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The chiral magnetic effect is the generation of electric current of quarks along an external magnetic

field in the background of topologically nontrivial gluon fields. There is recent evidence that this effect is

observed by the STAR Collaboration in heavy-ion collisions at the Relativistic Heavy Ion Collider. In our

paper we study qualitative signatures of the chiral magnetic effect using quenched lattice simulations. We

find indications that the electric current is indeed enhanced in the direction of the magnetic field both in

equilibrium configurations of the quantum gluon fields and in a smooth gluon background with nonzero

topological charge. In the confinement phase the magnetic field enhances the local fluctuations of both the

electric charge and chiral charge densities. In the deconfinement phase the effects of the magnetic field

become smaller, possibly due to thermal screening. Using a simple model of a fireball we obtain a good

agreement between our data and experimental results of STAR Collaboration.
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I. INTRODUCTION

Properties of strongly interacting matter in hadron-scale
magnetic fields have attracted a lot of attention recently.
The interest is motivated by the feasibility of creating such
strong fields in ongoing heavy-ion experiments at the
Relativistic Heavy Ion Collider (RHIC), and at future
experiments at the Facility for Antiproton and Ion
Research at GSI, and the ALICE experiment at LHC.
Noncentral heavy-ion collisions may create magnetic
fields due to relative motion of electrically charged ions
and the products of the collision. For typical RHIC pa-
rameters the strength of the magnetic field at the center of a
Au-Au collision may be estimated to be of the order of
eB� ð10–100 MeVÞ2 [1] at the first moments (��
1 fm=c) of the collision. The magnetic field created at
RHIC is not only many orders of magnitude stronger
than any other experiment may reach, it also leaves behind
even magnetized neutron stars, magnetars, with their mag-
netic fields of the order of 1010 T (equivalent to eB �
4 MeV2). A strong magnetic field can significantly modify
the properties of nuclear matter affecting the spectrum of
the hadronic states [2], shifting the position and changing
the order of the phase transition from hadronic matter to
quark-gluon plasma [3].

The magnetic fields lead to other unusual effects due to
the nontrivial topological structure of QCD [1,4–6]. In this
paper we concentrate on a particular realization of the
chiral magnetic effect (CME), which generates a spatial
separation of positive and negative electric charges along
the direction of the magnetic field on nontrivial topological
backgrounds of gluons [1,4]. In the noncentral collisions
the magnetic field is perpendicular to the reaction plane,
therefore a charge separation can be observed in heavy-ion
collisions as a nonstatistical asymmetry in the number of

positively and negatively charged particles emitted on
different sides of the reaction plane [7,8]. This effect was
called ‘‘event-by-event P and CP violation,’’ because this
asymmetry implies that the difference of the numbers of
quarks of different chiralities was created in a particular
event due to quantum fluctuations of the topological
charge. However, since there is no CP violation in strong
interactions in the usual sense, this effect vanishes after
averaging over all events. The only way to observe it
experimentally is by studying CP-even correlations of
reaction products [7]. The magnetic field grows with the
impact parameter of the collision, therefore this asymmetry
should depend strongly on the centrality of the collision.
There are preliminary indications that this effect has been
indeed observed by the STAR Collaboration at RHIC [8,9].
It should be stressed that the observed effect is the indica-
tion that there are fluctuations of chirality in QCD vacuum.
A similar well-known effect is the large mass of the �0
meson [10,11]. However, the CME allows one to extract
more information on the fluctuations of chirality and topo-
logical charge, since in this case there is an additional
parameter—the strength of the magnetic field—which
can be varied in experiments.
The physical mechanism behind the CME is as follows

[1,4]. At the energy scales of the collisions, the light u and
d quarks may be considered as approximately massless
particles. The massless fermions are characterized by
right- or left-handed helicity (i.e., positive or negative
projection of fermion’s spin on the momentum, respec-
tively), so that the magnetic moment of the (anti)quark is
always collinear to its momentum. The strong enough
external magnetic field makes the magnetic moment to
be parallel to the direction of the field so that the motion
of the quarks is essentially collinear to the magnetic field.
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The helicity is related to chirality: the quarks have the same
helicity and chirality while for the antiquarks the helicity is
opposite to chirality. In the equilibrium ensembles the total
chirality is vanishing [12], so that the total electric current
along the magnetic field is zero (the left-handed and right-
handed quarks move in opposite directions and compen-
sate each other). However, if there is a difference between
the (anti)quarks with left- and right-handed chirality then
the balance is broken and the total electric current along the
magnetic field becomes nonzero [1,4–6,13,14].

Thus, the CME arises due to the fluctuations in the
numbers of left- and right-handed quarks in a vacuum or
in the thermal state of non-Abelian gauge theories. In QCD
the fluctuations of the chirality number are provided by the
topology-changing transitions between different vacua.
Indeed, the gluon fields are characterized by the topologi-
cal winding number [15,16]

Q ¼ g2

16�2

Z
d4xG��

a ðxÞ ~Ga
��ðxÞ; Q 2 Z; (1)

where G
��
a is the gluon field strength tensor and the dual

tensor is ~G��
a ¼ ð1=2Þ"����Ga;��. The configurations

with Q � 0 change the chirality of the ensemble, i.e., the
difference between the number of left-handed quarks (NL)
and right-handed quarks (NR) by an integer

�ðNL � NRÞ ¼ NfQ; (2)

where Nf is the number of flavors. Therefore the electric

current along the strong enough magnetic field should be
sensitive to the topological fluctuations of the gluon en-
sembles, providing us with possibility of studying in a
direct way the topological structure of the QCD thermal
states.

The CME is expected to work effectively in the chirally
restored phase [1,4]: the chiral condensate, which breaks
the chiral symmetry, provides a direct coupling between
left-handed quarks to the right-handed ones thus leading to
an efficient mechanism to suppress any asymmetry be-
tween them. The suppression happens because the system
prefers to decrease total chirality as the states with nonzero
chirality have higher energy due to the Fermi principle
[12]. Therefore the CME should work effectively in the
high temperature case, where the chiral condensate is sup-
pressed and the chirality fluctuations are strong.

While there are many phenomenological estimates of
the strength of the CME in QCD, a detailed analytical
calculation is hardly possible due to strong nonperturbative
effects. In this paper we report on our results of the
numerical investigation of the CME in quenched SUð2Þ
lattice gauge theory both in high and low temperature
phases of the theory (Sec. II). The chiral properties of the
QCD, such as chiral condensate [17] and the chiral mag-
netization [18], in the external magnetic field can reason-
ably be described by the quenched lattice theory. Our study
involves various approximations: we use quenched lattice

gauge theory with two colors, the fermionic propagators
are truncated, and the theory is studied in a finite volume.
Thus our results should only serve as a qualitative indica-
tion of the existence of the CME, while the quantitative
features may be accessible only in simulations with dy-
namical quarks. Using our numerical results we neverthe-
less make a prediction for the charge asymmetry and fit it
to the experimental data in Sec. III. Our conclusions are
summarized in the last section.

II. LATTICE SIMULATIONS

A. Numerical setup

We work in SUð2Þ lattice gauge theory with tadpole-
improved Wilson-Symanzik action (see, e.g., expression
(1) in Ref. [19]). In our zero temperature simulations we
have used 144 and 164 lattices at lattice spacing a ¼
0:103 fm and a ¼ 0:103 fm, a ¼ 0:089 fm, respectively.
The latter lattices were used to control the effects of finite
volume and finite lattice spacings, which turn out to be
much less than the statistical errors. For simulations at
finite temperature we have used 163 � 6 lattices with
spacings a ¼ 0:128 fm and a ¼ 0:095 fm, which corre-
spond to the temperatures T ¼ 256 MeV ¼ 0:82Tc and
T ¼ 350 MeV ¼ 1:12Tc, respectively. The critical tem-
perature in SUð2Þ gauge theory is Tc ¼ 313:ð3Þ MeV
[20]. As we explain below, the minimal nonzero value of
the magnetic field is rather large in our simulations,
qBmin � ð350 MeVÞ2).
In all current lattice simulations with background mag-

netic field only valence quarks interact with the electro-
magnetic field [2,17,21,22], because the inclusion of
dynamical sea quarks into simulations makes the problem
significantly difficult. On the other hand the characteristic
properties of the CME may be studied in the quenched
approximation, in which the effects of the virtual quarks on
the gluon fields are neglected.
The quenched world has the same qualitative features as

the unquenched system: both approaches exhibit color
confinement and chiral symmetry breaking. There is, how-
ever, an important difference: due to the Crewther theorem
[23] fluctuations of the net topological charge in the theory
with light virtual quarks should be drastically suppressed
compared to the quenched vacuum. However, as we have
checked numerically, at least in the quenched approxima-
tion the CME is mostly due to local fluctuations of the
density of topological charge, rather than due to the global
topological charge of gauge field configurations. The num-
ber of colors is also inessential for the existence of the
CME. Thus we proceed with the quenched simulations of
the SUð2Þ gauge theory on the lattice.
For valence quarks we use Neuberger’s overlap Dirac

operator [24]. The expectation values of fermionic fields
are first computed in terms of a massive Dirac propagator
in a fixed configuration of gauge fields, according to the
Wick theorem. For example, for the expectation value
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involving four fermionic fields in the background of a fixed
gauge field A, one has

hc yðxÞO1c ðxÞc yðxÞO2c ðxÞiA
¼ Tr

�
1

Dþm
O1

�
Tr

�
1

Dþm
O2

�

� Tr

�
1

Dþm
O1

1

Dþm
O2

�
; (3)

where D is the massless Dirac operator on the lattice,

D ¼ ��ð@� � iA�Þ; (4)

and Oi, i ¼ 1; 2 are some operators in spinor and color
space. These operators are treated as matrices in spinor and
color spaces. Consequently, the traces in Eq. (3) are taken
over both spinor and color indices.

The overlap operator is a vital tool for investigation of
the CME because this effect is realized for the chiral
quarks, while the overlap operator is the lattice Dirac
operator which enjoys the chiral symmetry by the con-
struction. On the contrary, if the quarks are massive then
the chiral magnetic effect is overshadowed by the flips of
the quarks’ spirality. Moreover, in the CME the near-zero
Euclidean eigenmodes play an essential role. The overlap
operator gently treats low-lying eigenmodes making our
results more reliable. On the other hand, this operator is
more complicated compared to other versions of the lattice
Dirac operators. As a result, the simulations are more
power-consuming and our data have larger error bars.

The Dirac propagator 1=ðDþmÞ can be represented in
terms of the eigenvalues 	k and the eigenmodes c k of the
Dirac operator,

D c k ¼ i	kc k; (5)

as follows:

1

Dþm
ðx; yÞ ¼ X

k

c kðxÞc y
k ðyÞ

i	k þm
: (6)

Then Eq. (3) can be reformulated as follows:

h �cO1c �cO2c iA
¼ X

k;p

hkjO1jkihpjO2jpi � hpjO1jkihkjO2jpi
ði	k þmÞði	p þmÞ : (7)

The result is then averaged over all configurations of the
gauge fields. This procedure is repeated for several values
of the massm (we have usedm ¼ 25 MeV,m ¼ 50 MeV,
m ¼ 75 MeV), and the obtained dependence on m is lin-
early extrapolated to zero to yield the expectation values in
the chiral limit. In order to have a well-defined limit m !
0, exact zero modes of the Dirac operator were not in-
cluded in the Dirac propagator. The removal of zero modes
is legal, since their contribution becomes insignificant in
the limit V ! 1, m ! 0 if one first tends the volume to

infinity and then sets the mass to zero. The Dirac propa-
gator is evaluated by inverting the massive Dirac operator
in the subspace spanned by M Dirac eigenvectors which
correspond to M nonzero Dirac eigenvalues with smallest
absolute values. The truncated operator (6) reads as fol-
lows:

1

Dþm
ðx; yÞ ¼ X

jkj<M

c kðxÞc y
k ðyÞ

i	k þm
: (8)

The value of M is limited by the numerical procedure
(ARPACK in our case) used to find the eigensystem of the
Dirac operator. We have found that the UV-finite quantities
depend only weakly on M.
Uniform magnetic field with field strength F12 ¼ B is

introduced into the Dirac operator by substituting the
suð2Þ-valued vector potential A� with the uð2Þ-valued one,

A�ij ! A�ij þ AðBÞ
� 
ij; AðBÞ

� ðxÞ ¼ B

2
ðx1
�;2 � x2
�;1Þ:

(9)

The expression (9) is valid in infinite space. In order to
combine it with periodic boundary conditions on the lattice
we have introduced an additional x-dependent boundary
twist for fermions, as explained in [25]. Since the total
magnetic flux is quantized, on finite periodic space with the
period L the uniform magnetic field can take only discrete
values

qB ¼ 2�k

L2
; k 2 Z; (10)

where q is the quark charge. In our calculations we take
q ¼ �e=3, corresponding to the d quark. Because of the
quantization condition (10) there is a minimal nonzero
value of the magnetic field, which is equal to

ffiffiffiffiffiffiffi
qB

p ¼
348 MeV in most of our simulations (for 144 lattice with
lattice spacing a ¼ 0:103 fm one has L ¼ 14 � a ¼
1:44 fm).
In our work the spatial tensor indices are i, j ¼ 1; 2; 3

and the Euclidean time is labeled by the index 4. The
magnetic field F12 ¼ B3 ¼ B is uniform in our simula-
tions; see Eq. (9).

B. Observables and topology

In order to characterize the CME quantitatively, we
studied two basic quantities. The first quantity is the local
chirality

�5ðxÞ ¼ �c ðxÞ�5c ðxÞ; (11)

which is the operator of the difference of the local densities
of left- and right-handed quarks.
The second quantity is the electromagnetic current

j�ðxÞ ¼ �c ðxÞ��c ðxÞ: (12)

All other studied quantities are the powers and the products
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of (11) and (12). Note that in Euclidean space the spinor
conjugation is just the complex conjugation �c Eucl ¼ c y
[16].

According to the original idea of Refs. [1,4] the CME
appears in the presence of the topologically nontrivial
configurations. The nonzero topological charge is needed
to destroy a balance between the left- and right-quark zero
modes. In general, configurations of gauge fields may have
different values of the global topological charge.
According to the Atyah-Singer theorem, the topological
charge of a gauge field configuration is given by a differ-
ence of the right and left zero modes of the Dirac operator,

NL � NR ¼ Q (13)

[this is essentially a Euclidean version of Eq. (2) written for
one species of fermions,Nf ¼ 1]. The crucial advantage of

our numerical procedure is that we are using the chirally
symmetric Dirac operator which possesses exact zero
modes. The knowledge of the zero modes for a given gluon
field allows us to calculate the integer-valued topological
charge of this configuration using Eq. (13).

Surprisingly, we have observed that all studied CME-
related observables are independent of the global charge of
the gluon fields. More precisely, in the external magnetic
field the effect of the nontrivial topology is smaller then the
statistical error for any studied quantity like (11) and (12),
their powers, and correlations. One could incorrectly con-
clude that the electromagnetic properties of the QCD vac-
uum in the external magnetic field have nothing to do with
the topology of the gluon fields and, consequently, the
CME is not realized in the (thermal) equilibrium (we
remind the reader that the CME is an interplay between
the electromagnetism and the gluon topology).

Coming a bit in advance, we state that the real situation
turns out to be more complicated. In fact, each gauge field
configuration contains quite strong local fluctuations of the
topological charge. In the real equilibrium configurations
of the gauge fields, the density of the topological charge is
localized on low-dimensional objects [26] which do not
resemble smooth structures like, for example, classical
instantons. And, consequently, the effect of the global
topology is completely overshadowed by strong local fluc-
tuations of the topological charge. Thus, below we do not
classify the gauge field configurations by the topological
charge, treating all configurations on equal footing. On the
contrary, our studies, reported in this paper, show that the
CME does exist in equilibrium and that the magnetic fields
do affect the electromagnetic properties of vacuum at local
concentrations of the topological charge.

We prefer to study correlation of the electromagnetic
current (12) with the chiral density (11). The chiral density
is calculated with the help of the low eigenmodes of the
Dirac operator in the background of the gauge field con-
figuration, as described in the previous subsection. In fact,
the CME predicts the correlation of the electromagnetic

currents with the imbalanced density of the left- and right-
quark zero modes. The exact zero modes of separate
topological lumps in a configuration of the gluon fields
(one can think, for example, of separate instantons and
anti-instantons) become near-zero modes because of the
interactions between the modes. This interaction breaks the
zero-mode degeneracy and the former zero modes acquire
tiny corrections. Such near-zero modes carry information
about unperturbed zero modes including the distribution of
chirality and, eventually, about the chiral magnetic effect.
In order to illustrate the insignificance of the exact

Euclidean [27] zero modes let us consider a configuration
consisting of an instanton–anti-instanton pair. Assume that
these objects are separated by a distance which is much
larger compared to their sizes, and this configuration has no
zero fermion modes since the total topological charge is
zero. If one applies an external magnetic field to this
configuration, the lumps of the topological charge will be
the sources of the generation of the electric current. At the
instanton the electric current will be generated in one
direction, while at the anti-instanton the current will start
flowing in the opposite direction. The CME mechanism
leads to the current generation because each of the (anti)
instantons changes the chirality of quarks in the positive or
negative direction, and the local imbalance of the chirality
leads to a generation of the positive or negative current,
respectively.
At the instanton–anti-instanton configuration the global

electric current is zero, while locally each topological lump
induces the electric currents exhibiting the CME.
Therefore, we concentrate our attention on local correla-
tors ignoring the global signatures of the CME like global
currents and/or the Euclidean zero modes. Another argu-
ment in favor of local treatment of the CME is that in the
Euclidean space the exact zero mode provides zero con-
tribution to the electric currents and the electric charge
density. This statement can readily be proven in the chiral
basis of the Dirac matrices in which the �matrices are 2�
2-diagonal structures. Nevertheless, the topological charge
fluctuations do induce the electric currents because in the
presence of many positively and negatively charged lumps
of topological charge (one can think of, e.g., an ensemble
of instantons and anti-instantons) the zero modes split into
very-near-zero modes. These near-zero modes carry infor-
mation about the local topology of the lumps and create the
electric currents. The low-lying modes do contribute to the
electric quark’s currents and this fact is clearly seen in our
simulations.
Thus, in all our calculations we study the nonzero fer-

mionic eigenmodes and we ignore the exact zero modes.
Note that in large enough volumes the fermionic zero
modes are suppressed and in the thermodynamic limit their
contribution to certain physical observables—for example,
to the chiral condensate [28] and to the chiral magnetiza-
tion [18]—is zero. Indeed, as the volume increases the
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number of the exact zero modes grows as the square root of
the total volume while the number of the near-zero modes
grows proportionally to the first power of the volume.

Finally, we mention that the space-time distribution and
the dimensionality of the regions of space—where the left/
right currents are imbalanced—may be as complicated as
the distribution of the topological charge itself. The CME
is expected to be realized due to the presence of the regions
where the chiral density (11) of the former zero-modes
(and now near-zero modes) of quarks is enhanced. We can
probe the mechanism of the CME by investigation of the
mutual correlations between the chiral density (11) and the
electromagnetic current (12).

C. Electric charge density: An illustration

The basic feature of the CME is the spatial charge
separation, which appears due to the presence of the non-
trivial magnetic field B. The separation is a result of the
existence of the quarks’ electric current induced in the
direction of the magnetic field. We call this current as the
‘‘longitudinal’’ electric current. According to our nota-
tions, the longitudinal direction is given by � ¼ 3 for T �
0 and it covers the whole 03-plane for T ¼ 0. The trans-
verse (with respect to the magnetic field) components of
the electric current belong to the 12-plane.

In order to illustrate the CME we have first studied a
spatial excess of the charge density due to the presence of
the magnetic field,

j0ðx;A; BÞ ¼ hj0ðxÞiA;B � hj0ðxÞiA;B¼0: (14)

The subtraction in (14) removes all ultraviolet contribu-
tions leaving us with infrared nonperturbative contribu-
tions originating due to the external magnetic field.

Level surfaces of two typical charge density distribu-
tions in a fixed time slice of a zero-temperature gauge field
configuration are shown in Figs. 1 and 2 for two values of
the external magnetic field B.

We can deduce three interesting qualitative features
from Figs. 1 and 2.

First, we notice that the external magnetic field indeed
induces a spatial excess of the electric charge density. The
stronger the field the larger the excess. This property is in
agreement with our present understanding of the CME.

Second, the excess of the charge density is spatially
extended along the direction of the magnetic field. This
feature can be understood in terms of the standard electro-
dynamics [29]: the quarks are localized in the transverse
plane with respect to the field as they tend to occupy low
Landau levels (in Figs. 1 and 2 the transverse planes are
horizontal). If there were no background gluon field then
the longitudinal quark trajectories would not be affected by
the field. In general quarks have a nonzero momentum in
the longitudinal direction, so that the trajectories of the
quarks should be elongated strictly in the direction of the
magnetic field. The gluon background field provides a

visible distortion to the quarks’ motion. This feature is
observed in both figures.
Third, Figs. 1 and 2 illustrate a conceptual difficulty

associated with identifying the electric dipole moment of
the spatially separated charges in a finite volume. Because
of the (periodic) boundary conditions the electric dipole
moment is not a universal notion as it depends on the
choice of the reference frame. Consider, for example,
one-dimensional space of the finite length L with periodic
boundary condition imposed. Two points separated by the
distance r > 0 have the dipole moment �e ¼ er > 0.

FIG. 1 (color online). The excess of the density of the electric
charge (14) due to the applied magnetic field qB ¼ 0:7 GeV2 on
144 lattice with the volume ð1:44 fmÞ4. A typical three-
dimensional slice of a typical gauge field configuration is shown.
The magnetic field is directed vertically from the bottom of the
picture to the top. The red (gray) regions mark the excess of the
positive charges while the blue (dark gray) regions correspond to
the negative electric charge density.

FIG. 2 (color online). The same as in Fig. 1 but for qB ¼
1:8 GeV2 and for the configuration of non-Abelian gauge field.
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However, if we change the direction of our reference
frame, one can count the distance between the two points
as L� r. As a consequence, we get the different value for
the electric dipole moment �e ¼ eðr� LÞ< 0. The dif-
ference between the two definitions results in the large
uncertainty of the electric dipole moment, and this fact
makes the physical sense of the definition obscure. One
can, of course, limit all distances on the lattice by r � L=2,
so that if r < L=2, then we define �e ¼ er while r > L=2
then �e ¼ eðr� LÞ. However, this definition is not satis-
factory as well, because small variations of the charge
around the most distant point r� L=2 lead to large varia-
tions of the electric dipole moment, �e � eL=2 !
�eL=2. Another solution of this problem could be to re-
place the infinite-volume definition �e ¼ er by its finite-
volume counterpart, �e ¼ efðr; LÞ, where the function f:
(i) obeys the symmetry fðr; LÞ ¼ fðL� r; LÞ and
(ii) reduces to f ! r in the infinite volume limit, L ! 1.
However, this solution is not satisfactory either, because
the electric dipole moments in intermediate volumes would
inevitably be dependent on the form of chosen function
fðr; LÞ.

Thus, the electric dipole moment is an ambiguous notion
in finite volume. Therefore, instead of the electric dipole
moments we study the electric currents. The induced cur-
rents represent a complimentary aspect of CME since the
emergence of the electric dipole moment is necessarily
associated with an electric current The advantage of the
current-based approach is clear: the definition of the elec-
tric current (12) is a local notion which is not subjected—at
least directly—to the finite volume ambiguities.

D. Chirality fluctuations and CME in cold matter

Since the CME originates due to fluctuations of the local
chirality, we first study the effect of the external magnetic
field on the expectation value of the square of the local
chirality (11):

h�2
5iIRðB; TÞ ¼

1

V

Z
V
d4xh�5ðxÞ�5ðxÞiB;T � 1

V

�
Z
V
d4xh�5ðxÞ�5ðxÞiB¼0;T¼0: (15)

Here V is the total volume of the lattice, and h. . .iB;T means

expectation value with respect to the thermal state at
temperature T with background magnetic field B.
Subtraction of the expectation value at zero temperature
(T ¼ 0) and in the absence of the external field (B ¼ 0)
removes all ultraviolet divergences providing us with a
physical quantity which should be insensitive to the ultra-
violet cutoff. In fact, the quantity (15) provides us with the
strength of the chirality fluctuations because in the equi-
librium QCD the average of the chirality is zero, h�5i ¼ 0.
We denote the result of the subtraction by the subscript
‘‘IR’’ in h. . .iIR stressing the importance of the nonpertur-
bative infrared (IR) contributions. In all our expectation

values the corresponding zero-temperature and zero-field
contributions are always subtracted as it is done in (15).
Note that the coordinates of all operators entering our
observables, including Eq. (15), are taken at one point x.
Because of the subtraction, the expression (15) gives us

the influence of the magnetic field and/or finite temperature
on the strength of the chirality fluctuations. We plot this
quantity in Fig. 3 for a few values of the lattice spacing a,
lattice volumes L4, and the number of low eigenmodes M
which are used to calculate the Dirac propagator (8). We
found that the variations of all these parameters change the
expectation values by less than 10%, thus confirming good
scaling of our results.
The CME appears due to the local topology of the gauge

field configurations. The topological content of the gauge
field configurations is reflected in the structure of the
exactly-zero and near-zero eigenmodes. The exactly zero
eigenmodes are not significant in the Euclidean space as
we have discussed above. However, the near-zero modes
play an important role in the CME, and they also comewith
larger weights in the propagator (8). Thus, the considera-
tion of only low-lying zero modes is justified. For our
particular observables, the errors associated with our trun-
cation scheme are smaller than the typical statistical errors.
However, we should make a cautionary remark that as the
volume of the lattice increases, the density of low-lying
eigenmodes grows, and one should take into account more
and more of them.
Notice that most of figures in our paper are plotted in the

logarithmic scale, and that for dimensional reasons the data
for chirality fluctuations and, later, for current fluctuations
are always expressed in GeV6. Because of the high (sixth)
power the actual values of our quantities look quite small,
but this fact in no way indicates that the physical effects are

 1e-005

 0.0001

 0.001

 0  0.2  0.4  0.6  0.8  1  1.2

<
ρ 5

2 >
IR

 /G
eV

6

q B, GeV2

Chirality fluctuations
T=0

a = 0.103 fm, 144, M = 24
a = 0.103 fm, 144, M = 14
a = 0.103 fm, 164, M = 24
a = 0.089 fm, 164, M = 24

FIG. 3 (color online). The expectation value of the chirality
squared (15) �2

5 vs magnetic field at different lattice parameters

(the lattice spacing a and the lattice volume L4), and for different
number M of Dirac eigenmodes which were taken to determine
the truncated Dirac propagator (8) used in (3) to calculate (15).
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small. For example, in Fig. 3 at qB ¼ 1:5 GeV2 the value
of the chirality fluctuation is h�2

5i ¼ 10�4 GeV6. This

number corresponds to the large quantity h�2
5i �

ð215 MeVÞ6 if the magnitude is expressed in terms of MeV.
In Fig. 4 we show the dependence of the expectation

value h�2
5iIRðB; TÞ on the magnetic field at three tempera-

tures: at zero temperature, at finite temperatures in the
confinement phase (T ¼ 0:82Tc), and in the deconfinement
phase just above the phase transition, T ¼ 1:12Tc. At zero
temperature the fluctuations of the chirality quickly grow
with magnetic field. As the temperature increases the
growth rate gets smaller and in the deconfinement phase
the chirality fluctuations are almost insensitive to the value
of the magnetic field.

In the absence of the external magnetic field, B ¼ 0, the
rise of temperature leads, according to Fig. 4, to the in-
crease of the chirality fluctuations. However, sufficiently
strong magnetic fields can also induce the enhancement
effect comparable to the effect of the thermal fluctuations.
For example, the chirality fluctuations at zero temperature
in the magnetic field of the strength qB� 2 GeV2 has the
same value as the fluctuations of chirality in the absence of
the external magnetic field at temperature T ¼ 1:12Tc:

h�2
5ðxÞiT¼0;B¼2 GeV2 � h�2

5ðxÞiT¼1:12Tc;B¼0: (16)

It is known that the temperature suppresses the fluctua-
tions of the global topological charge [30],

�Q ¼ 1

V
hQ2i: (17)

Lattice studies show that in Yang-Mills theory the fluctua-
tions are almost independent of the temperature in the
confinement phase,

�QðT ¼ TcÞ � �QðT ¼ 0Þ;
while as temperature exceeds the critical point, T > Tc, the

fluctuations vanish quickly [31]. For example, in SUð2Þ
Yang-Mills theory just above the phase transition, T ¼
1:1Tc, the value of the fluctuations is more than twice
smaller compared to the value in the confinement phase
[31],

�QðT ¼ 1:1TcÞ � 0:5�QðT ¼ TcÞ:
Moreover, it is clear that in quenched theory the topologi-
cal charge of the gluon fields is not affected by the external
magnetic field, because the coupling between gluons and
electromagnetism is provided by the dynamical quarks
which are absent in the quenched theory. These observa-
tions suggest that the local fluctuations of the chirality (15)
and the fluctuations of the global topological charge (17)
are not related directly. It is more likely that at high
temperatures chirality-changing transitions occur due to
local processes involving sphaleronlike configurations
[32]. At zero temperature one might explain chirality
changes as follows: in a strong magnetic field, a quark
undergoes one-dimensional motion along the magnetic
field. Quark chirality can be efficiently changed in local
one-dimensional scattering processes on the fluctuations of
gauge fields, where the spin is not affected but the momen-
tum changes its sign. In the deconfinement phase this
mechanism does not work because the influence of the
gluon fluctuations on the quark’s motion is lower in this
phase (the quark confinement is lost, for example) and one
can suggest that the typical scattering does not reflect the
momenta.
Concluding this subsection, we notice that the CME

crucially depends on the imbalance between the left and
right chiral modes. The local strength of the chiral imbal-
ance is characterized by the value of the chirality fluctua-
tions, h�2

5i, which determines the rate of chirality-changing

transitions. Since the external magnetic field strongly en-
hances the chirality fluctuations (they become comparable
with the fluctuations in the deconfinement phase) so that
the chiral magnetic effect—if we imagine for a moment
that the property of the color confinement were either
absent or inessential due to density effects—could be
observed in cold nuclear matter as well.

E. Fluctuations of electromagnetic current

We checked that the expectation value of all components
of the electromagnetic current itself (14) is zero within the
error bars. This fact is not unexpected because the mag-
netic field passes through the regions of space-time char-
acterized by positive and negative chiralities (11).
According to the CME, in regions with opposite chiralities
the magnetic field induces the electric currents in opposite
directions with respect to the magnetic field. Thus, glob-
ally, the longitudinal electric currents should cancel each
other. As for the transverse (with respect to the magnetic
field) spatial directions, the electric currents should cancel
each other because of circular motion on (perturbed)
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FIG. 4 (color online). The expectation values of the chirality
squared (15) vs the magnetic field at three different tempera-
tures.
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Landau levels. Finally, the average timelike current is zero
because of the Gauss theorem (the total electric charge in a
closed volume with periodic boundary conditions should
be zero). These statements are valid both at zero and at
nonzero temperatures.

Below we study the dispersion of the electromagnetic
current

hj2�iIRðB; TÞ ¼ 1

V

Z
V
d4xhj2�ðxÞiB;T � 1

V

�
Z
V
d4xhj2�ðxÞiB¼0;T¼0

½no sum over��;

(18)

instead of the expectation value of the electric current.
Note that here and below no sum over the Lorenz index
� is assumed in all our expressions involving j2�.

Following study of the fluctuations of chirality, we first
check that the internal lattice parameters do not influence
the final results (the fluctuations of the electromagnetic
current calculated are shown at different lattice parameters
in Fig. 5). Then in Fig. 6 we plot the expectation values of
the fluctuations of each component of the electric current at
zero temperature. At T ¼ 0 the rotational symmetry is
broken only by the electromagnetic field strength tensor
F�� with F12 � 0, so that the components of the electric

currents can be grouped into transverse and longitudinal
sets, respectively,

hj21i ¼ hj22i; hj20i ¼ hj23i ðT ¼ 0Þ: (19)

At weak magnetic fields all components have the fluctua-
tions of the same order. However, at stronger fields the
fluctuations of the longitudinal currents (j3 and j0) are
stronger compared to the fluctuations the transverse cur-
rents (j1 and j2). Both transverse and longitudinal compo-
nents grow with the magnetic field, but the longitudinal
components grow faster. Thus we see that at zero tempera-

ture the magnetic field enhances both the current j3 in the
direction of the magnetic field and the charge density j0,
which is a clear signature of the charge separation associ-
ated with the CME. The enhancement of the transverse
components j1 and j2 in the magnetic field is natural since
the transverse momentum of a particle occupying a Landau
level grows with the increase of the magnetic field.
At nonzero temperature the (discrete) rotational symme-

try is broken not only by the electromagnetic field, F12 �
0, but also by the compactified temperature direction � ¼
0. Therefore the charge fluctuations (� ¼ 0) lose the simi-
larity with longitudinal (� ¼ 3) current fluctuations, while
the fluctuations of the transverse (� ¼ 1, 2) currents are
still degenerate,

hj21i ¼ hj22i; hj20i � hj23i ðT � 0Þ: (20)

In Fig. 7 we plot the fluctuations of all components of the
electric currents at finite temperature T ¼ 0:82Tc, at which
the system is still in the confinement phase. One can see
that at zero magnetic field the currents fluctuate strongly
due to thermal fluctuations. All components of the electric
currents fluctuate approximately with the same strength.
As the magnetic field grows the fluctuations of all compo-
nents drop a bit, and then they start to grow steadily. The
growth rate is noticeably smaller compared to the slope
observed at zero temperature, Fig. 6. On the other hand,
there are similarities with the zero-temperature case: (i) the
fluctuations of the charge density and of the longitudinal
(with respect to the magnetic field) current have equal
magnitudes; and (ii) the longitudinal currents fluctuate
stronger compared to the transverse currents.
The situation turns out to be quite different in the

deconfinement phase, Fig. 8. First, the fluctuations of the
longitudinal current are insensitive to the strength of the
magnetic field. Second, both the charge and transverse
current fluctuations are decreasing functions of the field
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strength. The drop in the electric charge fluctuations is
especially noticeable. This feature can be explained by
an effect of the thermal Debye screening [33].

In Fig. 9 we show the ratio of the longitudinal compo-
nent of the current to its transverse component. At zero
temperature the current is substantially enhanced at qB�
1:5 GeV2, while at relatively weak fields, qB� 0:3 GeV2,
the enhancement of the current is not seen.

At nonzero temperature the relative enhancement is
weaker. The ratios at T ¼ 0:82Tc and at T ¼ 1:12Tc

have similar properties which are in qualitative agreement
with the CME features: at low magnetic fields the longi-
tudinal and transverse directions are equivalent and the
increase of the magnetic field gives a bit stronger prefer-
ence for the longitudinal direction with respect to the
transverse one.

We have already mentioned the reasons why the CME is
expected to exist in the high temperature phase [1], where

the confinement is absent and the chiral symmetry is
restored. The reasons are quite simple: the presence of
the chiral condensate destroys imbalance between the right
and left chiral modes while the confinement does not allow
the spatial separation of the quarks at distances larger than
the confinement distance. This argument seems to be in-
dependent of the inclusion of the dynamical (virtual)
quarks into the consideration, so that it should be valid,
in lattice language, both in quenched and in unquenched
theories.
We have found that in the quenched approximation the

qualitative signatures of the chiral magnetic effect exist
both in the confinement and in the deconfinement phases.
In all our simulations, at zero temperature and at finite
temperature above and below the critical point, we see that
the longitudinal component of the electric (vector) current
dominates over the transverse component. However, in the
confinement phase the electric current rises as the function
of the external magnetic field while in the deconfinement
phase the value of the current is almost insensitive to the
strength of the magnetic field.

F. Chirality-current correlations

According to the CME the longitudinal electric current
may locally be induced by the imbalance of chirality.
Therefore it is natural to expect that the local fluctuations
of the longitudinal electric currents are correlated with the
chirality fluctuations. However, the correlator of the chi-
rality and the electric current h�5j�i vanishes, since in

isotropic homogeneous space it is impossible to construct
an axial vector from an antisymmetric tensor of magnetic
field strength. Therefore, we have considered the correla-
tion between the squares of the induced current and the
chirality:

cð�2
5; j

2
�Þ ¼

h�2
5j

2
�i � h�2

5ihj2�i
h�2

5ihj2�i
: (21)
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It turns out that in the confinement phase the correspond-
ing correlation functions for all components of the electric
currents vanish within statistical uncertainty,

cð�2
5; j

2
�Þ ’ 0 T & Tc: (22)

In the deconfinement phase the correlation function (21) is
not zero (Fig. 10), while the correlation decreases with the
increase of the magnetic field. All these facts suggest that
the enhancement of the fluctuations of current in the di-
rection of the magnetic field is not locally correlated with
the chirality fluctuations.

We would like to emphasize that the absence of the local
correlation does not in general mean the independence of
the longitudinal currents on the chiral density. The longi-
tudinal current can be caused by the chirality fluctuations
and, at the same time, the current itself may be not local-
ized in the local regions of the space-time where the chiral
density is enhanced. Although this statement sounds puz-
zling, similar effects are already known in the condensed
matter physics. For example, the well-known Anderson
localization [34] of electrons inside a semiconductor is
caused by the presence of impurities. However, the spatial
regions, in which the electron wave functions are localized,
do not coincide with the positions of the impurities
themselves.

G. Clean case: Instantonlike configuration

In the previous sections we have studied the CME using
the gluon fields of the quantum vacuum. Such gluonic
fields contain ultraviolet fluctuations both of perturbative
and nonperturbative nature. In particular, the topological
charge density is subjected to strong fluctuations with quite
nontrivial localization properties, so that the CME should
be realized locally in a vicinity of each topological lump.
In order to illustrate the existence of the CME in a more
theoretical fashion, we have prepared a smooth instanton-

like gluon field with a unit topological charge on the lattice
144 and applied the external magnetic field to this configu-
ration. In Fig. 11 we show the behavior of the chirality
fluctuations and the fluctuations of longitudinal electric
current at this instantonlike background.
The first indication of the existence of the CME comes

from the observation of the increase of chirality fluctua-
tions with increases of the strength of the external magnetic
field. Figure 11 illustrates that the external magnetic field,
on average, enhances a local imbalance between approxi-
mately left and approximately right fermionic modes in the
background of this Q ¼ 1 configuration. The effect may
readily be understood as a consequence of the CME: the
magnetic fields tend to localize ‘‘left’’ and ‘‘right’’ fermi-
onic modes in different parts of the space-time because the
left and right modes have opposite magnetic moments. The
external magnetic field acts as a chemical potential which
provides a different weight to these modes. The left and
right modes have opposite direction of the momentum with
respect to the magnetic moment so that the external mag-
netic field tries to separate them spatially as well. Thus, the
positive and negative chiralities do not compensate them-
selves in �5, leading to increase of the chirality
fluctuations.
The second signature in favor of the CME appears in the

properties of the (squared) longitudinal electric current.
Notice that the longitudinal current contains, in fact, con-
tribution from the two components, j3 and j0, because they
are indistinguishable from a geometrical point of view (we
remind that we are working at zero temperature in external
magnetic field B ¼ F12). Therefore we also plot in Fig. 11
the absolute value of the longitudinal current squared, j2k ¼
j20 þ j23 which turns out to be an increasing function of the

magnetic field. This behavior is consistent with our under-
standing of the CME.
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In order to provide an illustration of the effect, we
visualize the squared transverse and longitudinal electric
current densities for the Q ¼ 1 configuration in the exter-
nal magnetic field. In Figs. 12 and 13 we show the current
densities in the 12 and 34 cross sections, respectively. One
can clearly see that in a strong magnetic field the longitu-
dinal component is always larger than the transverse one in
agreement with the prediction of the CME.

Concluding this subsection we summarize that our study
of an instantonlike configuration of the gluonic field with
the topological charge Q ¼ 1 supports the existence of the
chiral magnetic effect.

III. CHARGE ASYMMETRY: COMPARISON WITH
EXPERIMENT

Experimental signatures of the chiral magnetic effect are
usually discussed in terms of the following observables,
suggested first in Ref. [7]:

aab ¼ 1

Ne

XNe

e¼1

1

NaNb

XNa

i¼1

XNb

j¼1

cosðia þjbÞ; (23)

where a, b ¼ � labels positively/negatively charged par-
ticles, Ne is the total number of experimental events, Na

and Nb are the numbers of positively/negatively charged
particles produced in each event, and ia, jb are the

azimuthal angles of the momenta of the produced particles
with respect to the reaction plane.
These observables can be expressed in terms of the total

charge separated in each event as [1]

aab ¼ ch�a�bi
hNaihNbi ; (24)

where a, b ¼ �, �þ is the difference of the total numbers
of positively charged particles emitted above or below the
reaction plane, �� is the same quantity for negatively
charged particles, and c is some coefficient (of order of
unity) which depends on the characteristics of the hydro-
dynamical flow in the reaction. One also has hNai ¼
hNbi ¼ Nq, where the average total number of the particles

of the same charge per event Nq (for Au-Au collisions) can

be found, e.g., in Table 1 in [1].
In order to compare experimental data with our results, it

is convenient to consider the following combination of aab:

aþþ þ a�� � 2aþ� ¼ hð�QÞ2i
N2

q

¼ hð�þ � ��Þ2i
N2

q

; (25)

where�Q ¼ �þ � �� is the difference of total charges of
particles emitted above and below the reaction plane.
hð�QÞ2i can be estimated from our lattice data on hj2�i
using the following rough model: consider a fireball of
radius R created during the heavy-ion collision, and as-
sume that it emits positively or negatively charged particles
from each element of surface 
 ~�i, with j
 ~�ij � �2. The
quantity � is some characteristic correlation length, so that
emission of particles on each surface element of the area �2

is statistically independent. �Q is calculated as the differ-
ence of the total charges emitted in some characteristic
collision time � from the upper and from the lower hemi-
spheres of the surface of the fireball:


Q ¼ �
X
i

signð
 ~�i � ~BÞ ~ji � 
 ~�i: (26)

For the expectation value hð�QÞ2i one then has

hð�QÞ2i ¼ �2
X
i

hð ~ji � 
 ~�iÞ2i

¼ �2�2
X
i

hð ~ji � niÞ2ij
 ~�ij ¼ �2�2
Z

d ~nh ~j � ~ni2:

(27)

We further assume that emission in different directions is
independent: hj�j�i ¼ 0 for � � �. With these assump-

FIG. 13 (color online). The same as in Fig. 12 but for a 03-
plane of the same gluon field.

FIG. 12 (color online). The squared components of the electric
current (in arbitrary units) in a 12-plane on the background of an
instantonlike configuration with topological charge Q ¼ 1. The
upper (green) sheet represents the spatial distribution of the
longitudinal current j2k ¼ j20 þ j23, and the lower (violet) sheet

corresponds to the transverse current j2? ¼ j21 þ j22.
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tions, we finally arrive at the following expression for
hð�QÞ2i:

hð�QÞ2i
N2

q

¼ 4��2�2R2

3N2
q

ðhj2ki þ 2hj2?iÞ; (28)

where jk and j? are, respectively, the currents along the

magnetic field and perpendicular to it. We take the values
of Nq from Table 1 in [1] and use our lattice data on hj2ki
and hj2?i at T ¼ 1:12Tc. Here we take into account the fact

that the expectation value of the squared spatial currents in
the Minkowski and Euclidean spaces are the same.

In Table 1 in [1] one can also find a relation between
centrality (‘‘% most central’’) and the ratio b=R, where b is
the impact parameter. From expression (A.12) in [1] one
can roughly estimate the magnetic field during the collision
as eB� ð0:1b=RÞ GeV2. For simplicity, we assume that
the magnetic field is nonzero and constant only during the
time �. In order to obtain hð�QÞ2i at small values of
magnetic field we have used polynomial interpolation.
The resulting plot is shown in Fig. 14. Experimental points
obtained by the STAR Collaboration are taken from the
plots presented in [8,9]. The coefficient �2�2R2 in (28) was
fitted so that the lattice data and the theoretical data match
best. One can take, for example, �� 1 fm, R� 5 fm, ��
0:2 fm, which are reasonable values by order of magnitude,
especially for such a rough model.

We observe a good agreement between our data and the
experimental results. Despite the agreement seen at the
quantitative level, the approximations used in our lattice
technique suggest that this result should be considered as a
qualitative indication rather than a solid proof. It should
be noted that at T ¼ 1:12Tc the dependence of hj2i and
hence of hð�QÞ2i on the magnetic field is rather weak, and,
moreover, the current does not increase with magnetic

field. We have to conclude that the dominant effect which
determines the shape of the plot on Fig. 14 is the decrease
of Nq with centrality (see Table 1 in [1]). It could be

therefore much more informative to consider the observ-
ables bab introduced in [1], which do not contain the
normalization factors 1

NaNb
. These observables can be di-

rectly compared with our data for the observable hj2�i, both
in the deconfinement phase and at zero temperature. Note
also that since at zero temperature the current increases
with magnetic field much faster than at high temperature, it
might be not unreasonable to search for strong magnetic
effects also in cold (and dense) nuclear matter.

IV. CONCLUSIONS

In this paper we studied possible signatures of the chiral
magnetic effect [1,4–6] in quenched SUð2Þ lattice gauge
theory using the chirally invariant Dirac operator. We
observed the expected enhancement of the electric current
in the direction of the magnetic field both in quantum
configurations of the gluon fields and in a fixed instanton-
like gauge field with nonzero topological charge. The CME
at the instantonlike configurations is much more pro-
nounced compared to the real gluonic vacuum (an illus-
tration can be found in Figs. 12 and 13). The CME is based
on the imbalance between left and right fermionic modes.
The measure of the local imbalance is the chiral density of
the quarks. On average the global chiral charge is zero,
while the local fluctuations of the chiral density can be
quite strong. We found (Fig. 4) that at zero temperature the
chiral fluctuations are drastically enhanced (by 2 orders of
magnitude) in the applied magnetic field.
As the temperature increases the chirality fluctuations

increase and, simultaneously, they become less sensitive to
the strength of the magnetic field. In the deconfinement
phase the local chirality fluctuates much stronger com-
pared to the fluctuations at zero temperature while the
fluctuations themselves are practically independent of the
strength of the magnetic field. The enhancement of the
chirality fluctuations due to magnetic field can be illus-
trated by the following example: in strong magnetic field
qB ¼ 2:5 GeV2 at zero temperature T ¼ 0 the chirality
fluctuations take the same value h�2

5i � ð220 MeVÞ6 as in
the case of zero magnetic field qB ¼ 0 and high tempera-
ture T ¼ 1:12Tc.
In the confinement and in the deconfinement phases the

properties of the induced electric currents differ strongly.
At zero temperature the longitudinal (i.e., directed along
the magnetic field) currents grow with the increase of the
strength of the magnetic field. This effect is accompanied
by a (weaker) enhancement of the transverse currents,
which we attribute to a transverse squeezing of the
Landau levels (Fig. 6).
At nonzero temperature but still below the transition

T ¼ 0:82Tc, the slopes of enhancement of both longitudi-
nal and transverse electric currents become smaller.
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However, the longitudinal current is enhanced stronger
than the transverse current (Fig. 7).

In the deconfinement phase at T ¼ 1:12Tc the fluctua-
tions of the longitudinal currents are almost independent of
the magnetic field. Moreover, the transverse components of
the electric current decrease slightly as the magnetic field
gets stronger. The fluctuations of the electric charge den-
sity become drastically suppressed in the deconfinement
phase in the strong enough magnetic field (Fig. 8).

We also found that the presence of a nonzero global
topological charge in the real gluonic configurations leads
to a little effect on the longitudinal currents. This happens
because the influence of a global charge is largely over-
shadowed by strong local fluctuations of the topological
charge. We conclude that in our simulations the CME is
realized at local lumps of topological charge in the gluonic
configuration.

We would like to make here a cautionary notice that our
investigation utilized many approximations. We used two
colors instead of three, our simulations are done in the
quenched approximation, the fermionic propagators were
truncated, and the system was studied in a finite volume.
We found that the systematic errors associated with trun-
cation, finite-size and finite-volume effects are smaller than
our statistical errors, and we expect on general grounds that
the reduced number of colors should not affect our results
drastically. However the absence of the dynamical fermi-
ons may in general correct our results. We got a qualitative
indication of the existence of the CME, while the quanti-

tative features of the CME may be accessible only in
simulations with dynamical quarks.
Finally, in real heavy-ion collisions the magnetic field is

perpendicular to the reaction plane. Consequently, the
CME implies an imbalance between total electric charge
observed above and below the reaction plane which is
indeed seen in preliminary data published by the STAR
Collaboration at RHIC [8,9]. Using a simple model of a
fireball we obtain a good agreement between our data and
experimental results of the STAR Collaboration (Fig. 14)
on the average fluctuations of the difference of total
charges of particles emitted above and below the reaction
plane.
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