð1:0Þ 18–20 0.90

0.4854(31) �0:2ð1:2Þ 18–20 0.92 �0:2ð1:2Þ 18–20 0.92

0.3795(31) �0:3ð1:3Þ 16–18 0.43 �0:3ð1:3Þ 16–18 0.61

0.2839(33) �0:5ð1:4Þ 15–17 0.01 �0:4ð1:4Þ 15–17 0.30

0.2153(35) �0:7ð1:6Þ 15–17 0.01 �0:5ð1:5Þ 15–17 0.38

0.1384(43) �1:1ð1:8Þ 15–17 0.21 �0:8ð1:7Þ 15–17 0.07

0.0939(44) �1:2ð2:0Þ 15–17 0.07 �1:1ð2:0Þ 15–17 0.89

TABLE XXII. Quark-sector contributions to the M3 form factor of �� baryons at Q2 ¼
0:230ð1Þ GeV2 in units of e=2m3

N . Sector contributions are for a single quark having unit charge.

The fit windows are selected using the criteria outlined in Ref. [14].

m2

 (GeV2) s�� u�� or d��

Fit value Fit window �2
dof Fit value Fit window �2

dof

0.9972(55) 0.6(1.1) 18–22 0.39 �0:1ð1:2Þ 18–22 0.45

0.8936(56) 0.6(1.2) 18–22 0.39 �0:1ð1:2Þ 18–22 0.48

0.7920(55) 0.5(1.3) 18–22 0.40 �0:1ð1:3Þ 18–22 0.52

0.6920(54) 0.5(1.4) 18–22 0.41 0.0(1.4) 18–22 0.53

0.6910(35) �0:2ð1:1Þ 18–22 0.83 �0:3ð1:1Þ 18–22 1.27

0.5925(33) �0:2ð1:1Þ 18–20 0.92 �0:2ð1:1Þ 18–20 1.03

0.4854(31) �0:2ð1:2Þ 18–20 0.92 �0:2ð1:2Þ 18–20 0.92

0.3795(31) �0:3ð1:2Þ 16–18 0.62 �0:3ð1:2Þ 16–18 0.54

0.2839(33) �0:3ð1:3Þ 15–17 0.52 �0:4ð1:3Þ 15–17 0.17

0.2153(35) �0:3ð1:3Þ 15–17 0.63 �0:4ð1:4Þ 15–17 0.05

0.1384(43) �0:3ð1:4Þ 15–17 0.23 �0:6ð1:4Þ 15–17 0.47

0.0939(44) �0:4ð1:4Þ 15–17 0.44 �0:3ð1:5Þ 15–17 0.82
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TABLE XXIII. M3 form factor results at Q2 ¼ 0:230ð1Þ GeV2 of the charged decuplet
baryons in units of e=2m3

N for different m2

 values. The M3 form factor of the �� at the

SUð3Þflavor limit where m2

 ¼ 0:485ð3Þ provides the M3 form factor of ��.

m2

 (GeV2) �þþ �þ �� ��þ ��� ���

0.9972(55) 0.4(1.2) 0.19(58) �0:19ð58Þ �0:04ð86Þ �0:30ð79Þ �0:4ð1:1Þ
0.8936(56) 0.4(1.4) 0.19(68) �0:19ð68Þ �0:05ð94Þ �0:29ð89Þ �0:4ð1:2Þ
0.7920(55) 0.4(1.6) 0.18(82) �0:18ð82Þ �0:1ð1:1Þ �0:3ð1:0Þ �0:3ð1:3Þ
0.6920(54) 0.4(2.0) 0.2(1.0) �0:2ð1:0Þ �0:1ð1:2Þ �0:3ð1:2Þ �0:3ð1:4Þ
0.6910(35) �0:2ð1:5Þ �0:10ð75Þ 0.10(75) �0:18ð90Þ 0.14(88) 0.2(1.1)

0.5925(33) �0:2ð1:7Þ �0:09ð87Þ 0.09(87) �0:2ð1:0Þ 0.1(1.0) 0.2(1.1)

0.4854(31) �0:5ð2:4Þ �0:2ð1:2Þ 0.2(1.2) �0:2ð1:2Þ 0.2(1.2) 0.2(1.2)

0.3795(31) �0:8ð2:8Þ �0:4ð1:4Þ 0.4(1.4) �0:3ð1:3Þ 0.3(1.3) 0.3(1.2)

0.2839(33) �1:6ð3:1Þ �0:8ð1:6Þ 0.8(1.6) �0:6ð1:4Þ 0.5(1.4) 0.3(1.3)

0.2153(35) �2:4ð3:8Þ �1:2ð1:9Þ 1.2(1.9) �0:7ð1:6Þ 0.6(1.5) 0.3(1.3)

0.1384(43) �4:9ð4:9Þ �2:4ð2:5Þ 2.4(2.5) �1:2ð1:9Þ 1.0(1.7) 0.4(1.4)

0.0939(44) �7:4ð6:6Þ �3:7ð3:3Þ 3.7(3.3) �1:3ð2:2Þ 1.2(1.9) 0.4(1.4)

FIG. 39 (color online). M3 form factor contributions from the
u quark sectors of the � and��. The results for the�� are offset
for clarity.

FIG. 40 (color online). M3 form factor contributions from the
u quark sectors of the �� and ��. The results for the �� have
been offset for clarity.

FIG. 41 (color online). M3 form factor contributions from the
s quark sectors of the �� and ��. The results for the �� have
been offset for clarity.

FIG. 42 (color online). M3 form factors for the �þ and ��þ at
different quark masses. The values for ��þ are plotted at shifted
m2


 for clarity.
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XXI, and XXII list the quark-sector M3 form factors. The
magnetic-octupole form factors (M3) of the decuplet bary-
ons are listed in Table XXIII.

Plots of the quark-sector contributions to the M3 form
factors are provided in Figs. 39–41. Figures 42–44 show
the M3 form factors for the decuplet baryons.

Like E2, the M3 form factors require nonzero orbital-
angular momentum admixtures in the ground state wave
function [7]. Our statistics are sufficient to reveal a non-
trivial result for the M3 form factor of the � for the first
time. We find a result of �3:7ð3:3Þe=2m3

N for the �þ at a
squared pion mass of 0:094ð4Þ GeV2, close to the physical
limit. At larger masses the results are consistent with zero,
but systematically negative, with enhancement at the light-
est masses for the �, and to a lesser extent for the ��.

VI. SUMMARY

We have performed an extensive calculation of the
electromagnetic properties of decuplet baryons at both
the quark level and the baryon level, including the quad-
rupole and octupole form factors of the spin-3=2 baryons.
For the first time we obtain nontrivial results for both the
E2 and M3 form factors. In particular, we find decuplet
baryons to be oblate in shape.
We find that the quarks in the decuplet are not as

sensitive to their environment as their octet counterparts.
Of particular note is the discovery that the decuplet-baryon
radii are smaller than those of the octet baryons, contra-
dicting the simple quark model, but substantiating hints in
the early study of Ref. [7].
A particularly interesting finding is that the suppression

of sea-quark loop contributions in quenched QCD reduces
the decuplet magnetic moment considerably, resulting in a
turnover in the magnetic moment at the lighter quark
masses, as illustrated in Fig. 27. At large pion masses,
the �þ moment is enhanced relative to the proton moment
in accord with earlier quenched lattice QCD calculations
[7,23] and model expectations. However, as the chiral
regime is approached, the nonanalytic behavior of the
quenched meson cloud starts to be revealed, enhancing
the proton and suppressing the �þ, in accord with the
expectations of Q�PT. This suppression should be absent
in full QCD. Hence this is one particular case that we have
identified as a place to look for effects of unquenching in
future dynamical simulations. We also predict that un-
quenching effects should be observed in the �� magnetic
moment, which we find to be suppressed in quenched QCD
with regard to the experimentally measured value due to
the absence of K� loops in the virtual decay of ��. We
also expect that future studies nearer the chiral limit will
support the initial results observed in this study. In this case
however, it will be important to consider multiple lattice
volumes in order to quantify the volume dependence of
results near the chiral limit.
Through a calculation of the decuplet E2 form factors

and electric-quadrupole moments, we predict oblate shapes
for the decuplet baryons. It will be interesting to confront
this prediction with an experimental measurement of the
�� quadrupole form factor. We provide a summary of all
the �� measurements in Table XXIV.

FIG. 43 (color online). M3 form factors for the ��� and ���
at different quark masses. The values for ��� are plotted at
shifted m2


 for clarity.

FIG. 44 (color online). M3 form factors for the ��0 and ��0 at
different quark masses. The values for ��0 are plotted at shifted
m2


 for clarity.

TABLE XXIV. Collected results for the ��. Results are ob-
tained from the �� at the SUð3Þflavor limit, where m2


 ¼
0:4854ð31Þ GeV2.

Quantity Fit value

Mass (GeV) 1.732(12)

Charge radius (fm2) �0:307ð15Þ
Magnetic moment ð�NÞ �1:697ð65Þ
E2 form factor (10�2 fm2) 0.86(12)

M3 form factor ðe=2m3
NÞ 0.2(1.2)
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Finally we have obtained nontrivial values for the M3
form factor for the first time in lattice QCD studies. These
results provide an interesting and novel forum for the
further development of our understanding of nonperturba-
tive QCD.
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