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The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in terms of

the Abelian fields and monopoles extracted from non-Abelian link variables without adopting gauge

fixing. First, the static quark-antiquark potential and force are computed with the Abelian and monopole

Polyakov loop correlators, and the resulting string tensions are found to be identical to the non-Abelian

string tension. These potentials also show the scaling behavior with respect to the change of lattice

spacing. Second, the profile of the color-electric field between a quark and an antiquark is investigated

with the Abelian and monopole Wilson loops. The color-electric field is squeezed into a flux tube due to

monopole supercurrent with the same Abelian color direction. The parameters corresponding to the

penetration and coherence lengths show the scaling behavior, and the ratio of these lengths, i.e., the

Ginzburg-Landau parameter, indicates that the vacuum type is near the border of the type 1 and type 2

(dual) superconductors. These results are summarized in which the Abelian fundamental charge defined in

an arbitrary color direction is confined inside a hadronic state by the dual Meissner effect. As the color-

neutral state in any Abelian color direction corresponds to the physical color-singlet state, this effect

explains non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of

color confinement due to the dual Meissner effect caused by Abelian monopoles.
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I. INTRODUCTION

Color confinement in quantum chromodynamics (QCD)
is still an important unsolved problem [1]. ’t Hooft [2] and
Mandelstam [3] conjectured that the QCD vacuum is a
kind of dual superconducting state caused by condensation
of magnetic monopoles. The color charges are then con-
fined inside hadrons due to the formation of the color-
electric flux tube through the dual Meissner effect.
However, in contrast to the Georgi-Glashow model [4,5]
or supersymmetric QCD [6] with scalar fields, it is not
straightforward to identify the color-magnetic monopoles
in QCD.

An interesting idea to realize this conjecture is proposed
by ’t Hooft [7], such that SU(3) QCD can be reduced to an
Abelian ½Uð1Þ�2 theory by adopting a partial gauge fixing,
and the color-magnetic monopoles appear according to
�2ðSUð3Þ=½Uð1Þ�2Þ ¼ Z2. The role of monopoles for the
confinement mechanism is investigated extensively on the
lattice by applying Abelian projection in the maximally
Abelian (MA) gauge [8,9], where monopoles are extracted
a la DeGrand-Toussaint [10] as in compact U(1) lattice
gauge theory. It is then found that the results strongly
support the dual superconducting scenario [11–18]. The
confining properties are dominated by the Abelian fields
[11,13,19] and monopoles [13,20–24], which are called
Abelian dominance and monopole dominance, respec-
tively. The color-electric flux is squeezed by the dual

Meissner effect [12,15,17,18,25]. Moreover, monopole
condensation is confirmed by the energy-entropy balance
of the monopole trajectories [22,26–28]. These results
indicate that there must exist a dual Ginzburg-Landau
(GL) type theory as an infrared effective theory of QCD
[29–31].
However, there are still serious problems to prove this

scenario. First, there are infinite ways of the partial gauge
fixing. Since the behavior of the monopoles can depend on
the gauge choice, it is not clear if the lattice results in the
MA gauge are universal. Note that in the Polyakov (PL)
gauge, ’t Hooft’s color-magnetic monopoles [7] propagate
only in the time direction, which cannot confine static color
charges [32]. Second, as the ’t Hooft scheme essentially
uses the Abelian degrees of freedom, it is not explained
how non-Abelian color charges are confined.
Recently, we obtained clear numerical evidences of

Abelian dominance and the dual Meissner effect in local
unitary gauges such as the F12 and the PL gauges in SU(2)
lattice gauge theory [33], where we have used the
DeGrand-Toussaint monopoles [10] as in the MA gauge.
These results provide us with the following ideas.
(1) The DeGrand-Toussaint monopoles on the lattice

[10] can be different from the ’t Hooft color-
magnetic monopoles [7].

(2) There must exist a gauge-invariant mechanism of
color confinement due to Abelian monopoles
[34,35].
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In this paper, we aim to show detailed numerical evi-
dence of how these ideas are realized. We investigate the
confining properties in SU(2) lattice gauge theory in terms
of the gauge-variant Abelian fields and monopoles ex-
tracted from non-Abelian link variables without adopting
any spatially local or nonlocal gauge fixing. We find that a
gauge-invariant Abelian mechanism of color confinement
due to Abelian monopoles works even in the continuum
limit of SU(2) QCD, although we consider gauge-variant
Abelian operators. The results may also apply to SU(3)
gauge theory, since the essential features are not altered.

The paper is organized as follows. In Sec. II, we explain
how to extract the Abelian fields and the monopoles from
non-Abelian link variables without gauge fixing. In
Secs. III and IV, we compute the static quark-antiquark
potential and the force with the Abelian and monopole
Polyakov loop correlators, and find that the string tensions
exhibit Abelian dominance and monopole dominance.
These potentials also show the scaling behavior with re-
spect to the change of lattice spacing. In Sec. V, we inves-
tigate the correlation function between the Abelian
operators and the Wilson loop. We observe that the
color-electric field is squeezed into a flux tube due to
monopole supercurrent with the same Abelian color direc-
tion. The parameters corresponding to the penetration
depth and the coherence length show the scaling behavior,
and the ratio of these lengths, i.e., the GL parameter,
indicates that the vacuum type is near the border of the
type 1 and type 2 (dual) superconductors. In Sec. VI, we
discuss implications of our results, i.e., the Abelian funda-
mental charge defined in an arbitrary color direction is
confined by the dual Meissner effect. As the color-neutral
state in any Abelian color direction corresponds to the
physical color-singlet state, the dual Meissner effect for
the Abelian fundamental charge can also explain confine-
ment of non-Abelian color charges. The final section VII is
devoted to conclusion and remarks. Our preliminary results
are already published in Ref. [36].

II. ABELIAN PROJECTIONAND EXTRACTION OF
MONOPOLES

We explain how to extract the Abelian fields and the
color-magnetic monopoles from the thermalized non-
Abelian SU(2) link variables,

U�ðsÞ ¼ U0
�ðsÞ þ i ~� � ~U�ðsÞ; (1)

where ~� ¼ ð�1; �2; �3Þ is the Pauli matrix. Abelian link
variables in one of the color directions, for example, in the
�1 direction, are defined as

u�ðsÞ ¼ cos��ðsÞ þ i�1 sin��ðsÞ; (2)

where

��ðsÞ ¼ arctan

�
U1

�ðsÞ
U0

�ðsÞ
�

(3)

correspond to the Abelian fields. Without gauge fixing the
Abelian fields in any color directions should be equivalent.
We then define the Abelian field strength tensors as

���ðsÞ ¼ ��ðsÞ þ ��ðsþ �̂Þ � ��ðsþ �̂Þ � ��ðsÞ
¼ ����ðsÞ þ 2�n��ðsÞ; (4)

where ���� 2 ½��;�� and n��ðsÞ is an integer corre-

sponding to the number of the Dirac strings piercing the
plaquette. The monopole currents are then defined by [10]

k�ðsÞ ¼ 1

4�
�����@� ����ðsþ �̂Þ

¼ � 1

2
�����@�n��ðsþ �̂Þ 2 Z; (5)

where @� is regarded as a forward difference.

III. ABELIAN DOMINANCE

We show the result of the Abelian static potential [36].
We generate thermalized gauge configurations using the
SU(2) Wilson action at a coupling constant � ¼ 2:5 on the
lattice N3

s � Nt ¼ 243 � 24, where the lattice spacing
að� ¼ 2:5Þ ¼ 0:0836ð8Þ (fm) is fixed by assumingffiffiffiffi
�

p ¼ 440 (MeV).
By using the multilevel noise reduction method [37], we

evaluate the Abelian static potential VA from the correla-
tion function of the Abelian Polyakov loop operator

PA ¼ exp

�
i
XNt�1

k¼0

�4ðsþ k4̂Þ
�
; (6)

separated at a distance R as

VAðRIÞ ¼ � 1

aNt

lnhPAð0ÞP�
AðRÞi: (7)

The q- �q distance R is improved to RI ¼ ð4�GðRÞÞ�1 in
order to reduce the lattice artifact due to finite-lattice
spacing, where GðRÞ is the Green function of the lattice
Laplacian in three dimensions [38,39]. For the multilevel
method, the number of sublattices adopted is 6 and the
sublattice size is 4a.
The result is plotted in Fig. 1, where the non-Abelian

static potential computed from the ordinary Polyakov loop
correlation function is also plotted for comparison. The
number of independent gauge configurations is Nconf ¼ 10
in both cases, but the number of internal updates in the
multilevel method is 15 000 for the non-Abelian case and
160 000 for the Abelian case. The statistical errors are
determined by the jackknife method.
We fit the potential to the usual functional form

VfitðRÞ ¼ �R� c=Rþ�; (8)
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where � denotes the string tension, c the Coulombic
coefficient, and � the constant. The result is summarized
in Table I. We find Abelian dominance such that the
Abelian string tension is the same as the non-Abelian one.

Here we comment on the theoretical observations of the
Abelian dominance of the string tension using the charac-
ter expansion [40,41]. The authors of [41] say that they
have proved exactly the Abelian dominance without gauge
fixing based on a relation for any two half-integer repre-
sentations j1 > j2

lim
T!1

Wj1½R; T�
Wj2½R; T�

¼ 0; (9)

where

Wj½C� ¼ 1

2jþ 1
h	j½UðCÞ�i (10)

and 	j½g� is the SU(2) group character in representation j.

In Ref. [41], the above relation is derived on some consid-
erations of screening effects and glue-lump energy. But
nobody knows an exact method of analytic calculations in
the infrared nonperturbative region of QCD, so that their
considerations about the screening effects and glue-lump
energy are not exact theoretical, although very plausible.

Our numerical observations here are hence nontrivial and
they suggest the above relation (9) is actually exact.

IV. MONOPOLE DOMINANCE

A. The monopole Polyakov loop

We investigate the monopole contribution to the static
potential in order to examine the role of monopoles for
confinement. The monopole part of the Polyakov loop
operator is extracted as follows. Using the lattice
Coulomb propagatorDðs� s0Þ, which satisfies @�@0�Dðs�
s0Þ ¼ �
ss0 with a forward (backward) difference @� (@

0
�),

the temporal components of the Abelian fields �4ðsÞ are
written as

�4ðsÞ ¼ �X
s0
Dðs� s0Þ½@0���4ðs0Þ þ @4ð@0���ðs0ÞÞ�: (11)

Inserting Eq. (11) [and then Eq. (4)] to the Abelian
Polyakov loop (6), we obtain

PA ¼ Pph � Pmon;

Pph ¼ exp

�
�i

XNt�1

k¼0

X
s0
Dðsþ k4̂� s0Þ@0� ���4ðs0Þ

�
;

Pmon ¼ exp

�
�2�i

XNt�1

k¼0

X
s0
Dðsþ k4̂� s0Þ@0�n�4ðs0Þ

�
: (12)

We call Pph the photon and Pmon the monopole parts of the

Abelian Polyakov loop, respectively [23]. The latter is due
to the fact that the Dirac strings n�4ðsÞ lead to the mono-
pole currents in Eq. (5) [10]. Note that the second term of
Eq. (11) does not contribute to the Abelian Polyakov loop
in Eq. (6).

B. Simulation parameters

We then compute the static potential from the monopole
Polyakov loop correlation function. However, since
Eq. (12) contains the nonlocal Coulomb propagator Dðs�
s0Þ and the Polyakov loop is not written as a product of
local operators along the time direction, the multilevel
method cannot be applied. Without such a powerful noise
reduction method, it is hard to measure the Polyakov loop
correlation function at zero temperature with the present
available computer resource. Thus we consider a finite
temperature T � 0 system in the confinement phase. We
set T ¼ 0:8Tc. In order to examine the scaling behavior of
the potential, we simulate the Wilson action on the 243 �
ðNt ¼ 4; 6; 8Þ lattices. We choose the gauge coupling for
each Nt so as to keep the same temperature. We also
investigate the spatial volume dependence of the potential
for the Nt ¼ 6 case. Simulation parameters are summa-
rized in Table II. The lattice spacing að�Þ is determined by
using the Sommer scale [r0 ¼ 0:5 ðfmÞ] at zero
temperature.

TABLE I. Best fitted values of the string tension �a2, the
Coulombic coefficient c, and the constant �a. VNA denotes
the non-Abelian static potential. Niup is the number of internal

updates in the multilevel method. FR means the fitting range.
The 	2 for the central value is 	2=Ndf < 0:1.

�a2 c �a FR (R=a) Niup

VNA 0.0348(7) 0.243(6) 0.607(4) 3.92–9.97 15 000

VA 0.0352(16) 0.231(39) 1.357(17) 4.94–9.97 160 000

 0

 0.5

 1

 1.5

 0  2  4  6  8  10  12

aV
(R

)

R/a
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Abelian:

FIG. 1 (color online). The Abelian static potential in compari-
son with the non-Abelian one. The lines denote the best fitting
curve to the function VfitðRÞ.
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C. Noise reduction by gauge averaging

Since the signal-to-noise ratio of the correlation func-
tions ofPA,Pph, andPmon are still very small with no gauge

fixing, we adopt a new noise reduction method [36]. For a
thermalized gauge configuration U�ðsÞ, we produce many

gauge copies Ug
�ðsÞ applying random gauge transforma-

tions. Then we compute the operator for each copy and
take the average over all copies. When we consider a

gauge-invariant operator OðUÞ, the value of the operator
is the same for both ensembles, i.e.,OðUÞ ¼ OðUgÞ. Hence
random gauge transformations are not useful for statistical
error reduction. But when we consider a gauge-variant
operator OAðUÞ, we get OAðUÞ � OAðUgÞ, since it con-
tains a gauge-variant piece. But using the gauge invariance
of the Haar measure and the action, we can show the
expectation value is the same:

1

Z

Z
DUe��SOAðUÞ ¼ 1

Z

Z
DUe��SOAðUgÞ:

Hence random gauge transformations are useful to reduce
the statistical errors and to get the gauge-invariant expec-
tation value. The results obtained with this method are
gauge averaged, thus, gauge invariant.
In practice, we prepare a few thousand gauge copies for

each independent gauge configuration (see Table II). We
also apply one-step hypercubic blocking (HYP) [42] to the

R/a
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FIG. 2. The static potential (left panel) and the force (right panel) from the non-Abelian, the Abelian, the monopole, and the photon
Polyakov loop correlation function at � ¼ 2:35 on the 243 � 6 lattice.

TABLE II. Simulation parameters for the measurement of the
static potential and the force from PA, Pph, and Pmon. NRGT is the

number of random gauge transformations.

� N3
s � Nt að�Þ (fm) Nconf NRGT

2.20 243 � 4 0.211(7) 6000 1000

2.35 243 � 6 0.137(9) 4000 2000

2.35 363 � 6 0.137(9) 5000 1000

2.43 243 � 8 0.1029(4) 7000 4000

R/a
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FIG. 3. The same plot as in Fig. 2 at � ¼ 2:35 on the 363 � 6 lattice.
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temporal links for further noise reduction. The short-
distance part of the potential may be affected by HYP.

D. Results

We obtain very good signals for the potentials and the
forces defined by differentiating the potential with respect
to R. The results at � ¼ 2:35 on the 243 � 6 lattice and on
the 363 � 6 lattice, and at � ¼ 2:43 on the 243 � 8 lattice
are plotted in Figs. 2–4, respectively. The q- �q distances R

of the potentials and the forces are improved to RI and �R ¼
ð4�a fGðR� aÞ �GðRÞgÞ�ð1=2Þ, respectively. We fit these

potentials to the function VfitðRÞ in Eq. (8) and extract
the string tension and the Coulombic coefficient, which
are summarized in Table III. Since the potential and the

force at � ¼ 2:20 on the 243 � 4 lattice are already pub-
lished in Ref. [36], we only present the fitting result for this
data set.
Abelian dominance is seen again as in Sec. III.

Moreover, we observe monopole dominance, i.e., the string
tension of the static potential from the monopole Polyakov
loop correlation function, is identical to that of the non-
Abelian static potential, while the potential from the pho-
ton Polyakov loop correlation function contains no linear
part. It is remarkable that Abelian dominance and mono-
pole dominance for the string tension are almost perfect as
explicitly shown in Fig. 5, which also shows the good
scaling behavior with respect to the change of lattice
spacing. We do not see the volume dependence of the
string tension as shown in Fig. 6.
These results suggest that although the lattice mono-

poles defined in Eq. (5) are gauge dependent, they contain

R/a
0 1 2 3 4 5 6 7 8 9

aV
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FIG. 4. The same plot as in Fig. 2 at � ¼ 2:43 on the 243 � 8 lattice.

TABLE III. Best fitted values of the string tension �a2, the
Coulombic coefficient c, and the constant �a for the potentials
VNA, VA, Vmon, and Vph.

243 � 4 �a2 c �a FR (R=a) 	2=Ndf

VNA 0.181(8) 0.25(15) 0.54(7) 3.9–8.5 1.00

VA 0.183(8) 0.20(15) 0.98(7) 3.9–8.2 1.00

Vmon 0.183(6) 0.25(11) 1.31(5) 3.9–6.7 0.98

Vph �2ð1Þ � 10�4 0.010(1) 0.48(1) 4.9–9.4 1.02

243 � 6

VNA 0.072(3) 0.49(6) 0.53(3) 4.0–9.0 0.99

VA 0.073(4) 0.41(7) 1.09(3) 3.7–10.9 1.00

Vmon 0.073(4) 0.44(10) 1.41(4) 3.9–9.3 1.00

Vph �1:7ð3Þ � 10�4 0.0131(1) 0.4717(3) 5.1–9.4 0.99

363 � 6
VNA 0.072(3) 0.48(9) 0.53(3) 4.6–12.1 1.03

VA 0.073(2) 0.47(6) 1.10(2) 4.3–11.2 1.03

Vmon 0.073(3) 0.46(7) 1.43(3) 4.0–11.8 1.01

Vph �1:0ð1Þ � 10�4 0.0132(1) 0.4770(2) 6.4–11.5 1.03

243 � 8

VNA 0.0415(9) 0.47(2) 0.46(8) 4.1–7.8 0.99

VA 0.041(2) 0.47(6) 1.10(3) 4.5–8.5 1.00

Vmon 0.043(3) 0.37(4) 1.39(2) 2.1–7.5 0.99

Vph �6:0ð3Þ � 10�5 0.0059(3) 0.466 49(6) 7.7–11.5 1.02

a   [ fm ]

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

   
[ 

M
eV

]
σ

0

100

200
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400

500

600 Non−Abelian
Abelian
Monopole

FIG. 5. The að�Þ dependence of the square root of the non-
Abelian, Abelian, and monopole string tensions for the same
temperature T ¼ 0:8Tc. The bottom axis for a set of three data
points at the same lattice spacing is slightly shifted to distinguish
each other.
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physical gauge-invariant pieces responsible for confine-
ment, which show up after taking the gauge average.

V. THE ABELIAN DUAL MEISSNER EFFECT

A. Correlation function for the field profile around the
q- �q system

We investigate the correlation function [43,44] between
a Wilson loopW and a local Abelian operatorO connected
by a product of non-Abelian link variables (Schwinger
line) L,

hOðrÞiW ¼ hTr½LWðR; TÞLy�1OðrÞ�i
hTr½WðR; TÞ�i : (13)

A schematic figure is depicted in Fig. 7.
We shall use the cylindrical coordinate ðr;�; zÞ to pa-

rametrize the q- �q system, where the z axis corresponds to
the q- �q axis and r to the transverse distance as shown in
Fig. 8. We are interested in the field profile as a function of
r on the midplane of the q- �q system.

B. Simulation parameters

In this computation, we employ the improved Iwasaki
gauge action [45] with the coupling constants � ¼ 1:10
and 1.28 on the 324 lattice, and � ¼ 1:40 on the 404 lattice
in order to investigate the scaling behavior of the correla-
tion functions with less finite-lattice cutoff effects.
Simulation parameters are listed in Table IV. The lattice
spacings are determined so as to reproduce the physical
string tension

ffiffiffiffi
�

p ¼ 440 ðMeVÞ. To improve the signal-to-
noise ratio, the APE smearing is applied to the spatial links
of the Wilson loop [46]. We use the Wilson loop WðR ¼
3; T ¼ 5Þ at � ¼ 1:10,WðR ¼ 5; T ¼ 5Þ at � ¼ 1:28, and
WðR ¼ 7; T ¼ 7Þ at � ¼ 1:40. Note that the physical q- �q
distance is the same [R ¼ 0:32 ðfmÞ] for these Wilson
loops.

C. The penetration depth

We measure all cylindrical components of the color-

electric fields OðsÞ ¼ EAiðsÞ ¼ ��4iðsÞ. The results are
plotted in Fig. 9. We find that only EAz has correlation
with the Wilson loop. We then fit hEAzðrÞiW to a function
fðrÞ ¼ c1 expð�r=�Þ þ c0 and find that the profile of
hEAzðrÞiW is well described by this functional form, i.e.,
the color-electric field is exponentially squeezed. The fit-
ting curves are also plotted in Fig. 9. The parameter �
corresponds to the penetration depth and the values for
three gauge couplings are summarized in Table V and
plotted in Fig. 10 as a function of lattice spacing að�Þ.
We find that the penetration depth � shows the good
scaling behavior.

   [ fm ]saN

2.5 3 3.5 4 4.5 5 5.5

   
[ 

M
eV

 ]
σ

0

100

200

300

400

500

600

700
 x 6) 3Non−Abelian (V=24

 x 6)3Abelian (V=24

 x 6)3Monopole (V=24

 x 6) 3Non−Abelian (V=36

 x 6)3Abelian (V=36

 x 6)3Monopole (V=36

FIG. 6 (color online). The volume dependence of the square
root of the string tensions on the 243 � 6 and 363 � 6 lattices at
� ¼ 2:35.

FIG. 8 (color online). Definition of the cylindrical coordinate
ðr; �; zÞ along the q- �q axis.

TABLE IV. Simulation parameters for the measurement of the
field profile. n and  are the number of smearing steps and the
smearing parameter, which are optimized to obtain reasonable
signals.

� V að�Þ [fm] Nconf n 

1.10 324 0.1069(8) 5000 80 0.2

1.28 324 0.0635(5) 6000 80 0.2

1.40 404 0.0465(2) 7996 80 0.2FIG. 7. A schematic figure for the connected correlation func-
tion.
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D. The dual Ampère law

To see what squeezes the color-electric field, we study
the Abelian (dual) Ampère law derived from the definition
of the monopole current in Eq. (5),

~r� ~EA ¼ @4 ~BA þ 2� ~k; (14)

where BAiðsÞ ¼ ð1=2Þ�ijk ��jkðsÞ. The correlation of each

term with the Wilson loop is evaluated on the same mid-
plane of the q- �q system as for the profile measurements of
the color-electric field. We find that only the azimuthal
components are nonvanishing, which are plotted in Fig. 11.
Note that if the color-electric field is purely of the Coulomb
type, the curl of the electric field is zero. On the contrary,
the curl of the electric field is nonvanishing and is repro-

duced mostly by the monopole currents. In any case, the
dual Ampère law is satisfied, which is a clear signal of the
Abelian dual Meissner effect. This result is quite the same
as that observed in the MA gauge [17,18].
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FIG. 9. The profile of the color-electric field ~EA at � ¼ 1:10 (left panel), � ¼ 1:28 (right panel), and � ¼ 1:40 (lower panel).

TABLE V. The parameter � corresponding to the penetration
depth.

� WðR; TÞ � (fm) c1 c0

1.10 Wð3; 5Þ 0.1075(13) 6:09ð18Þ � 10�2 9ð2Þ � 10�5

1.28 Wð5; 5Þ 0.1077(14) 1:024ð14Þ � 10�2 4:6ð8Þ � 10�6

1.40 Wð7; 7Þ 0.106(4) 3:40ð17Þ � 10�3 1:6ð8Þ � 10�5
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FIG. 10. The penetration depth � as a function of lattice
spacing að�Þ.
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E. The coherence length

Let us estimate the coherence length by evaluating the
correlation function between the squared monopole den-
sity OðsÞ ¼ k2�ðsÞ and the Wilson loop [47]. To measure

such a correlation function, we use the disconnected cor-

relation function, since the Schwinger lines are canceled
and the connected correlation functions for the squared
monopole currents are automatically reduced to the dis-
connected ones. Simulation parameters, the lattice volume,
and the gauge couplings are the same as the measurements

r  [ fm ]

0 0.2 0.4 0.6 0.8 1

W
 (

r)
>

A
<O3 a

0

0.002

0.004

0.006

0.008

0.01

0.012

=1.10, W(R=3,T=5)β
)A E×∇(

AB4∂
 kπ2

φ

φ

φ

φ

r  [ fm ]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

W
 (

r)
>

A
<O3

 a

0

0.0005

0.001

0.0015

0.002

=1.28, W(R=5,T=5)β
)A E×∇(

AB4∂
 kπ2

φ

φ

φ

φ

FIG. 11. Tests of the dual Ampère law at � ¼ 1:10 for WðR ¼ 3; T ¼ 5Þ (left panel) and at � ¼ 1:28 for WðR ¼ 5; T ¼ 5Þ (right
panel).
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of the color-electric field profile, but the number of gauge
configurations is increased, Nconf ¼ 5500 for � ¼ 1:10
and Nconf ¼ 11 887 for � ¼ 1:40. For � ¼ 1:28 we use
the same number of configurations Nconf ¼ 6000. The
physical q- �q distance is again fixed to R ¼ 0:32 ðfmÞ. To
reduce the noise, we further produce NRGT ¼ 100 gauge
copies for each independent configuration by applying the
random gauge transformations and take gauge averaging.

The results are plotted in Fig. 12. We then fit the profile

of hk2�ðrÞiW to the functional form gðrÞ ¼
c01 expð�

ffiffiffi
2

p
r=�Þ þ c00, where the parameter � corresponds

to the coherence length. We obtain the values for � as
summarized in Table VI. The coherence length shows the
scaling behavior as demonstrated in Fig. 13 as a function of
lattice spacing að�Þ.

F. The vacuum type

Taking the ratio of the penetration depth and the coher-

ence length, the GL parameter
ffiffiffi
2

p
� ¼ �=� can be esti-

mated, which characterizes the type of the superconducting
vacuum. The results are plotted in Fig. 14 against lattice

spacing að�Þ. We obtain
ffiffiffi
2

p
� ¼ 1:04ð7Þ, 1.19(5), and 1.09

(8) for � ¼ 1:10, 1.28, and 1.40, respectively.
We find that the GL parameter shows the scaling behav-

ior and the value is about 1. This means that the vacuum
type is near the border between the types 1 and 2 dual
superconductors. However, we note that the physical spa-
tial size of the Wilson loop used in the present simulations

is still small [R ¼ 0:32 ðfmÞ]. Clearly, further quantitative
studies with larger Wilson loops are needed to determine
the definite value.

VI. NON-ABELIAN COLOR CONFINEMENT

Let us consider what is induced from the above numeri-
cal results.
Since gauge fixing is not applied in these computations,

Abelian fields in any color directions are equivalent. Thus,
our result is interpreted as that the color-electric fields in all
color directions are squeezed and the Abelian (monopole)
string tensions in all color directions are the same as the
non-Abelian string tension. This indicates that QCD con-
tains a gauge-invariant Abelian mechanism of confinement
which is not related to the specific gauge fixing. Namely,
Abelian monopoles in three color directions are condensed
in the vacuum of the confinement phase of SU(2) QCD.
Let us denote quark fields having charge 1=2 and �1=2

in the �3 direction, respectively, as u3 and d3. Then local
mesonic states, u3 �u3 and d3 �d3, are Abelian color neutral in
the �3 direction. Consider next

u1 ¼ u3 þ d3ffiffiffi
2

p ; d1 ¼ u3 � d3ffiffiffi
2

p ;

u2 ¼ iu3 þ d3ffiffiffi
2

p ; d2 ¼ iu3 � d3ffiffiffi
2

p :

u1 and d1 (u2 and d2) are quark fields having charge 1=2
and �1=2 in the �1 (�2=2) direction. Using these expres-
sions, the quark-gluon coupling term is written as

�c�� �a

2
cAa

� ¼ 1

2
ð �u3��d3 þ �d3��u3ÞA1

�

� i
1

2
ð �u3��d3 � �d3��u3ÞA2

�

þ 1

2
ð �u3��u3 � �d3��d3ÞA3

� (15)

TABLE VI. The parameter �=
ffiffiffi
2

p
corresponding to the coher-

ence length.

� WðR; TÞ �=
ffiffiffi
2

p
(fm) c01 c00

1.10 Wð3; 5Þ 0.103(7) �4:7ð11Þ � 10�3 �2ð2Þ � 10�6

1.28 Wð5; 5Þ 0.090(4) �7:5ð3Þ � 10�4 2ð3Þ � 10�6

1.40 Wð7; 7Þ 0.097(7) �1:68ð16Þ � 10�4 �1ð3Þ � 10�6
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FIG. 13. The coherence length � as a function of the lattice
spacing að�Þ.
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¼ 1

2
ð �u1��u1 � �d1��d1ÞA1

� þ 1

2
ð �u2��u2 � �d2��d2ÞA2

�

þ 1

2
ð �u3��u3 � �d3��d3ÞA3

�; (16)

where the first equation (15) is expressed in terms of u3 and
d3 alone. Consider local mesonic states u1 �u1 and d1 �d1
(u2 �u2 and d2 �d2) which are Abelian color neutral in the
�1 (�2) direction. When we look at the states u1 �u1 and
d1 �d1 in the �3 direction, they are written as the sum of
color-neutral and color-charged states:

u1 �u1 ¼ 1
2ðu3 �u3 þ d3 �d3 þ u3 �d3 þ d3 �u3Þ; (17)

d1 �d1 ¼ 1
2ðu3 �u3 þ d3 �d3 � u3 �d3 � d3 �u3Þ: (18)

The same observation applies to the color-neutral states
u2 �u2 and d2 �d2 in the �2 direction. However, we find that

u1 �u1 þ d1 �d1 ¼ u2 �u2 þ d2 �d2 ¼ u3 �u3 þ d3 �d3 (19)

are Abelian color neutral in all color directions. The state
(19) is nothing but the non-Abelian color-singlet state.

This example tells us that the Abelian color-neutral state
in any color directions corresponds to the physical non-
Abelian color-singlet state. Hence, the confinement of non-
Abelian color charges can be explained in terms of the
Abelian dual Meissner effect due to Abelian monopoles.
To the authors knowledge, this is the first paper that ex-
plains the confinement of non-Abelian color charges only
in terms of the Abelian dual Meissner effect.

VII. CONCLUDING REMARKS

We make some concluding remarks. The Abelian gauge
fields extracted from the thermalized non-Abelian link
fields contain originally topological monopoles respon-
sible for the confinement mechanism of non-Abelian color
charges even in the continuum limit. Our results presented
in this paper are almost the same as those obtained in the

maximally Abelian gauge. This suggests that the MA
gauge fixing is the easiest method to extract the physical
ingredients of the monopoles, since we do not need very
precise time-consuming simulations in the MA gauge as
done here.
In the lattice Landau gauge, it is known that no mono-

poles exist [48] if one uses the DeGrand-Toussaint defini-
tion and the magnetic displacement current takes a role of
monopoles in the dual Ampère law. How to interpret the
existence of a gauge-invariant Abelian confinement
mechanism in the framework of the Landau gauge?
Abelian monopoles are as a whole gauge variant without
gauge fixing, but they may contain a gauge-invariant physi-
cal component and a gauge-variant unphysical one. The
compatible interpretation would be that the Landau gauge
is a special gauge in which the unphysical gauge-variant
piece apparently cancels the physical one in the DeGrand-
Toussaint monopoles, but at the same time, the role of
physical monopoles is carried by the color-magnetic dis-
placement current, which is just a matter of definition of
monopoles on the lattice. On the other hand, in the MA
gauge, the main part of the DeGrand-Toussaint monopoles
is a physical component.
If there exist physical gauge-invariant ingredients of

Abelian monopoles, one could observe them in the real
experiment [49]. To find the effect in the confinement and
also in the deconfinement phases is a very interesting topic
in the future.

ACKNOWLEDGMENTS

The numerical simulations of this work were done using
RSCC computer clusters in RIKEN and a SX-8 computer
at RCNP of Osaka University. The authors would like to
thank RIKEN and RCNP for their support of computer
facilities. The authors are also supported by JSPS and DFG
under the Japan-Germany Research Cooperative Program.
Y.K. is partially supported by the Ministry of Education,
Science, Sports and Culture, Japan, Grant-in-Aid for
Young Scientists (B) (No. 20740149).

[1] K. Devlin, The Millennium Problems: The Seven Greatest
Unsolved Mathematical Puzzles of our Time (Basic Books,
New York, 2002).

[2] G. ’t Hooft, in Proceedings of the EPS International,
edited by A. Zichichi (Editrice Compositori, Bologna,
1976), p. 1225.

[3] S. Mandelstam, Phys. Rep. 23, 245 (1976).
[4] G. ’t Hooft, Nucl. Phys. B79, 276 (1974).
[5] A.M. Polyakov, Nucl. Phys. B120, 429 (1977).
[6] N. Seiberg and E. Witten, Nucl. Phys. B426, 19 (1994).
[7] G. ’t Hooft, Nucl. Phys. B190, 455 (1981).

[8] A. S. Kronfeld, M. L. Laursen, G. Schierholz, and U. J.
Wiese, Phys. Lett. B 198, 516 (1987).

[9] A. S. Kronfeld, G. Schierholz, and U. J. Wiese, Nucl. Phys.
B293, 461 (1987).

[10] T.A. DeGrand and D. Toussaint, Phys. Rev. D 22, 2478
(1980).

[11] T. Suzuki, Nucl. Phys. B, Proc. Suppl. 30, 176 (1993).
[12] V. Singh, D. A. Browne, and R.W. Haymaker, Phys. Lett.

B 306, 115 (1993).
[13] S. Ejiri, S. Kitahara, T. Suzuki, and K. Yasuta, Phys. Lett.

B 400, 163 (1997).

SUZUKI et al. PHYSICAL REVIEW D 80, 054504 (2009)

054504-10



[14] M.N. Chernodub and M. I. Polikarpov, arXiv:hep-th/
9710205.

[15] G. S. Bali, C. Schlichter, and K. Schilling, Prog. Theor.
Phys. Suppl. 131, 645 (1998).

[16] T. Suzuki, Prog. Theor. Phys. Suppl. 131, 633 (1998).
[17] Y. Koma, M. Koma, E.-M. Ilgenfritz, T. Suzuki, and M. I.

Polikarpov, Phys. Rev. D 68, 094018 (2003).
[18] Y. Koma, M. Koma, E.-M. Ilgenfritz, and T. Suzuki, Phys.

Rev. D 68, 114504 (2003).
[19] S. Kitahara, Y. Matsubara, and T. Suzuki, Prog. Theor.

Phys. 93, 1 (1995).
[20] J. D. Stack, S. D. Neiman, and R. J. Wensley, Phys. Rev. D

50, 3399 (1994).
[21] H. Shiba and T. Suzuki, Phys. Lett. B 333, 461 (1994).
[22] H. Shiba and T. Suzuki, Phys. Lett. B 351, 519 (1995).
[23] T. Suzuki, S. Ilyar, Y. Matsubara, T. Okude, and K.

Yotsuji, Phys. Lett. B 347, 375 (1995).
[24] S. Ejiri, S. Kitahara, Y. Matsubara, and T. Suzuki, Phys.

Lett. B 343, 304 (1995).
[25] G. S. Bali and C. Schlichter, Prog. Theor. Phys. Suppl.

122, 67 (1996).
[26] S. Kato, N. Nakamura, T. Suzuki, and S. Kitahara, Nucl.

Phys. B520, 323 (1998).
[27] M.N. Chernodub et al., Phys. Rev. D 62, 094506 (2000).
[28] K. Ishiguro, T. Suzuki, and T. Yazawa, J. High Energy

Phys. 01 (2002) 038.
[29] Z. F. Ezawa and A. Iwazaki, Phys. Rev. D 25, 2681 (1982).
[30] T. Suzuki, Prog. Theor. Phys. 80, 929 (1988).
[31] S. Maedan and T. Suzuki, Prog. Theor. Phys. 81, 229

(1989).

[32] M.N. Chernodub, Phys. Rev. D 69, 094504 (2004).
[33] T. Sekido, K. Ishiguro, Y. Koma, Y. Mori, and T. Suzuki,

Phys. Rev. D 76, 031501 (2007).
[34] J.M. Carmona, M. D’Elia, A. Di Giacomo, B. Lucini, and

G. Paffuti, Phys. Rev. D 64, 114507 (2001).
[35] P. Cea and L. Cosmai, Phys. Rev. D 62, 094510 (2000).
[36] T. Suzuki, K. Ishiguro, Y. Koma, and T. Sekido, Phys. Rev.

D 77, 034502 (2008).
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