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Bottom-hadron mass splittings from static-quark action on 2 + 1-flavor lattices
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We calculate bottom-hadron mass splittings with respect to B; and A, using full QCD with 2 + 1
flavors of dynamical Kogut-Susskind sea quarks and domain-wall valence quarks along with a static heavy
quark. Our lattices have spatial volume of (2.5 fm)? with lattice spacing about 0.124 fm and a range of
pion masses as low as 291 MeV. Our results are in agreement with experimental observations and other
lattice calculations within our statistical and systematic errors. In particular, we find the mass of the (), to
be consistent with the recent CDF measurement. We also predict the mass for the as yet unobserved E} to

be 5955(27) MeV.
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I. INTRODUCTION

Recently, there have been exciting developments in
heavy-hadron physics, both theoretically and experimen-
tally. Along with discoveries of charmonium states [1,2],
considerable progress has been made in studying bottom
hadrons. While the B factories, such as Belle and BABAR,
have investigated the bottom mesons [1], recent experi-
ments at Fermilab have reported the discoveries of a few
bottom baryon states. In the summer of 2007, CDF [3]
reported the first observation of the heavy baryons X, and
2}';, and then both DO [4] and CDF [5] observed the bottom
baryon =, breaking a long period of silence following the
observation of the A, in 1991. The bottom baryon spec-
trum has become somewhat controversial due to recent
results from DO and CDF. Last summer, DO [6] reported
a first observation of the doubly strange bottom baryon ()
at 6.165(10)(13) GeV. However, a recent CDF work puts
the (), mass at 6.0544(68)(9) GeV, a difference of 111(12)
(14) MeV. With a discrepancy of 6.2 standard deviations, it
appears that the two collaborations cannot both be observ-
ing the (),. A theoretical understanding of the bottom
baryon spectroscopy from first-principles QCD is crucial
and can help disentangle such discrepancies in experiment.
Furthermore, it is anticipated that in the upcoming dedi-
cated bottom physics experiment LHCb at CERN, there
will be many more discoveries in the bottom-hadron spec-
trum. Combining such experiments with improved theo-
retical understanding, our knowledge about these states
will in the near future be significantly enhanced.

Lattice QCD has been successfully computing hadron
masses for the last few decades with increasing precision
and scope. However, the study of heavy quarks requires
special techniques, such as the introduction of an action

1550-7998/2009/80(5)/054027(10)

054027-1

PACS numbers: 14.20.Mr, 12.38.Gc, 14.65.Fy

that will minimize O(ma) errors due to the discretization of
space. Such errors are more prominent on coarse lattices
due to the heavy quark masses involved. Many existing
bottom spectroscopy lattice calculations have been per-
formed in the meson sector. Reference [7] calculated the
bottomonium and bottom-light meson spectra using the
relativistic heavy-quark action [8,9] with fermion action
parameters determined through nonperturbative tuning to
eliminate systematic uncertainties; their ensembles used
2 + 1 flavors of domain-wall fermions (DWF) [10,11] with
lightest pion mass 275 MeV. Reference [12] also used
DWEF gauge ensembles but with NRQCD [13] to calculate
bottom-quark quantities. A more impressive work [14]
done by the TriLat Collaboration used anisotropic 2-flavor
Wilson-type lattices with renormalized anisotropy as high
as 6 and operators projected into irreducible representa-
tions of the lattice cubic group. These techniques allowed
them to obtain very clean signals including multiple static-
light excited states. A more complete review of previous
studies can be found in the lattice review talks of Refs. [15—
20] and references therein.

Unlike bottomonium and B mesons, bottom baryons
have not received as much attention from lattice QCD.
Some pioneering works [21-23] were done using extrap-
olations with light-fermion actions or the NRQCD action
in the quenched approximation, where the fermion loop
degrees of freedom are absent. Since it is difficult to
estimate the systematic error due to the quenched approxi-
mation, high-precision calculations cannot be achieved.
Recently, more dynamical ensembles have become avail-
able due to the increase of the computer resources available
for numerical research, and since the recent discovery of
the double-b baryon, more lattice calculations have
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emerged. Reference [24] calculated single- and double-b
baryons with NRQCD action for the bottom quark on
isotropic 2 + 1-flavor clover ensembles, having lightest
pion mass around 600 MeV. Reference [25] went to a
lighter pion mass (275 MeV) using 2 + 1 flavors of
domain-wall fermions but used static-quark action to simu-
late the bottom quarks. Since the static-quark action tends
to result in noisy signals, one needs high statistics to yield
numbers comparable with experimental results. A selec-
tion of single-b baryons were calculated using static-quark
action on 2-flavor chirally improved lattice Dirac operator
at pion masses as light as 350 MeV in Ref. [26]. An
ongoing work using staggered and Fermilab fermion ac-
tions [27] on MILC lattices with multiple lattice spacings
was presented in Ref. [28].

In this work, we report the mass splittings of the bottom-
hadron spectrum using a static-quark action [29,30] to
simulate the bottom quark and using domain-wall fermions
for the light valence quarks. We use an extensive set of
gauge ensembles of 2 + 1-flavor staggered-fermion latti-
ces with a range of quark masses resulting in pion masses
as light as 290 MeV; the number of available configura-
tions for these ensembles allows us to achieve high statis-
tics. These ensembles have lattice spacing a = 0.124 fm,
and the lattice volume is about (2.5 fm)3. It is anticipated
that the physical bottom spectrum resembles the spectrum
of hadrons with a single static (infinitely massive) quark,
where corrections are suppressed by powers of Aqcp/my,,
which can be included systematically in heavy-quark ef-
fective field theory.

II. LATTICE SETUP

The gauge configurations used in our work were gen-
erated by the MILC collaboration using the one-loop
tadpole-improved gauge action [31], where both O(a?)
and O(g%a?) errors are removed. For the fermions in the
sea, the asqtad improved Kogut-Susskind action [32-37] is
used. This action is the Naik action [38] (O(a?)-improved
Kogut-Susskind action) with the one-link terms smeared
such that couplings to gluons with any momentum compo-
nent equal to 7/a are set to zero.

For the valence-sector light quarks (up, down and
strange), we use the five-dimensional Shamir domain-
wall fermion action [11,39]. This action introduces a fifth
dimension of extent Ls and a mass parameter Ms. In our
case, we used Ls =16 and Ms = —1.7. The physical
quark fields ¢(%, ) reside on the four-dimensional bounda-
ries of the fifth dimension. The left and right chiral com-
ponents are exponentially separated onto the opposing
boundaries, resulting an action with approximate chiral
symmetry at finite lattice spacing. The bare-quark mass
parameter (amp™F) is introduced as a direct coupling of
the boundary chiral components. Hypercubic-smeared
(HYP-smeared) [40-43] gauge links were used in the
domain-wall fermion action to improve chiral symmetry.

PHYSICAL REVIEW D 80, 054027 (2009)

Because the valence-quark and sea-quark actions are
different, the calculation is inherently partially quenched.
That is, the calculation violates unitarity. Unlike conven-
tional partially quenched calculations, which become uni-
tary when the valence-quark mass is tuned to the sea-quark
mass, unitarity cannot be restored by tuning at nonzero
lattice spacing. The next-best option is to tune the valence-
quark mass in such a way that the resulting pions have the
same mass as those made of the sea Kogut-Susskind fer-
mions. In this case unitarity should be restored in the
continuum limit, where the ny = 2 staggered action has
an SU(8), ® SU(8)x ® U(1)y chiral symmetry due to the
fourfold taste degeneracy of each flavor, and each pion has
15 additional degenerate partners. At finite lattice spacing
this symmetry is broken, and the taste multiplets are no
longer degenerate but have splittings that are O(a*a?) [32—
34,37,44]. The domain-wall fermion mass is tuned to give
valence pions that match the Goldstone Kogut-Susskind
pion. This is the only Goldstone boson that becomes
massless in the chiral limit at nonzero lattice spacing.
This choice gives pions that are as light as possible, result-
ing in better convergence of the chiral perturbation theory
(XPT) needed to extrapolate the lattice results to the physi-
cal quark mass. This tuning was performed and used by
LHPC collaboration [45-50] as well.

The gauge ensembles used were generated for five pion
masses down to 290 MeV with 20° X 64 lattice volume,
corresponding to a physical volume V = (2.5 fm)3. The
lattice spacing is a = 0.124 06 fm, as quoted in Ref. [51],
which was determined from Y spectroscopy. Further in-
formation about our lattice actions, parameters, and tests of
our computational setup can be found in Ref. [52]. The
details concerning the ensembles used in this calculation
can be found in Table L.

A. Static-quark action

Starting from the Wilson fermion action on the lattice,
we can derive the quark propagator at the static limit,
where the quark mass is infinite. In this limit the quark
mass is removed, leaving only the forward hopping term
[29,30]:

TABLE I. The gauge-ensemble parameters, including the pion
mass M, in GeV, the number of gauge configurations N..,¢ and
numbers of sources Ny, used in our calculation. The m007’
configurations differ from m007 only in the number of sources
used.

Label M. (GeV) Neont Nre
mO007 0.2938(1.1) 478 7
m007’ 0.2938(11) 429 24
mO010 0.3566(08) 657 6
m020 0.4969(06) 484 7
m030 0.5982(08) 564 5
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The links U, that enter this propagator can be any set of
gauge covariant paths that connect neighboring points in
time. Different choices of paths result in actions that are
equivalent up to discretization errors. All of them have the
same continuum limit. In our calculation, we tested two
choices for the temporal links entering the static quark
propagator. We used the simple temporal gauge links of
the underlying gauge configuration. In addition, we used
HYP-smeared links with the same smearing parameters as
those used in the domain-wall action [40]. We observed
that the HYP-smeared links gave significantly better sig-
nals for our correlators; hence, we only report results from
that choice.

B. Static-light correlation functions

At the static-quark limit, the heavy-quark propagator is
reduced to a Wilson line. We can construct the static-light
hadron correlation functions by contracting the static-
quark line with light-quark propagators to create gauge
invariant correlation functions. The static-light baryon
correlation functions have the form

Gr(X, t; %o, tg) = (q4(%, t)I‘q;Z, (%, 1) €00y P (3, 1; %, 1o)
X 51_?; (o, 10)0G% (o, fo)€crary), (2)
and the static-light meson correlator is
M(X, 1; %o, 19) = (G4(X, )P (, 1; %, tO)q;;()?O, ), (3)

where f € {u, d, s} is the light-quark flavor index and P<’
is the Wilson line connecting the source and the sink which
are separated by time 7. The spin matrix I is either Cvys or
Cy,, for scalar or vector diquarks, respectively.

The quantum numbers (spin J, isospin / and strangeness
S) of the static-light hadronic correlators we construct are
listed in Table II. Since the static quark carries no spin or
light-flavor quantum numbers, the numbers in the table
correspond to the quantum numbers of the diquark. Since
the gamma matrix insertions in the baryon correlators are

TABLE II. The (diquark) quantum numbers of the states
studied in this work. The names used are motivated by the flavor
content of the states.

State J 1 S
B, 1/2 1/2 0
B, 1/2 0 -1
A, 0 0 0
3 1 1 0
=8 0 1/2 -1
=1 1 1/2 -1
Q, 1 0 -2
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symmetric (Cy,) or antisymmetric (Cys), the correspond-
ing flavor wave functions are symmetric (sextet) or anti-
symmetric (antitriplet), respectively. This flavor symmetry
structure is automatically enforced without explicit sym-
metrization or antisymmetrization of the flavor wave func-
tions. In the static limit the hyperfine splittings are exactly
zero, so we cannot compute such spin splittings. For the
physical bottom quark the hyperfine splittings are less than
1%. When comparing to experiment, we identify our states
with the lowest-spin physical particles.

III. NUMERICAL RESULTS
A. Effective mass plots

The hadron spectrum can be calculated in lattice QCD
using two-point hadronic correlation functions

C(to, 1) = {01000 (1)10), 4

using the creation and annihilation operators O and O
described in Sec. II. In order to extract the masses of the
states of interest, we take momentum ( = 0 to extract the
masses) and spin projections at the source and sink. By
inserting a complete set of hadronic eigenstates of the
Hamiltonian between the creation and annihilation opera-
tors we get

C(t) = Y A e Mli=10), (5)

where A, = [{0]O|n)|? is the overlap factor between the
nth eigenstate and the state created by the operator, and M,,
is the mass (or energy if considering a multiparticle state)
for the nth eigenstate. In addition to differences in the
flavor and spin structure of the operators, we also employ
smearing on the fermion fields to improve spatial overlap
with the hadronic wave function. We present results using
smeared operators at both source and sink (SS), and also
using smearing only at the source with a point sink (SP).

At large time 7, the states with higher masses become
exponentially suppressed, and Eq. (5) becomes dominated
by the ground state with mass M. Thus, we expect the
correlator at large time to proportional to e ™o’ A simple
manipulation allows us to cancel the overlap factors and
extract the “effective mass”™ at each r:

Meg(t +1/2) = log(C()/C(1 + 1)). (6)

For sufficiently large lattice time extent and sufficiently
small noise, M ¢(¢) will asymptotically approach M, at
large time. In practice, there will exist a window in which
the effective mass is approximately flat, called the plateau,
between the early times which are contaminated by excited
states and later times which are dominated by statistical
noise. By applying more sophisticated manipulations to the
correlators, it is possible to address excited states in the
effective mass analytically using single or multiple corre-
lators as input; for more details, see Refs. [53-58]. Since
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we are only interested in the ground state in this work,
Eq. (6) is sufficient to crosscheck the fitted masses.

B. Fitting methodology

In the (Euclidean) continuum, the two-point correlators
follow the form Eq. (5). We can truncate this expansion at
the first term as long as we apply such a single-exponential
fit only to the plateau region of each two-point correlator.
However, since we are using the DWF action in the light-
valence sector, an additional complication arises from the
nonlocality of the DWF action in four dimensions. This
nonlocality manifests as oscillations in the effective mass
close to the source, as seen in Fig. | intherange3 =t = 7.
A phenomenological form for fitting such data was pro-
posed in Ref. [48], employing an oscillating contribution
describing the nonlocal artifacts:

C(t) =t Aosc Cos(ﬂ't)e_MO”(t_tO)’ @)

where the dots indicate that this is a correction to the
continuum form. Since we find empirically that M. is
quite large compared to M, at large ¢ the oscillations are
suppressed and the ground-state mass becomes dominant.

The mass My of a hadron with one heavy quark can be
expanded in powers of the heavy quark mass:

My=Zgmg+A+—— -+, (8)
Mo

where my, is the mass of the heavy quark and Z,, A, and ¢
are arbitrary coefficients. In the static limit the leading term
proportional to the heavy-quark mass is eliminated while
the subleading corrections proportional to 1/m, although
calculable in the heavy-quark effective theory (HQET)
[59], are ignored. For this reason, in the static limit only
mass splittings between hadrons with the same number of
heavy quarks can be easily computed. For two hadrons B;
and B, the leading term in the ratio of their two-point
correlators is

(CB] (l‘)/(:B2 (t)) = A(’)e*AMO(t—tO)

+ Al cos(mt)e  AMaxcl=l0) 4o (9)
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FIG. 1 (color online). Effective mass of the lightest B,. Note
the oscillation at small time. Both axes are in lattice units.
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where the dots indicate the effects of the excited-state
terms which are suppressed exponentially at large time.
The lightest meson (B,) and lightest baryon (A,) are
natural candidates for the denominator of correlator ratios.
In two special cases, we try other combinations in order to
make more direct comparisons to previous lattice results.

We will compare two kinds of fits: a simple single-
exponential and a single-exponential plus the oscillating
term. The use of the oscillating term may allow us to
extend the fitting range to earlier times, but it comes at
the cost of introducing twice as many parameters. We
determine the appropriate fit range for our fits using a
two-step heuristic: First, calculate the Q value associated
with constant fits to the effective mass over all possible
ranges. Then, apply the appropriate fit (single-exponential
or oscillating) to that range. If extending the range to
earlier or later times does not diminish the Q value by
more than a factor of 2, extend the range. Continue to
extend to the maximum length possible. This heuristic
provides a compromise between optimizing the quality of
the fit and ensuring that the fit ranges include as much of
the data as possible.

Once the appropriate fit range for each correlator ratio is
determined, we apply a Levenberg-Marquardt algorithm to
minimize y? for each fit form. The procedure is carried out
under a single-elimination jackknife to estimate the error in
the parameter determinations. We compare the results of
fitting the SP two-point correlators using either single-

TABLE III. The splittings on ensembles with various pion
masses from one-exponential (top) and oscillating fits (bottom)
to smeared-point correlators. Numbers are given in lattice units.

0.007 0.01 0.02 0.03
B, — By, 0.039(01)  0.043(03)  0.026(01)  0.017(01)
Ay — By 0.253(08)  0.298(08)  0.300(12)  0.332(10)
H, — By 0.329(06)  0.355(07)  0.332(11)  0.365(08)
2, — By 0.438(09)  0.403(21)  0411(13)  0.437(08)
E) — By 0.456(08)  0.466(08)  0.425(15)  0.455(07)
Q, —B; 0484(07) 0.505(06)  0.484(05)  0.473(06)
A, — By 0.214(08)  0.255(10)  0.256(16)  0.313(10)
H,— A, 009904) 0.06805) 0.045(01)  0.033(02)
3, = A, 0.190(17)  0.166(09)  0.106(11)  0.120(06)
E,— A, 0218(14) 0.192(08)  0.138(10)  0.144(08)
Q,—A, 0256(13) 0.224(08)  0.172(09)  0.162(08)
B, — By, 0.039(02)  0.043(03)  0.026(01)  0.017(01)
Ay — By 0.253(08)  0.299(08)  0.282(18)  0.332(10)
H, — By 0.329(06)  0.355(07)  0.318(15)  0.365(09)
2, — By 0.438(09)  0.403(21)  0.391(20)  0.437(08)
B — By 0.456(08)  0.466(08)  0.426(15)  0.455(07)
O, —B; 0485(09) 0.50506) 0477(07)  0.473(06)
A, — By 0.214(08)  0.243(13)  0.256(16)  0.313(10)
H,— A, 009904) 0.070(04) 0.04502)  0.033(02)
%, — Ay 0.211(07)  0.177(07)  0.106(11)  0.126(04)
Ej — A, 023406) 0201(06) 0.138(10)  0.141(04)
Q,—A, 0266006) 0231(06) 0.182(04)  0.157(04)
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TABLE IV. The splittings on ensembles with various pion
masses from one-state exponential fits to smeared-point and
smeared-smeared correlators simultaneously. Numbers are given
in lattice units.

0.007 0.01 0.02 0.03
B, — By, 0.040(01)  0.046(03)  0.027(01)  0.018(01)
A, — By 0.232(06)  0.282(08)  0.279(06)  0.332(10)
E, — By 0.318(05)  0.342(05)  0.333(05)  0.352(05)
2, — By 0.420(09)  0.390(16)  0.386(11)  0.430(08)
Bl — By 0.441(06)  0.452(08)  0.424(08)  0.448(07)
O, —B; 0477(07)  0.496(06)  0.466(06)  0.467(06)
A, — By 0.190(06)  0.230(07)  0.252(06)  0.315(10)
H,— A, 0101(04) 0.073(04) 0.052(02) 0.034(01)
3, — A, 0.177(13)  0.155(06)  0.121(07)  0.109(10)
Ej,— A, 021309 0.175(11)  0.142(08)  0.128(09)
Q,— A, 0258(08) 0.224(08)  0.179(07)  0.149(08)

exponential or oscillating fit form in Table III. Since we see
good agreement between these two sets of correlators and
no uniform improvement by using the more complicated
oscillating fit, we adopt the simpler one-state exponential
and apply it simultaneously to both SS and SP correlators;
the results are shown in Table IV and a selected fits and its
corresponding effective mass plots are also shown in Fig. 2.

0.08~

0.06[-

Mpg, g,

0.04
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C. Chiral extrapolations

Having extracted the static-light hadron splitting spec-
trum for a number of unphysically heavy light-quark
masses, we can extrapolate to determine the spectrum at
the true light-quark mass. (The strange-quark mass already
falls in the range accessible to lattice calculations; we use a
single value for it and will assign a systematic error asso-
ciated with the mismatch between our adopted mass and
the physical strange-quark mass.) For sufficiently light
masses, it should be possible to employ chiral perturbation
theory (XPT) as an extrapolation form. The subject of XPT
in the presence of heavy quarks (HXPT) has been ad-
dressed in numerous works [60-66], where Goldstone
bosons and photons are the elemental degrees of freedom.
HXPT incorporates both the approximate chiral symmetry
as well as the heavy-quark symmetry of QCD and have
nonanalytic terms in addition to the usual polynomial
terms in pion and kaon masses. Such forms could in
principle be used to extrapolate lattice data and determine
the parameters induced in the theory. In addition, such
chiral effective theories can be modified to include the
mixed-action corrections in the vacuum [67-69].

However, given the small number of data points avail-
able and the large number of parameters in a typical XPT
form, a comprehensive chiral extrapolation is not possible.
Therefore, we adopt only the leading-order form linear in
M?2. Since HXPT [60] suggests that the next-order non-
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FIG. 2 (color online).
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A selection of effective mass splittings showing simultaneous fits to smeared-smeared (dark band) and

smeared-point [lighter (red) band] correlators. The (blue) triangles and (red) circles in each panel are the smeared-smeared and
smeared-point effective mass splittings. Both axes are in lattice units.
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analytic term can be approximated by a term proportional
to M3, we will also test that form to estimate the systematic
error due to uncertainty in the light-quark mass
extrapolation.

Another consideration prompted by the gauge ensem-
bles we have selected is the variation of the lattice spacing
between ensembles. Each ensemble uses different light
sea-quark mass and different gauge coupling, resulting in
variation of the lattice scale. In order to avoid these ambi-
guities in the scale determination, we have chosen to use
dimensionless quantities in the chiral extrapolations. Three
different scales, which may be sensitive to different phys-
ics, are taken in ratios with the mass splittings and pion
mass: the pion decay constant f ., the {) baryon mass Mg
[52] and the scale of the static-quark potential rll [51,70].
See Fig. 3 for examples of the extrapolations.

We summarize the extrapolated mass splittings in
Table V and Figs. 4. We find that there is good consistency
between the reference scales f, and Mg, but that r; is
slightly away ( = 20) from the other two. This discrep-
ancy should probably be interpreted as a systematic error
due to the nonzero lattice spacing. There is also a discre-
tization systematic error due to the single lattice spacing
used. One needs to calculate at least two different lattice
spacing to be able to extrapolate to the continuum limit.
The differences in using methods for setting the lattice
spacing are likely to be caused by the lack of such an
extrapolation. The discretization systematic can be also
estimated by examining the quark action. For example, in
our light-valence sector, the action has O(azAéCD) error,

which is about 4%, smaller than the discrepancies we
observed here. Therefore, we are not underestimating
such a systematic effect here. Since M has smaller de-
pendence on the light-quark mass and is a well-measured
experimental state, we will use the extrapolated mass
splittings normalized by M as main estimates of the
central values and statistical errors. The discrepancies
with other reference scales, we use for estimation of dis-
cretization systematic errors.

We compare our results with previously published lattice
calculations using 2 + 1 dynamical flavors. For example,
Detmold et al. [25] contains all the mass splittings calcu-
lated in this work, and they use a similar lattice spacing.
We find good agreement with their numbers (shown in
Fig. 5), even though we use a different fermion discretiza-
tion in the sea sector (staggered versus DWF).

Unfortunately, other 2 + 1-flavor works [24,28] calcu-
lated fewer mass splittings, so we cannot have a compre-
hensive comparison. Lewis ef al. [24] used the NRQCD
action to simulate their bottom quarks on CP-PACS clover
lattices; Na et al. [28] calculated using the same MILC

"The lattice spacing in physical units can be determined from
the static-quark potential evaluated at a distance where
r*dV/dr|, = C in general. On the MILC ensembles, ’ is called
r, with the choice C = 1.
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FIG. 3 (color online).

Selected mass-splitting extrapolations

with reference scales f (top), ; (middle), and M (bottom).

TABLE V. The extrapolated splittings using leading-order
HXPT with the lattice scale set according to the pion decay
constant f,, the scale r; and the ) baryon mass Mq. The
numbers are given in MeV; first error is statistical and the second
is a systematic associated with the mass extrapolation.

f7T r MQ
B, — B, 71.0(2.3)(1.5) 78.4(2.4)(1.3) 71.2(2.2)(1.2)
A, — B, 326(11)(11) 372(12)(9.1) 340(11)(8.1)
H, — By 470.8(7.9)(8.1) 532.6(8.5)(7.0) 484.7(7.7)(6.2)
3, —B; 600(15)(16) 676(17)(13) 615(15)(12)
E, —B; 656(10)(12) 739(11)(10) 672(10)(9.1)
Q, —B; 731(10)(12) 824(11)(10) 749.2(9.8)(9.0)
A, — B, 248(11)(11)  286(12)95)  261(10)8.5)
B, — A, 157.5(5.2)(4.3) 173.0(5.7)(3.9) 157.2(5.2)(3.4)
S, — A, 272(14)(17) 301(14)(14) 274(13)(13)
Bl — A,  333(15)(14) 369(16)(12) 335(15)(10)
Q, — A, 411(12)(12) 456(13)(11) 414(12)(9.5)
E, =3, 61.9(2.7)(2.6) 69.0(2.9)(2.2) 62.6(2.6)(2.0)
Q, - &) 81.1(2.8)(4.3) 89.8(3.0)(3.9) 81.5(2.7)(3.4)
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FIG. 4 (color online). Comparison of mass-splitting extrapo-
lated values using different reference scales. Splittings with
respect to B, are on the left; those with respect to A, are on
the right. The solid (red) bars indicate the experimental values
given in the PDG, where available. For the (), we show both the
DO result [6] (upper right, purple) and the CDF result [71] (lower
left, magenta).

lattices used in this work but with Fermilab heavy-quark
action and staggered light-quark action; they also included
another two lattice spacings. All four calculations include
the splittings =, — A, and X, — A,; we calculate the
additional splittings =) — %, and ), — =} in order to
make direct comparisons. The results are shown in Fig. 6.
We again see good agreement amongst all lattice calcula-
tions, and mild scaling in the Na et al. results. Agreement
with experimental values as given by the PDG is fairly
good. The discrepancy in the %, — A, splitting may be due
to discretization effects, as suggested by the trend visible in
the Na et al. results.

We summarize our consensus results for the splittings of
the bottom-hadron spectrum in Table VI. We adopt the
leading-order HXPT extrapolation in terms of the M, scale
as our central values and explicitly give three sources of
error: statistical, extrapolation and scale. The extrapolation
systematic error is estimated by the discrepancy between
the leading-order extrapolation and the result using a form
including the next-order M3. term. These errors are gen-
erally about the same size as the statistical error. The error
due to scale setting and discretization is estimated using
the spread amongst the three scale-setting methods: f, r;,
and M. This systematic is quite large, up to 4 times the
statistical error, and could be resolved by repeating this
calculation on finer lattices. The finite-volume corrections
for heavy hadrons should be negligible for a 2.5 fm box.
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FIG. 5 (color online). A comparison of our mass splittings
(using M, reference scale values) with those of Detmold et al.
[25]. The error estimates for both works are statistical only. The
solid (red) bars indicate the experimental values given in the
PDG, where available. For the (), we show both the DO result
[6] (upper right, purple) and the CDF result [71] (lower left,
magenta).

Since studies of the light-hadron masses on these lattices
[52] show that such effects are small, we expect them to be
even smaller for our case. The remaining systematics, such
as the effects of the Agcp/m), corrections are omitted,
since they are substantially smaller than our main system-
atics discussed in the text (less than 1%).

0.6
5 . O This work
05¢ I A Detmold et al. ]
04 T v Lewis et al. ]
> v ¢ Naetal. (a~0.12 fm)
a af ¢ - O f; a1
8 0.3 Na et al. (a~0.09 fm)
02F ]
<
0.1F g%iiﬁ ﬁEﬂm ]
OO 1 1 1 1
2y Ay Qp—Ayp g2,-2p 0,-8)

FIG. 6 (color online). Comparison of mass splittings with all
available 2 + 1-flavor lattice calculations of bottom baryons.
The square (blue) points are the points extrapolated using the
()-mass reference scale; the solid error bars indicate the statis-
tical error, and the dashed bars indicate the total errors (including
the estimated systematic ones). The solid (red) bars indicate the
experimental values given in the PDG, where available. For the
Q,,, we show both the DO result [6] (upper right, purple) and the
CDF result [71] (lower left, magenta).
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TABLE VI. Our consensus heavy-hadron splittings in units of
MeV. The first error is statistical, the second is a systematic
associated with the mass extrapolation and the third is a system-
atic associated with the setting of the lattice scale.

Splitting(Stat.)(Extrap.)(Scale) Experiment

B, — B, 71.2(2.2)(1.2)(4.2) 87.1(0.6)
A, — By 340(11)(8.1)(24) 341.0(1.6)
B, — By 484.7(7.7)(6.2)(32) 513(3)
S, — By 615(15)(12)(40) 554(3)
Bl — By 672(10)(9.1)(44) e
Q, - By 749.2(9.8)(9.0)(49) 786(7)/886(16)
A, — By 261(10)(8.5)(19) 253.9(1.7)
B, — A, 157.2(5.2)(3.4)(9.0) 172(3)
3, — A, 274(13)(13)(17) 213(3)
EQ, - A, 335(15)(10)(20) s
Q, — A, 414(12)(9.5)(25) 445(7)/545(16)
Bl =3, 62.6(2.6)(2.0)(3.9) e
Q,-E, 81.5(2.7)(3.4)(4.9) e

O LQcp peoer ool

A 1N, HA
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O RQM } B %
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¥V HQET ! |
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Mg, (MeV)

FIG. 7 (color online). Comparison of various theoretical esti-
mates of the (), (top) and E’b (bottom) masses (and experimental
values for the ),). “LQCD” is the lattice QCD calculation done
in this work with solid error bars for the statistical error and the
dashed bars for the total error including the estimated system-
atic; “1/N.” is taken from a combined expansion in 1/N,,
1/mg and SU(3) flavor symmetry breaking [75], where the
errorbar is derived solely from experimental inputs; “HQET”
is the result of heavy-quark effective field theory (HQET) using
QCD sum rules [76]; “RQM” is from the relativistic quark
model [77]; and “FHT” is based on the Feynman-Hellmann
theorem [78].
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These results are in fairly good agreement with experi-
mental results. The largest discrepancies appear for the 2,
although it is only about one sigma away, given the esti-
mated systematics. We give both the DO [6] and new CDF
[71] results for the €, mass. Our result (like most theory
predictions) is more consistent with the lower CDF value.
We summarize our results for the (), and =/ masses, along
with those of other theoretical approaches in Fig. 7.

IV. SUMMARY AND OUTLOOK

In this work, we calculated the mass splittings of bottom
baryons using 2 + 1-flavor staggered-fermion lattice
gauge ensembles, domain-wall fermion light valence
quarks and static-quark action for the bottom quarks.
This is a relatively high-statistics calculation resulting
statistical error bars smaller than other recent lattice cal-
culations of baryon mass splittings in the static limit. Our
dominant errors are systematic. The most important sys-
tematic error is scale setting. We have used three options
for converting to physical units and the spread of our final
results is an indication of such errors. Such discrepancy is
likely to be caused by a nonzero lattice-spacing systematic
error in our calculation. A rough estimate of the lattice-
spacing systematic error is 4% of the quoted numbers,
assuming O(azAéCD) scaling violations caused by the light
quarks; however, more generous systematic errors are as-
signed based on the discrepancy from setting the scale
using different quantities. Extrapolations to the physical
light-quark mass also introduce errors that should be of the
same order of magnitude as typical lattice calculations with
the same parameters as ours. Finally, Aqcp/m;, corrections
(estimated to be 1%) have to be included for making direct
comparison to experiment. Nonetheless, all the above sys-
tematic errors are small, and comparisons with experiment
can provide useful conclusions. Our results with our esti-
mates of systematic errors are summarized in Table VI.

Our results agree well with experiment in the cases of
known mass splittings. In the case of ), our calculation is
in agreement with the recent CDF result and several stan-
dard deviations away from the DO result. Such conclusion
holds for all other lattice calculations of the (), mass. Our
results for the =) mass splittings are a prediction since =,
has not yet been observed. Using the splitting from the A,
and summing with the experimental value of that baryon,
we predict the mass of the 2, to be 5955(27) MeV, where
the error given combines in quadrature all our errors.

In the future we plan to extend these calculations using
the anisotropic gauge ensembles generated by the Hadron
Spectrum Collaboration (HSC) [72,73]. In this case, taking
advantage of the anisotropy, a relativistic improved action
for the bottom quark may be used, eliminating the need for
resorting to the static approximation. As a result, statistical
errors are expected to be dramatically improved, and high
precision can be achieved, as demonstrated in a recent
work [54] by NPLQCD Collaboration. In this framework,
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it will also be possible to compute the spin-3/2 to spin-1/2
mass splittings; such effects are inaccessible in the static
limit. In addition we expect to have access to lighter pion
masses and possibly a second lattice spacing, addressing
all sources of systematic error in this calculation. A recent
paper by HSC [74] demonstrates a new technique, opti-
mized for complicated operators, which may further im-
prove the calculations and, in particular, allow for the
extraction of the excited-state spectrum of the bottom-
baryon sector.
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