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We present a calculation of the three-quark core contribution to the mass of the � resonance in a

Poincaré-covariant Faddeev framework. A consistent setup for the dressed-quark propagator, the quark-

quark and quark-’’diquark’’ interactions is used, where all the ingredients are solutions of their respective

Dyson-Schwinger or Bethe-Salpeter equations in rainbow-ladder truncation. We discuss the evolution of

the � mass with the current-quark mass and compare to the previously obtained mass of the nucleon.
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I. INTRODUCTION

Experimentally, the first excited state of the nucleon, the
� resonance, is observed in scattering pions, photons, or
electrons off nucleon targets. Recent precise experiments
at LEGS, BATES, ELSA, MAMI, and JLAB do not only
report on its mass (M� ¼ 1:232 GeV) and width (�� ¼
120 MeV) but also measure the electromagnetic N ! ��
transition form factors [1–7]. The basic properties of the
lightest resonance of the nucleon have been calculated
within various approaches such as constituent-quark mod-
els [8–17], Skyrme models [18–20], chiral cloudy-bag
models [21,22], chiral effective field theory methods [23–
27], and lattice-regularized QCD [28–32].

Ultimately it is desirable to obtain a detailed under-
standing of the rich structure of N and � baryons and their
properties in terms of QCD’s quark and gluon degrees of
freedom in a quantum-field theoretical framework. The
Dyson-Schwinger equation (DSE) point of view employed
in this paper offers a nonperturbative continuum approach
to QCD, reviewed recently in [33,34]. This fully self-
consistent infinite set of coupled integral equations pro-
vides a tool to access both the perturbative and the non-
perturbative regimes of QCD. The most prominent
phenomena emerging in the latter are dynamical chiral
symmetry breaking and confinement, which, in the same
way as bound states, require a nonperturbative treatment.

Hadrons and their properties are studied in this approach
via covariant bound-state equations. While mesons can be
described by solutions of the q �q-bound-state Bethe-
Salpeter equation (BSE), the case of a baryon is more
involved and has therefore not yet been addressed at the
same level of sophistication. Based on the observation that
the attractive nature of quark-antiquark correlations in a
color-singlet meson is also attractive for �3C quark-quark
correlations within a color-singlet baryon, a first step is to
study a two-body problem by means of a quark-diquark

bound-state BSE. In a basic setup, parametrizations for the
needed quark and diquark propagators and diquark ampli-
tudes were used to calculate N and � masses [35,36] and
nucleon electromagnetic form factors [37–41]. The next
step on the way to the full covariant three-body bound-state
equation is to replace the parametrizations by solutions of
the corresponding DSE (quark propagator) and BSEs (di-
quark amplitudes) in analogy to sophisticated meson stud-
ies. The simplest consistent setup of this kind is the
rainbow-ladder (RL) truncation, which was implemented
in this fashion and discussed in full detail for the nucleon in
[42]; for a short summary, see [43]. Recently, evidence has
been provided that in Landau gauge QCD all components
of the quark-gluon vertex are infrared divergent [44,45].
However, there are indications that for most hadronic ob-
servables the corresponding contributions beyond RL trun-
cation are small. In this respect mesonic effects in the
quark and quark-gluon-vertex DSEs (see, e.g., [46–48])
are more important. Because of the existence of these
and other contributions beyond RL truncation, instead of
aiming at actually reproducing light-quark baryon proper-
ties in RL truncation, a different approach was recently
taken. It allows an identification of RL results with a
hadron’s ’quark core’ via estimating all corrections that
are expected beyond RL and subsequently tuning the RL
contribution such that the corrected result would describe
experimental data. The corresponding prescription was
introduced in [49] and applied to the nucleon mass and
electromagnetic form factors in [50]. In the present work
we adopt this procedure and calculate the respective core
contribution to the mass of the �ð1232Þ, a necessary step
for a reliable analysis of the nontrivial N ! �� transition.
The paper is organized as follows: first we briefly sum-

marize the Poincaré-covariant Faddeev approach to bary-
ons and its simplification to a quark-diquark picture. After
discussing the ingredients of the covariant quark-diquark
BSE and the implications of the interaction as well as the
diquark concept, we present the tensor decomposition of
the� amplitude. Finally we discuss the results for the mass*diana.nicmorus@uni-graz.at
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of the � baryon and compare to the mass of the nucleon
obtained in the same approach, together with a selection of
results from lattice QCD.

Throughout this paper we work in Euclidean momentum
space and use the isospin-symmetric limit mu ¼ md.

II. COVARIANT FADDEEV EQUATIONS

Baryonic bound states correspond to poles in the three-
quark scattering matrix, i.e., the amputated and connected
quark 6-point function. The residue at a pole associated to a
baryon of mass M defines the respective bound-state
amplitude. It satisfies a covariant homogeneous integral
equation, which, upon neglecting irreducible three-body
interactions, leads to a covariant equation of the Faddeev
type [51].

The binding of baryons in this framework is dominated
by quark-quark correlations. In particular, a color-singlet
baryon emerges as a bound state of a color-triplet quark
and a color-antitriplet diquark correlation [52]. The same
mechanism that binds color-singlet mesons is suitable to
account for an attraction in the corresponding diquark
channels [52,53]. To implement this concept, one approx-
imates the quark-quark scattering matrix that appears in the
covariant Faddeev equations by a separable sum of
pseudoparticle-pole contributions corresponding to various
diquark correlations. This procedure leads to a quark-
diquark BSE on the baryon’s mass shell, where scalar 0þ
and axial-vector 1þ diquarks have been used to describe
the nucleon. Of those only the axial-vector diquark corre-
lation contributes to the spin-3=2 and isospin-3=2 flavor
symmetric �; therefore its quark-diquark BSE reads
[35,38]

�
��
��ðp; PÞ ¼

Z
k
fK��ðp; k; PÞSðpqÞ���ðk; PÞg��D��ðpdÞ;

(1)

where P is the total baryon momentum, pq, pd are quark

and diquark momenta, p, k are the quark-diquark relative

momenta, and
R
k denotes

R
d4k
ð2�Þ4 . Greek superscripts rep-

resent Lorentz indices, Greek subscripts fermion indices.
The amplitudes ���ðp; PÞ are the matrix-valued remain-
ders of the full quark-diquark amplitude ���

��ðp; PÞu��ðPÞ
for the �, where u��ðPÞ is a Rarita-Schwinger spinor de-

scribing a free spin-3=2 particle with momentum P. In
addition one needs to specify the dressed-quark propagator
S, the diquark propagator D��, and the axial-vector di-

quark amplitude �� and its charge-conjugate ��� which
appear in the quark-diquark kernel:

K��
��ðp; k; PÞ ¼ f��ðkr; kdÞSTðqÞ ���ðpr;�pdÞg��; (2)

where subscripts r denote quark-quark relative momenta
and d diquark momenta. By virtue of Eqs. (1) and (2) the
mechanism which binds the � is an iterated exchange of
roles between the single quark and any of the quarks

contained in the diquark. This exchange is depicted in
the quark-diquark BSE in Fig. 1. We proceed by detailing
the ingredients of Eq. (1).

III. QUARK PROPAGATOR AND EFFECTIVE
COUPLING

We begin with the renormalized dressed-quark propa-
gator SðpÞ. It is expressed in terms of two scalar functions,

S�1ðpÞ ¼ Aðp2Þðip6 þMðp2ÞÞ; (3)

where 1=Aðp2Þ is the quark wave-function renormalization
and Mðp2Þ the renormalization-point independent quark
mass function. The quark propagator satisfies the quark
DSE (also referred to as the QCD gap equation),

S�1
��ðpÞ ¼ Z2ðip6 þmbareÞ�� �

Z �

q
K��;	�ðp; qÞS�	ðqÞ;

(4)

where Z2 is the quark renormalization constant and � a
regularization mass-scale. The bare current-quark mass
mbare serves as an input of the equation. For the
renormalization-independent current-quark mass m̂, we
use the one-loop evolution relation mbare ¼
m̂=½lnð�=�QCDÞ��m , where the anomalous dimension of

the quark mass function is �m ¼ 12=ð11NC � 2NfÞ. We

use Nf ¼ 4 and �QCD ¼ 0:234 GeV. In the chiral limit,

m̂ ¼ 0.
The kernel K of the quark DSE includes the dressed

gluon propagator as well as one bare and one dressed
quark-gluon vertex. The fully dressed gluon propagator
and quark-gluon vertex could in principle be obtained as
solutions of the infinite coupled tower of QCD’s DSEs
together with all other Green functions of the theory;
cf. [45] and references therein. In practical numerical
studies one employs a truncation of the infinite system of
equations by solving only a subset explicitly. Green func-
tions appearing in the subset but not solved are represented
by substantiated Ansätze. In connection with the simulta-
neous solution of a meson BSE, it is imperative to employ a
truncation that preserves the axial-vector Ward-Takahashi
identity if one wants to correctly implement chiral sym-
metry and its dynamical breaking. This ensures a massless
pion in the chiral limit—the Goldstone boson related to
dynamical chiral symmetry breaking—and leads to a gen-
eralized Gell-Mann-Oakes-Renner relation for all pseudo-
scalar mesons and all current-quark masses [54–56]. The

FIG. 1 (color online). The quark-diquark BSE, Eq. (1).
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lowest order in such a symmetry-preserving truncation
scheme [57,58], the RL truncation, has been extensively
used in DSE studies of mesons, e.g., [59,60] (spectros-
copy), [61–63] (electromagnetic properties), and referen-
ces therein.

Out of the 12 general covariants of the quark-gluon
vertex, the RL truncation retains only its vector part
���. The nonperturbative dressing of the gluon propaga-
tor and the quark-gluon vertex are absorbed into an effec-
tive coupling �ðk2Þwhich is given by an Ansatz invoked by
the truncation. The kernel K of the quark DSE then reads

K ��;�	ðp; qÞ ¼ Z2
2

4��ðk2Þ
k2

T
��
k

�
i�� 
a

2

�
��

�
i�� 


a

2

�
�	
;

(5)

where 
a are the SUð3ÞC Gell-Mann matrices. T
��
k ¼

	�� � k̂�k̂� is a transverse projector with respect to the

gluon momentum k ¼ p� q, and k̂� ¼ k�=
ffiffiffiffiffi
k2

p
denotes a

normalized 4-vector. A convenient form of �ðk2Þ is given
by [64]

�ðk2Þ ¼ c�

!7

�
k2

�2
0

�
2
e�k2=!2�2

0

þ ��mð1� e�k2=�2
0Þ

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1þ ð1þ k2=�2

QCDÞ2
q (6)

with a scale �0 ¼ 1 GeV. The second term reproduces
QCD’s perturbative running coupling and decreases loga-
rithmically for large gluon-momenta. The first term of the
interaction accounts for the nonperturbative enhancement
at small and intermediate gluon momenta: it provides the
necessary strength to allow for dynamical chiral symmetry
breaking and the dynamical generation of a constituent-
quark mass scale. With the UV part fixed by perturbative
QCD, the coupling is characterized by two parameters, the
strength c and width ! of the interaction in the infrared.
The interaction of Eq. (6) provides a reasonable description
of masses, decay constants, and electromagnetic properties
of ground-state pseudoscalar and vector-mesons with
equal-mass constituents up to bottomonium if the coupling
strength is kept fixed for all values of the quark mass (see
[60] and references therein). In these investigations a value
c ¼ 0:37 has commonly been used, which reproduces the
phenomenological quark condensate and the experimental
decay constant f� ¼ 131 MeV at a pion mass of m� ¼
140 MeV. Furthermore, pseudoscalar- and vector-meson
masses and decay constants have turned out to be insensi-
tive upon variation of the coupling-width parameter ! in
the range ! � 0:4� 0:1 [64].

Naturally, any description making use of a truncation is
a priori incomplete. On the one hand, corrections come
from pseudoscalar meson-cloud contributions which were
introduced by the cloudy-bag model [22,65,66] and sys-
tematically incorporated into chiral perturbation theory

[67,68]. These corrections provide a substantial attractive
contribution to the quark core of dynamically generated
hadron observables in the chiral regime, whereas they
vanish with increasing current-quark mass. Their impact
on the chiral structure of the quark mass function and
condensate, f�, m�, and nucleon and � observables has

been demonstrated in the Nambu-Jona-Lasinio (NJL)
model [69,70], DSE studies [36,46–48], and chiral extrap-
olations of lattice results [71]. On the other hand, a resum-
mation of nonresonant diagrams beyond RL provides
further attraction in the pseudoscalar and vector-meson
channels [72,73]. The above corrections are in agreement
with the quark-gluon-vertex DSE and the infrared proper-
ties of its solution [45]. In order to anticipate such correc-
tions, a mere RL result should systematically overestimate
the experimental masses. More concretely, in [49,50] a
parametrization for the relation m�ðm�Þ was used to char-

acterize the quark-core contribution to the meson masses:

x2� ¼ 1þ x4�=ð0:6þ x2�Þ; x� ¼ m�=m
0
�;

x� ¼ m�=m
0
�;

(7)

with the chiral-limit value m0
� ¼ 0:99 GeV. Starting from

this value, the sum of chiral corrections would reduce m�

in the chiral limit by �25% whereas above the s-quark
mass the quark core approaches corresponding lattice re-
sults for m�. In order to reproduce Eq. (7) by solving the

�-meson BSE, the coupling strength c of Eq. (6) has to
depend on the current-quark mass thereby reflecting the
properties discussed above. The following fit yields
Eq. (7):

cð!; m̂Þ ¼ 0:11þ 0:86bð�!Þ
1þ 0:885xq þ ð0:474xqÞ2

; (8)

where xq ¼ m̂=ð0:12 GeVÞ. At each value of the current-

quark mass m̂, the parametrization

bð�!Þ ¼ 1� 0:15�!þ ð1:50�!Þ2 þ ð2:95�!Þ3 (9)

fixes the result for m� to the same value in the range ! ¼
�!ðm̂Þ � j�!j, with the central value given by �!ðm̂Þ ¼
0:38þ 0:17=ð1þ xqÞ. As demonstrated in Refs. [49,50],

this procedure induces consistent (overestimated) values
for a range of �, �, and nucleon observables as obtained
from their respective meson and quark-diquark BSEs.
These results are approximately !-independent for
j�!j & 0:1, i.e., in the region where bð�!Þ � 1.
In the present work we employ this ‘‘core model’’ of

Eqs. (6)–(9) to directly compare the obtained � mass with
the previously obtained result for the nucleon. We note
here that all parameters of the interaction were fixed using
information from the � and � masses.
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IV. DIQUARKS

It follows from the separable diquark-pole Ansatz for the
two-quark scattering matrix that the axial-vector diquark
amplitude in Eq. (2) satisfies a diquark BSE with the on-
shell condition P2 ¼ �M2

av for the total diquark momen-
tum P�, which reads

��
��ðp; PÞ ¼

Z �

q
K��;�	ðp; qÞfSðqþÞ��ðq; PÞSTðq�Þg�	;

(10)

where p is the relative momentum between the two quarks
in the diquark bound state and q� ¼ �qþ P=2 are the
quark momenta. Greek subscripts represent Dirac and
color indices of the involved quarks. The form of the
corresponding scalar-diquark BSE is identical to Eq. (10)
if the Lorentz superscript � is dropped.

Consistency with the meson sector implies the identifi-
cation of the irreducible two-quark kernelK in the diquark
BSE with the RL-truncated kernel of Eq. (5). This setup
(self-consistently) yields real diquark masses. While this
feature does not explicitly contradict diquark confinement
(see, e.g., [74,75]), we note here that diquark bound-state
poles are likely to be removed from the real timelike P2

axis by large repulsive corrections beyond RL truncation
[58,72,76,77]. Assuming that also a two-quark scattering
matrix free of real timelike poles contains scales character-
izing the diquark correlations, it is nonetheless meaningful
to make use of the diquark concept. Evidence in this
direction also comes from Coulomb-gauge QCD, where
diquark correlations have recently been shown to retain
their size while being removed from the physical spectrum
[78].

The axial-vector diquark amplitude can be decomposed
into a sum of 12 Lorentz-invariant dressing functions (a hat
on a four-momentum indicates a normalized vector),

�
�
��ðq; PÞ ¼

X12
k¼1

favk ðq2; q̂ � P̂; P2Þfi��k ðq; PÞCg��; (11)

of which, due to transversality at the axial-vector diquark
pole, only 8 contribute on-shell. A suitable orthonormal
basis for this on-shell part of the axial-vector amplitude is
given by (cf. Appendix B.2 of Ref. [42])

��1 ¼ �� ��2 ¼ �� ^6P ��3 ¼ iq̂�

�
�
4 ¼ q̂ � P̂q̂� ^6P �

�
5 ¼ q̂ � P̂ð�� ^6qT � q̂�Þ

��6 ¼ i��

2
½ ^6P; ^6q� þ iq̂� ^6P ��7 ¼ q̂� ^6qT � q̂2T

3
��

��8 ¼ q̂�

2
½ ^6P; ^6q� þ q̂2T

3
�� ^6P;

(12)

where the subscript T denotes transverse projection.
The diquark amplitude is a solution of Eq. (10) only on

the diquark’s mass shell. However, within a baryon the

two-quark system moves at all possible values of the total
diquark momentum. Therefore, to fully obtain the kernel of
the quark-diquark BSE (1), one has to specify the off-shell
behavior of the diquark amplitude and propagator as well.
For completeness we recapitulate the off-shell extension
introduced in Ref. [50]: we use an on-shell approxi-

mation for the dressing functions favk ðq2; q̂ � P̂; P2Þ �
favk ðq2; 0;�M2

avÞ. Assuming that only the dominant ampli-

tude remains relevant at large P2, each subleading ampli-
tude favk>1 is suppressed by a factor gðxÞ ¼ 1=ðxþ 2Þ,
where x ¼ P2=M2

av; and each occurrence of P̂ in the basis

(12) is augmented by a factor hðxÞ ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=ðxþ 2Þp

to
ensure a sensible analytic continuation for off-shell mo-
menta which does not alter the power-law behavior at
P2 ! 1. The off-shell Ansätze gðxÞ and hðxÞ leave the
BSE solutions on the diquark’s mass shell invariant,
gð�1Þ ¼ hð�1Þ ¼ 1.
Reinsertion of the diquark pole ansatz into the Dyson

series for the two-quark T-matrix yields the following
expression for the diquark propagator [42,79]:

D�1
��ðPÞ ¼ M2

avf
	�� þ �F��ðxÞ þQ��ðxÞg; (13)

Q��ðxÞ ¼ 1

2M2
av

Z
q
TrDf ���ðq;�PÞSðqþÞ��ðq; PÞSTðq�Þg

(14)

with 
 ¼ �QTð�1Þ and � ¼ 1�Q0
Tð�1Þ. QT ¼

Q��Q��=3 denotes the transverse contribution to the

quark-loop integral Q��. The two-loop integral F��ðxÞ
emerges via inclusion of the subleading amplitudes favk>1.

The ansatz

F��ðxÞ ¼ 	��ð1� 1=ðxþ 2Þ2Þ=2 (15)

ensures the on-shell behavior D�1
T ðP2 ! �M2

avÞ ! P2 þ
M2

av and a satisfactory approximation in the UV extracted
from the result of the numerical two-loop calculation. We
note that the systematic uncertainty connected to the di-
quark amplitude’s off-shell ansatz is minimized through
use of the consistent expression for the diquark propagator,
Eq. (13). While a different choice for the off-shell func-
tions gðxÞ and hðxÞ changes the values of FðxÞ and QðxÞ
accordingly and necessitates a modified ansatz (15), it has
no material impact on calculated observables since only
the product of two diquark amplitudes and the propagator
(i.e., the quark-quark T-matrix) enters the covariant
Faddeev equation’s kernel.

V. QUARK-DIQUARK AMPLITUDES FOR THE �

Finally, to compute the amplitude and mass of the �
baryon numerically, the structure of the on-shell quark-
diquark amplitude� of Eq. (1) needs to be specified. Now
denoting the total � momentum by P, with P2 ¼ �M2

�

and P̂ ¼ P=ðiM�Þ, it is decomposed into 8 covariant struc-
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tures [35]:

���
��ðp; PÞ ¼

X8
k¼1

f�k ðp2; p̂ � P̂Þ

� f���
k ðp; PÞ�þðPÞ���ðPÞg��; (16)

where the basis elements include the Rarita-Schwinger
projector onto positive-energy and spin-3=2 spinors, con-

structed from �þðPÞ ¼ ð1þ ^6PÞ=2 and

���ðPÞ ¼ 	�� þ 1

3
ðP̂��� � P̂��� � ���� � 2P̂�P̂�Þ:

(17)

The number of basis elements can be inferred from the
Clifford algebra. A general Green function with two fer-
mion legs, two vector legs, and two independent momenta
p and P allows for 40 possible Dirac covariants ���

k¼1...40,

where four come from 	��f1; p6 ; P6 ; p6 P6 g and 36 from all
possible combinations of the 3� 3� 4 terms
fp�; P�; ��g � fp�; P�; ��g � f1; p6 ; P6 ; p6 P6 g. The elements
P�, ��, P6 , and p6 P6 become redundant upon contraction
with the Rarita-Schwinger projector: P��þ��� ¼
���þ��� ¼ 0, fP6 ; p6 P6 g�þ ¼ f1; p6 g�þ. This leaves 8
Dirac covariants for which a convenient orthogonal set is
given by

�
��
1 ¼ 	�� �

��
2 ¼ 1ffiffiffi

5
p ð2��

T q
� � 3	��q6 Þ

���
3 ¼ � ffiffiffi

3
p

P̂�q�q6 ���
4 ¼ ffiffiffi

3
p

P̂�q�

���
5 ¼ ���

T q
�q6 ���

6 ¼ ��
T q

�q6 � 	�� � 3q�q�

�
��
7 ¼ ��

�
T q

� �
��
8 ¼ 1ffiffiffi

5
p ð	��q6 þ �

�
T q

� þ 5q�q�q6 Þ;

(18)

with q� :¼ iT
��
P p̂�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðp̂ � P̂Þ2

q
and T

��
P ¼ 	�� �

P̂�P̂�. The corresponding orthogonality relation reads

Tr f ����
k ðp;�PÞ���

l ðp; PÞg ¼ 4	klð�1Þkþ1; (19)

where ���
k ðp; PÞ ¼ ���

k ðp; PÞ�þðPÞ���ðPÞ and the con-

jugated amplitude is defined as (the superscript T denotes
the Dirac transpose):

��
��
k ðp;�PÞ ¼ C�

��
k ð�p;�PÞTCT: (20)

The basis (18) corresponds to a partial-wave decomposi-
tion in terms of eigenfunctions of the quark-diquark total
spin and orbital angular momentum in the � rest frame
[35,80]. Since there is only one spherically symmetric
s-wave component (f�1 ), the �’s deviation from
sphericity ¼ 1 can be explained by an admixture of
pðf�2;4;7Þ, dðf�3;5;6Þ, and fðf�8 Þ waves, which contribute a

significant amount of orbital angular momentum to its
amplitude.

The isospin matrices of the � quark-diquark amplitude
are constructed via removal of the diquark contributions
from the full � flavor-amplitude that is obtained by the
Clebsch-Gordan prescription

�þþ ¼ ðu; 0; 0Þ; �þ ¼
�
1ffiffiffi
3

p d;
2ffiffiffi
3

p u; 0

�
;

�0 ¼
�
0;

2ffiffiffi
3

p d;
1ffiffiffi
3

p u

�
; �� ¼ ð0; 0; dÞ:

(21)

The first, second, and third entries in each vector corre-
spond to the diquark’s three symmetric isospin-1 states.
Computing the flavor traces of the quark-diquark BSE
leads to a global factor 1 in the equal-quark-mass case.

The color matrix 	AB=
ffiffiffi
3

p
attached to each quark-diquark

amplitude entails a global color factor �1 in the BSE.
The standard procedure to solve the quark-diquark BSE

(1) is detailed in Ref. [81] for the analogous case of a
nucleon. It involves a Chebyshev expansion in the angular

variable p̂ � P̂ and leads to coupled one-dimensional eigen-
value equations for the Chebyshev moments of the dress-
ing functions f�k . They match the BSE solution at

P2 ¼ �M2
�, i.e., for an eigenvalue 
ðP2Þ ¼ 1.

VI. RESULTS AND DISCUSSION

We solved Eqs. (1), (4), and (10) numerically using all
ingredients as specified above and show the results in
Fig. 2. The left panel depicts our calculated quark core
values for m�,MN , andM�, each together with a selection

of lattice results and their chiral extrapolations (if avail-
able). As abscissa values we use the corresponding m2

�, in
our calculation obtained from the pseudoscalar q �q BSE.
The solid curve for m� is the input defined in Eqs. (6)–(9),

which completely fixes the parameters in our interaction.
The bands represent our results for MN and M� and
explicitly show the sensitivity on the width parameter !
as described in Sec. III. At the physical pion mass we
obtain M� ¼ 1:73ð5Þ GeV; the corresponding mass for
the nucleon MN ¼ 1:26ð2Þ GeV was reported in
Ref. [50]. At larger quark masses the deviation from the
lattice data diminishes. This result is in accordance with
the assumption of Eq. (7), namely, that beyond-RL correc-
tions to hadronic observables (except cases like highly
excited states or low-x physics) become negligible in the
limit of heavy quarks.
It is instructive to compare our results to core masses

estimated via, e.g., the cloudy-bag model [82], NJL model
[83], nucleon-pion Dyson-Schwinger studies [36,84], and a
chiral analysis of lattice results [71,85]. These predictions
lie in the range �200–400 MeV for the correction to the
nucleon mass induced by pseudoscalar meson loops;
pseudoscalar-meson contributions to M� are expected to
be of a similar size or even smaller than those to the
nucleon. In this respect, our value for MN in the chiral
region is roughly consistent with a pseudoscalar-meson
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dressing providing the dominant correction to the quark-
diquark core, whereas the result for M� is not, which
indicates a larger correction. As a concrete example, con-
sider the reduction of N and �masses by intermediate N�
and �� states, estimated in the chiral limit by the expres-
sions (e.g., [71])

MN ¼ Mcore
N þ�N; M� ¼ Mcore

� þ��;

�N ¼ �

Z 1

0
dxx2uðxÞ2

�
1þ 32

25

x

xþ 1

�
;

(22)

�� ¼ �

Z 1

0
dxx2uðxÞ2

�
1þ 8

25

x

x� 1

�
: (23)

k ¼ x�M is the pion momentum, �M ¼ 0:29 GeV the
physical N � � mass splitting, and 
 ¼
3g2Að�MÞ3=ð8�2f2�Þ with gA ¼ 1:26 and f� ¼ 131 MeV.
The NN�, ���, and N�� vertex dressings uðxÞ were
assumed identical. Choosing a dipole form factor uðxÞ ¼
f1þ ðk=�Þ2g�2 with a regulator � ¼ 0:8 GeV yields
�N ¼ �0:32 GeV and �� ¼ �0:28 GeV. Together with
the experimental numbers for MN and M�, these values
provide the simple estimates Mcore

N � 1:25 GeV and
Mcore

� � 1:5 GeV.
In this context one has to keep in mind that the identi-

fication of the baryonic quark core of Eqs. (22) and (23)
with the quark-diquark ‘‘core’’ is more complicated than in
the meson case. More precisely, Eq. (7) assumes that
corrections to m� are partly induced by a pseudoscalar-

meson cloud, and to a lesser extent related to nonresonant
corrections to RL truncation. In the baryon one has addi-

tional lines of improvement: inserting further diquark
channels, abandoning the diquark pole ansatz in favor of
the full qq scattering kernel, and including irreducible
three-body interactions could affect N and � properties
differently, but still describe a quark core in the sense of
Eq. (7).
We also note that the solution forM� exhibits a sizeable

! dependence, a feature not present in �, �, and nucleon
observables [49,50]. The scalar and axial-vector diquark
masses exhibit particularly large sensitivities to ! (see
center panel of Fig. 2) which apparently cancel upon
constituting the nucleon mass. In the M� case, the same
consideration could suggest that taking into account only
an axial-vector diquark may not be sufficient for describing
the�, and that a possible further isospin-1 (tensor) diquark
component with a mass large enough to be irrelevant for
the nucleon could diminish the � core mass.
A further remark concerns the coupling strength c of

Eq. (6) at or close to the chiral limit. Specifically, a
comparison of the core value induced by Eq. (8) and the
input used in Ref. [64] provides valuable insight. The aim
of [64] was to reproduce � and � properties; in addition, in
our present setup the model also yields N and � masses
that are close to the experimental values (set A in Table I;
the core values are summarized as set B). While this result
is perhaps incidental since a RL description is not likely to
provide the complete underlying physical picture, it is still
remarkable that the set A–to–set B ratios of all observables
considered here are essentially identical. This is shown
in Table I at the u=d-quark mass and can be understood

as follows. Introducing � ¼ c1=3=! and the scale
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FIG. 2 (color online). Evolution of N and � masses (left panel), evolution of m�, scalar and axial-vector diquark masses (center
panel), and the mass splittings M� �MN and Mav �Msc (right panel) vs pion mass squared. The bands denote the sensitivity to a
variation of ! ¼ �!ðm̂Þ � 0:07. The solid curve for m� represents the chosen input of Eq. (7); nucleon and diquark masses were

calculated in Ref. [50]. We compare to a selection of lattice data and their chiral extrapolations (dashed lines) for m� [86,87],MN [88–

90], and M� [28]. Stars denote the experimental values.
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�IR ¼ c1=3�0, the infrared contribution to the effective
coupling �ðk2Þ can be rewritten as

�IRðk2Þ ¼ ��7x2e��2x; x ¼ k2=�2
IR: (24)

An insensitivity of certain observables under variation of
the width ! at a certain coupling strength c translates into
an invariance with respect to�. Furthermore, the combined
increase of c and ! according to Eqs. (8) and (9) to arrive
at the quark core changes � by & 5%; hence it can be
viewed as a rescaling only of�IR. This quantity defines the
only relevant scale in the chiral-limit RL quark DSE and
meson/diquark BSEs where no interference with a finite
current-quark mass is possible. If the renormalization point
is chosen large enough, a rescaling of �IR equally affects
the chiral-limit values of mass-dimensionful observables;
and it induces scale invariance of dimensionless quantities.
The effect on dynamically generated observables is still
approximately valid at the small u=d current-quark mass. It
makes clear that any RL model which is able to reproduce
experimental results for a given set of observables will,
upon entering its core version, necessarily overestimate
those results by the same percentage.

Finally, in the right panel of Fig. 2 we plot the N � �
mass splitting. According to Eqs. (22) and (23), the pseu-
doscalar meson contribution to the experimental value
M� �MN ¼ 0:29 GeV is small and positive: �� ��N ¼
0:04 GeV (cf. Ref. [71]). This is apparently not the case in
our calculation, where at the u=d mass ðM� �MNÞcore ¼
0:48ð4Þ GeV and therefore predicts a negative correction to
the full splitting. We also compare M� �MN with the
diquark mass splitting Mav �Msc. Both decrease with
increasing current-quark mass; nevertheless there is no
direct relationship between the two quantities, since the
axial-vector diquark contribution to the mass of the nu-
cleon does not vanish.

VII. CONCLUSIONS

We calculated the mass of the � baryon in a covariant
Faddeev approach, where the � quark core is pictured as a
quark-diquark bound state. The kernel of the quark-diquark
Bethe-Salpeter equation is fully specified by the solutions
of the Dyson-Schwinger equation for the dressed-quark
propagator and the diquark Bethe-Salpeter equation which
are both solved in rainbow-ladder truncation. The physical
input is specified by an effective interaction �ðk2Þ that is
constructed to describe an overestimated quark core for the
� meson such that the (overall attractive) corrections to
rainbow-ladder truncation as, e.g. a pseudoscalar meson-
cloud dressing, are anticipated in the chiral regime. The
calculation does not rely on any baryonic input, i.e., all
parameters in the interaction are fixed via m�ðm�Þ. Our
result for the evolution of M� with m2

� is justified a
posteriori: at the u=d current-quark mass, M� ¼
1:73ð5Þ GeV, whereas at larger quark masses our curve
approaches lattice data for M�. A relatively pronounced
interaction dependence as well as a significant overestima-
tion of the expected M� core mass indicate that further
diquark degrees of freedom besides the axial-vector di-
quark could play a role in the construction of the � quark
core. The approach presented herein can be systematically
improved by eliminating the diquark ansatz in favor of a
sophisticated three-quark interaction kernel and by devel-
oping suitable methods to directly incorporate meson-
cloud effects.
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TABLE I. Comparison of several quantities calculated from the quark DSE (h �qqi), meson BSE ðm�; f�; f�Þ, diquark BSE
ðMsc;MavÞ, and quark-diquark BSE ðMN;M�Þ. For the explicit calculation of the meson, diquark, and nucleon observables we refer
the reader to Refs. [42,49,50]. The results correspond to a current mass m̂ ¼ 6:1 MeV which is related to the physical pion mass
m� ¼ 138 MeV. The first row quotes experimental or phenomenological values. Sets A and B are distinguished by different values for
the input parameters c ¼ ð�IR=�0Þ3 and !; set B represents the inflated quark core according to Eqs. (8) and (9). Only the central !
values are shown (note that these need not be identical to the !-band averages quoted in the text.) The units of the first three rows
(except c and !) are GeV. The last row plots the ratios of sets A and B.

c ! �IR h �qqi1=31 GeV m� f� f� Msc Mav MN M�

Phen./Exp. 0.236 0.77 0.131 0.216 0.94 1.23

Set A 0.37 0.40 0.72 0.235 0.73 0.131 0.208 0.81 1.00 0.94 1.28

Set B (core) 0.93 0.54 0.98 0.319 0.99 0.176 0.280 1.08 1.35 1.25 1.72

(Set A)/(Set B) 0.73 0.74 0.74 0.74 0.74 0.75 0.74 0.75 0.74
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