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The approximate tree decays B� ! ���0=���0 may serve as benchmark channels for testing the

various theoretical descriptions of the strong interaction dynamics in hadronic B meson decays. The ratios

of hadronic and differential semileptonic B ! �‘�=�‘� decay rates at maximum recoil provide

particularly clean probes of the QCD dynamics. We confront the recent next-to-next-to-leading order

calculation in the QCD factorization framework with experimental data and find support for the

factorization assumption. A detailed analysis of all tree-dominated B ! ��=��=�� decay modes seems

to favor somewhat enhanced color-suppressed amplitudes, which may be accommodated in QCD

factorization by a small value of the first inverse moment of the B meson light-cone distribution

amplitude, �B ’ 250 MeV. Precise measurements of the semileptonic B ! �‘� spectrum could help

to clarify this point.
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I. INTRODUCTION

Awealth of observables at current and future B physics
experiments is related to exclusive hadronic decay modes.
B decays into a pair of light (charmless) mesons are of
particular phenomenological interest as they are mediated
by rare flavor-changing b ! q ðq ¼ u; d; sÞ quark transi-
tions, and the interference of several weak decay ampli-
tudes may induce sizeable CP-violating effects.

The complicated strong interaction dynamics in had-
ronic decays pose a serious challenge for accurate theo-
retical predictions. In recent years systematic methods
have been developed, which are based on the factorization
of short- and long-distance effects in the heavy quark limit
mb � �QCD. The theoretical concepts are known as QCD

factorization (QCDF) [1], soft-collinear effective theory
[2] and the perturbative QCD approach [3].

In this article we consider the decays B� !
���0=���0 within the QCDF framework, which is based
on the statement that the hadronic matrix elements of the
operators in the effective weak Hamiltonian simplify in the
heavy quark limit according to [1]

hM1M2jQij �Bi ’ FBM1ð0ÞfM2

Z
duTI

i ðuÞ�M2
ðuÞ

þ f̂BfM1
fM2

Z
d!dvduTII

i ð!; v; uÞ
��Bð!Þ�M1

ðvÞ�M2
ðuÞ: (1)

The factorization formula implies, on the one hand, that the
theoretical prediction requires nontrivial hadronic input
parameters, such as decay constants f, moments of light-
cone distribution amplitudes �, and form factors F, which
encode all long-distance effects in the limit mb ! 1. The
power of the decomposition in (1) lies, on the other hand,
in the fact that it provides the path to a systematic imple-
mentation of radiative corrections. The short-distance

hard-scattering kernels TI;II
i are perturbatively calculable

and currently being worked out to next-to-next-to-leading
order (NNLO) [4–6].
The NNLO calculation is to date incomplete, but a

subset of hard-scattering kernels, which specify the so-
called topological tree amplitudes, has recently been de-
termined to NNLO [4,6]. This allows us to present the first
complete NNLO prediction within the QCDF framework
for the decays B� ! ���0=���0, which are pure tree
decays in the excellent approximation that small electro-
weak penguin amplitudes are neglected [7].
As the considered decays are likely to be dominated by

their standard model contribution, they may serve as
benchmark channels for testing the various theoretical
descriptions of the strong interaction dynamics in hadronic
B decays. By normalizing the hadronic decay rates to their
semileptonic counterparts B ! �‘�=�‘� at maximum re-
coil, most of the theoretical uncertainties from hadronic
input parameters and jVubj drop out, and one obtains
precision observables for testing the QCD dynamics of
the topological tree amplitudes. We confront the NNLO
prediction in QCDF with experimental data and find sup-
port for the factorization assumption. We also take a look at
the other tree-dominated B ! ��=��=�� decay modes
and conclude that the color-suppressed tree amplitudes
seem in general to be somewhat enhanced, which may
hint at a smaller value of the first inverse moment of the
B meson light-cone distribution amplitude, �B ’
250 MeV. We conclude our analysis with a comment on
the so-called B ! �� puzzle.

II. TREE AMPLITUDES

The decay amplitudes for hadronic B meson decays are
conveniently parametrized by a set of topological ampli-
tudes, which contain short-distance QCD and some elec-
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troweak effects. In the notation of [8] they read

AðB� ! ���0Þ ¼
�
�u

�
�1 þ �2 þ 3

2
�u
3;EW þ 3

2
�u
4;EW

�

þ �c

�
3

2
�c
3;EW þ 3

2
�c
4;EW

��
A��ffiffiffi
2

p ; (2)

with �p ¼ VpbV
�
pd and A�� ¼ iGF=

ffiffiffi
2

p
m2

Bf�F
B�þ ð0Þ and

similarly for B� ! ���0 with f� ! f�, F
B�þ ! AB�

0 and

�ið��Þ ! �ið��Þ. Whereas the electroweak penguin am-
plitudes �p

3=4;EW are currently known for B ! ��=��=��

to next-to-leading order (NLO) [1,8,9], the tree amplitudes
�1;2 have recently been determined for B ! �� to NNLO

[4,6]. From the projection properties of the leading-twist �
and � wave functions, we find that the respective expres-
sions for B ! ��=�L�L are identical (L refers to the
longitudinal polarization). We, in particular, do not con-
sider decays into transverse � mesons, which cannot be
described model independently as they do not factorize.

We evaluate the tree amplitudes with three-loop running
coupling constant and next-to-next-to-leading logarithmic
Wilson coefficients [10] of the operators in the weak
effective Hamiltonian (we use the operator basis from
[11]). The spectator scattering part (TII

i ) receives contribu-

tions from two perturbative scales, �h �mb and �hc �
ð�QCDmbÞ1=2, which gives rise to logarithms lnmb=�QCD

that we resum via renormalization group equations in soft-
collinear effective theory to leading logarithmic approxi-
mation. Other scale dependent quantities are treated as
described in [6], except for the parameters of the B meson
wave function, which we evolve with fixed order relations
as their evolution from their input scale does not induce
parametrically large logarithms.

We also include certain power corrections to the tree
amplitudes that are related to subleading-twist wave func-
tions of the light mesons. As these chirally enhanced
contributions do not factorize, we use the model proposed
in [1] to estimate their size.

Our theoretical input parameters are listed in Table I. We
deduced our default values for the hadronic parameters

from recent lattice and sum rule calculations (where avail-
able). In general the parameters related to the pion (f�, a

�
2

[12,13], FB�þ [14]) are better determined than the ones

related to the rho meson (f� [15], a
�
2 [13,16], A

B�
0 [17]).

While there exists a large number of calculations for the B
meson decay constant fB [18], less is known about the
moments of the B meson wave function (�B; �1;2) [19].

Our value for �B is based on a QCD sum rule calculation
and on estimates from the operator product expansion,
accounting for recent claims that higher dimensional op-
erators lower the value of �B (last paper of [19]).
We estimate the size of higher order perturbative cor-

rections by varying the factorization scales �h and �hc

independently within the ranges specified in Table I. On the
other hand, we evaluate the nonfactorizable power correc-
tions at a fixed scale �0 ¼ 1:5 GeV. The latter introduces
certain model parameters (�H;�H) and some additional
hadronic parameters. We use ð �mu þ �mdÞð2 GeVÞ ¼
8 MeV, �mbð �mbÞ ¼ 4:2 GeV, and f?� ð1GeVÞ ¼ 165 MeV.

This brings us to our NNLO prediction of the color-
allowed (�1) and color-suppressed (�2) tree amplitudes. In
the B ! ��=�L�L channels we obtain

�1ð��Þ ¼ 1:013þ0:017þ0:008þ0:014
�0:031�0:011�0:014 þ ðþ0:027þ0:006þ0:020þ0:014

�0:010�0:013�0:014Þi ¼ 1:013þ0:023
�0:036 þ ðþ0:027þ0:025

�0:022Þi;
�2ð��Þ ¼ 0:195þ0:119þ0:025þ0:055

�0:066�0:025�0:055 þ ð�0:101þ0:017þ0:021þ0:055
�0:010�0:029�0:055Þi ¼ 0:195þ0:134

�0:089 þ ð�0:101þ0:061
�0:063Þi;

�1ð�L�LÞ ¼ 1:017þ0:017þ0:010þ0:014
�0:029�0:011�0:014 þ ðþ0:025þ0:007þ0:019þ0:014

�0:013�0:013�0:014Þi ¼ 1:017þ0:024
�0:034 þ ðþ0:025þ0:025

�0:023Þi;
�2ð�L�LÞ ¼ 0:177þ0:110þ0:025þ0:055

�0:063�0:029�0:055 þ ð�0:097þ0:021þ0:021þ0:055
�0:012�0:029�0:055Þi ¼ 0:177þ0:126

�0:089 þ ð�0:097þ0:062
�0:063Þi;

(3)

where the uncertainties in the intermediate results stem
from the variation of hadronic input parameters, higher
order perturbative corrections, and the considered model
for power corrections, respectively, which have been added
in quadrature for our final error estimate.

We see, on the one hand, that the color-allowed tree
amplitudes �1 can be computed precisely in the factoriza-

tion framework. The color-suppressed amplitudes �2 suf-
fer, on the other hand, from substantial theoretical
uncertainties. The problem is related to certain cancella-
tions between various perturbative contributions, which
make the real parts particularly sensitive to the spectator
scattering mechanismwhich is proportional to the hadronic

ratio fM1
f̂B=�BF

BM1ð0Þ. Our poor knowledge of the B

TABLE I. List of input parameters (in units of GeV or dimen-
sionless). Scale dependent quantities refer to � ¼ 1 GeV.

Parameter Value Parameter Value

f� 0.131 �
ðnf¼5Þ
MS

0.204

f� 0:216� 0:005 �
ðnf¼4Þ
MS

0.283

fB 0:200� 0:020 mb;pole 4.8

FB�þ ð0Þ 0:26� 0:04 mc;pole 1:4� 0:2
A
B�
0 ð0Þ 0:30� 0:05 jVcdj 0:230� 0:011

a�2 0:25� 0:15 103jVcbj 41:2� 1:1
a�2 0:15� 0:15 103jVubj 3:95� 0:35
�B 0:400� 0:150 	 ð70� 20Þ�
�1 1:5� 1:0 �h 4:8þ4:8

�2:4

�2 3� 2 �hc 1:5þ1:5
�0:7
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meson parameter �B, in particular, translates into the un-
certainties þ0:107

�0:049 and
þ0:096
�0:043 for the real parts of �2ð��Þ and

�2ð�L�LÞ, respectively.

III. BRANCHING RATIOS

The branching ratios of B� ! ���0=���0 depend in
addition on electroweak penguin amplitudes, cf. (2). These
amplitudes have not yet been determined to NNLO [20],
but their numerical values are small (j�p

3=4;EWj & 0:01). As

they are not Cabibbo-Kobayashi-Maskawa (CKM) en-
hanced in tree-dominated decays, it is consistent to treat
these amplitudes in the NLO approximation. The explicit
NLO results can be found in [1,8,9] (they are formulated in
a different operator basis of the effective Hamiltonian).
The CP-averaged branching ratios become

106BrðB� !���0Þ¼ 6:22þ1:14þ2:03þ0:16þ0:43
�1:05�1:65�0:18�0:42 ¼ 6:22þ2:37

�2:01;

106BrðB� !��
L �

0
LÞ¼ 21:0þ3:9þ7:4þ0:5þ1:5

�3:5�6:1�0:7�1:4 ¼ 21:0þ8:5
�7:3; (4)

where the uncertainties in the intermediate results are due
to CKM parameters, hadronic parameters, higher order
perturbative corrections, and nonfactorizable power cor-
rections, respectively.

Our NNLO results are in good agreement with experi-
mental data [21,22],

10 6BrðB� ! ���0Þjexp ¼ 5:59þ0:41
�0:40;

106BrðB� ! ��
L �

0
LÞjexp ¼ 22:5þ1:9

�1:9;
(5)

i.e. the experimental values are reasonably well reproduced
by the central values of our NNLO prediction, which is
based on the input parameters from Table I. One should
keep in mind, however, that we could also have obtained
similar numbers for the branching ratios with rather differ-
ent values of the tree amplitudes, the form factors, and
jVubj. As we discuss in the following section, a much

stronger test of the factorization assumption can be ob-
tained by considering the ratios of hadronic and differential
semileptonic decay rates, where the dependence on the
form factors and jVubj drops out to a large extent.
We may also take a look at the other tree-dominated

B ! ��=��=�� decay modes. We emphasize that the
NNLO calculation of these branching ratios is to date still
incomplete, since the QCD penguin amplitudes have not
yet been determined to NNLO (this is why we do not
discuss CP asymmetries in this article). These modes
also differ conceptually from B� ! ���0=���0 in the
sense that they receive contributions from weak annihila-
tion, which constitutes another class of nonfactorizable
power corrections. We again use the model from [1] to
estimate their size.
Our results for the CP-averaged branching ratios are

shown in Table II. Apart from some exceptions
(�þ��; �0�0; �þ��; ���þ), our default prediction
(with central values) is again in reasonable agreement
with the data. The agreement is, however, less pronounced
than for the pure tree decays B� ! ���0=���0.
Moreover, we point out that the color-suppressed modes
(�0�0; �0�0; �0�0) are subject to sizeable theoretical un-
certainties. This is partly related to the problem mentioned
at the end of the previous section (�B) and in addition to the
fact that these modes are more likely to be affected by
1=mb corrections.
In order to illustrate the correlation of the theoretical

uncertainties, we show in Table II the central values of
some extreme scenarios (in the spirit of [8]):
In Scenario A we study the dependence on the weak

phase 	 (we set 	 ¼ 110�). Modes that show a strong
dependence on this scenario (�þ��; �0�0; �0�0) are not
particularly suited for our purposes, as we focus on testing
the QCD dynamics of the topological tree amplitudes in
this work.

TABLE II. CP-averaged branching ratios (in units of 10�6). Experimental values for B ! ��=�� are taken from [21], whereas the
ones for B ! �L�L have been inferred from [22]. The different scenarios correspond to: large 	 (A), large color-suppressed amplitude
(B), large weak annihilation (C), and a combined scenario (D). Further details are given in the text.

Mode Theory CKM had � pow A B C D Experiment

B� ! ���0 6:22þ2:37
�2:01

þ1:14
�1:05

þ2:03
�1:65

þ0:16
�0:18

þ0:43
�0:42 5.97 5.46 6.22 5.64 5:59þ0:41

�0:40

B� ! ��
L �

0
L 21:0þ8:5

�7:3
þ3:9
�3:5

þ7:4
�6:1

þ0:5
�0:7

þ1:5
�1:4 20.2 21.3 21.0 23.1 22:5þ1:9

�1:9

B� ! ���0 9:34þ4:00
�3:23

þ2:00
�1:81

þ3:22
�2:51

þ0:31
�0:34

þ1:24
�0:84 11.2 10.4 10.3 11.8 8:3þ1:2�1:3

B� ! �0�� 15:1þ5:7
�5:0

þ2:9
�2:8

þ4:8
�4:1

þ0:3
�0:4

þ1:0
�0:7 11.9 11.9 15.8 11.8 10:9þ1:4

�1:5

�B0 ! �þ�� 8:96þ3:78
�3:32

þ1:87
�1:91

þ3:02
�2:62

þ0:16
�0:20

þ1:28
�0:71 6.20 5.21 10.2 5.53 5:16þ0:22

�0:22

�B0 ! �0�0 0:35þ0:37
�0:21

þ0:16
�0:14

þ0:20
�0:09

þ0:03
�0:03

þ0:26
�0:11 0.66 0.63 0.59 0.68 1:55þ0:19

�0:19

�B0 ! �þ�� 22:8þ9:1
�8:0

þ4:2
�4:0

þ7:8
�6:8

þ0:4
�0:5

þ1:9
�1:4 20.0 13.2 24.6 15.7 15:7þ1:8

�1:8

�B0 ! ���þ 11:5þ5:1
�4:3

þ2:3
�2:1

þ4:2
�3:6

þ0:2
�0:2

þ1:8
�1:0 13.0 8.41 13.3 11.7 7:3þ1:2

�1:2

�B0 ! ���� 34:3þ11:5
�10:0

þ6:3
�5:7

þ8:9
�7:8

þ0:6
�0:7

þ3:7
�2:4 33.1 21.6 37.9 27.3 23:0þ2:3

�2:3

�B0 ! �0�0 0:52þ0:76
�0:42

þ0:10
�0:09

þ0:62
�0:21

þ0:10
�0:10

þ0:41
�0:34 0.44 1.64 0.34 1.02 2:0þ0:5

�0:5

�B0 ! �þ
L �

�
L 30:3þ12:9

�11:2
þ5:6
�5:3

þ11:2
�9:6

þ0:6
�0:7

þ2:9
�2:3 26.8 22.3 33.2 27.2 23:6þ3:2

�3:2

�B0 ! �0
L�

0
L 0:44þ0:66

�0:37
þ0:10
�0:09

þ0:50
�0:18

þ0:10
�0:09

þ0:40
�0:30 0.58 1.33 0.24 1.03 0:69þ0:30

�0:30
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In Scenario B we pursue the question if the data are in
accordance with a large color-suppressed amplitude, which
may be realized in the factorization framework by a very
low value of �B ¼ 200 MeV (we moreover decrease the

form factors to FB�þ ð0Þ ¼ 0:21 and A
B�
0 ð0Þ ¼ 0:27). This

scenario shows a satisfactory description of the data, in
particular, the ’’problematic’’ modes �þ��, �þ�� and
���þ are—by construction—in much better agreement
with the data.

It is tempting to understand the large experimentally
observed �0�0 branching ratio as an indication for size-
able nonfactorizable power corrections. It is hard to ad-
dress this issue in a model-independent way. Wewould like
to emphasize, however, that some observables are indeed
more likely to be affected by 1=mb corrections than others
(cf. the column labeled ’’pow’’ in Table II). We, in par-
ticular, expect the branching ratios of the tree decaysB� !
���0=���0 to be clean observables as they are free of
weak annihilation contributions.

In order to quantify this question we study the influence
of a large annihilation amplitude in Scenario C [within the
Beneke-Buchalla-Neubert-Sachrajda (BBNS) model from
[1] ]. It turns out that it is almost impossible to enhance the
�0�0 decay rate and to simultaneously decrease the�þ��
rate without fine-tuning the model parameters [23].
Moreover, the overall pattern of branching ratios and, in
particular, the rates of the other color-suppressed modes
seem to disfavour a generic scenario with large annihila-
tion contributions. This is illustrated in Scenario C, where
we double the default value of the BBNS model for uni-
versal weak annihilation, i.e. we set �A ¼ 1 and �A ¼ 0.
We conclude that we do not see any clear pattern of
abnormally large power corrections in the data and prefer
to be guided by clean observables rather than by the color-
suppressed and penguin-contaminated �0�0 branching ra-
tio, which cannot be predicted precisely in the factorization
framework anyway. We admit that our conclusion is a
model-dependent statement, which is, however, supported
by a light-cone sum rule analysis, which finds even smaller
annihilation contributions than the BBNS model with de-
fault parameters [24].

Finally, Scenario D is motivated by our analysis of the
following section. It combines elements from Scenario A
and B, but it is based on a more moderate parameter choice
	 ¼ 90�, �B ¼ 250 MeV, and FB�þ ð0Þ ¼ 0:23, which are
within the ranges of our default parameters from Table I.
These values are inspired by a fit to a set of particularly
clean observables that we discuss below. We refrain from
presenting the details of our fit and prefer to simply illus-
trate the effects of such a combined scenario [25].

IV. PRECISION OBSERVABLES

Our predictions for the branching ratios from Table II
typically have �40% uncertainties, which are largely re-
lated to an overall normalization from jVubjFB�þ ð0Þ and

jVubjAB�
0 ð0Þ. This particular source of uncertainties can

be eliminated by normalizing the hadronic decay rates to
the differential semileptonic rates at maximum recoil,

d�ð �B0!�þ‘� ��lÞ
dq2

��������q2¼0
¼G2

Fðm2
B�m2

�Þ3
192�3m3

B

jVubj2jFB�þ ð0Þj2

(6)

and similarly for �B0 ! �þ‘� ��l with FB�þ ! A
B�
0 and

m� ! m�. The situation is, however, different for the

color-suppressed modes (�0�0; �0�0; �0�0), which are
rather dominated by the uncertainties from �B and power
corrections than by form factor uncertainties and jVubj. We
therefore do not consider these modes in this section.
The BABAR collaboration has measured the semilep-

tonic B ! �‘� decay spectrum to high accuracy [26]. The
data has been investigated in detail under different types of
form factor parametrizations in [27]. This analysis uses the
world average for the absolute branching ratio and finds
jVubjFB�þ ð0Þ ¼ ð9:1� 0:7Þ � 10�4, which is to be com-
pared with our default value 10:3� 10�4 and 8:3� 10�4

from Scenario B. The experimental value has been adopted
in conjunction with our default value for jVubj to fix the
form factor FB�þ ð0Þ ¼ 0:23 in Scenario D.
The analysis of the differential semileptonic B ! �‘�

decay spectrum is more complicated as three different
form factors contribute in this case (which confine to

jVubjAB�
0 ð0Þ at maximum recoil). Recent measurements

by BABAR, Belle, and CLEO provide data in 3–4 q2

bins [28], which are not yet sufficient to extrapolate the
decay spectrum in a model-independent way. In a recent
analysis the data has been combined with (quenched)
lattice calculations of the form factors in the high q2 region
and light-cone sum rule predictions for q2 ¼ 0 [29]. This

analysis yields jVubjAB�
0 ð0Þ ¼ ð5:5� 2:6Þ � 10�4, which

illustrates that the data is still premature. We therefore do
not include this number in our analysis.
Our predictions for the ratios

RM3
ðM1M2Þ 	 �ð �B ! M1M2Þ

d�ð �B0 ! Mþ
3 ‘

� ��lÞ=dq2jq2¼0

(7)

are shown in Table III. For the �� modes we chose the
normalization such that the dependence on the form factor
multiplying the color-allowed amplitude is most strongly
eliminated. From Table III it can be seen that the theoreti-
cal uncertainties have been reduced considerably to the
level of �15%. Moreover, correlations among different
sources of theoretical uncertainties have been resolved to
a large extent.
The first two ratios in Table III provide particularly clean

probes of the QCD dynamics of the topological tree am-
plitudes [8,30]. In the factorization framework we have

R �ð���0Þ ’ 3�2f2�jVudj2j�1 þ �2j2; (8)

where small electroweak penguin amplitudes have been
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suppressed. Our NNLO prediction for this ratio

R �ð���0Þ ¼ ð0:70þ0:12
�0:08Þ GeV2 (9)

is in good agreement with experimental data

R �ð���0Þjexp ¼ ð0:81þ0:14
�0:14Þ GeV2; (10)

which strongly supports the factorization assumption. It is,
however, interesting that the central experimental value is
in between our default prediction and the value 0:95 GeV2

from Scenario B, which may hint at a somewhat larger
value of the color-suppressed amplitude and hence a lower
value of the parameter �B ’ 250 MeV (which we adopt in
Scenario D). Experimental data for the ratio R�ð��

L �
0
LÞ

could help to clarify this point.
We recall that all other ratios from Table III receive

contributions from QCD penguin amplitudes that are not
yet completely available to NNLO. Among these
R�ð�þ��Þ, R�ð�þ

L �
�
L Þ, and R�ð���þÞ are particularly

suited to test the dynamics of the color-allowed ampli-
tudes. Our prediction for R�ð�þ��Þ compares again
well to the experimental value.

The fourth color-allowed ratio R�ð�þ��Þ is special,
since the interference of the color-allowed amplitude with
the QCD penguin amplitude is not negligible in this case.
This ratio is thus particularly sensitive to the choice of the
weak phase 	. One should keep in mind, however, that the
power corrections from weak annihilation represent an-
other important source of uncertainties for this ratio. It is
interesting to replace the BBNS model for weak annihila-
tion by the light-cone sum rule prediction from [24], which
strongly reduces the uncertainties from weak annihilation
and hence enhances the sensitivity to 	 (we then find
1:03þ0:14þ0:03þ0:02þ0:03

�0:16�0:06�0:02�0:03 GeV2). The current experimental

value may then be considered as a hint at a large value 	 *
90�. A smaller value of 	, on the other hand, may then

imply the presence of an additional contribution to the
QCD penguin amplitude or that power corrections, which
are neither from weak annihilation nor from chirally en-
hanced wave functions, have been underestimated in our
approach. The latter would be conceptually important, as it
would increase the total uncertainty from power correc-
tions in QCDF. We refrain, however, from drawing any
conclusions concerning R�ð�þ��Þ and its implications
for 	, as long as the penguin amplitudes have not been
calculated to NNLO.
In Table III we also show some ratios of hadronic decay

rates defined by

RðM1M2=M3M4Þ 	 �ð �B ! M1M2Þ
�ð �B0 ! M3M4Þ

: (11)

The ratio Rð��
L �

0
L=�

þ
L �

�
L Þ yields complementary informa-

tion on the tree amplitudes from the � sector, where the
contamination from the QCD penguin amplitudes is known
to be less important [9,31]. We consider the experimental
value for this ratio as another important piece of evidence
in favor of an enhanced color-suppressed amplitude
(Scenario B or D).
The ratios Rð�þ

L �
�
L =�

��þÞ and Rð�þ��=�þ��Þ of
color-allowed modes can be predicted precisely in the
factorization framework. Whereas the second ratio is in
nice agreement with the data, the first one seems to some-
what disfavor a scenario with a large weak phase 	.
The last two ratios from Table III finally refer to what is

known as the B ! �� puzzle. Whereas the ratio
Rð���0=�þ��Þ is by construction in Scenarios A, B,
and D in better agreement with experimental data than
our default prediction, the ratio Rð�þ��=�0�0Þ illustrates
what we mentioned at the beginning of this section, i.e. the
bulk of theoretical uncertainties does not drop out in ratios
that involve color-suppressed modes. The uncertainties of

TABLE III. Ratios RM3
ðM1M2Þ of hadronic and differential semileptonic decay rates as defined in (7) (in units of GeV2) and ratios

RðM1M2=M3M4Þ of hadronic decay rates from (11). The different scenarios A–D are described in the caption of Table II.

Observable Theory CKM had � pow A B C D Experiment

R�ð���0Þ 0:70þ0:12
�0:08

þ0:01
�0:01

þ0:11
�0:06

þ0:02
�0:02

þ0:05
�0:05 0.68 0.95 0.70 0.82 0:81þ0:14

�0:14

R�ð��
L �

0
LÞ 1:91þ0:32

�0:23
þ0:03
�0:04

þ0:28
�0:17

þ0:05
�0:07

þ0:13
�0:13 1.83 2.38 1.91 2.09 
 
 


R�ð���0Þ 0:85þ0:22
�0:14

þ0:08
�0:07

þ0:17
�0:09

þ0:03
�0:03

þ0:11
�0:08 1.01 1.16 0.93 1.07 
 
 


R�ð�0��Þ 1:71þ0:27
�0:24

þ0:16
�0:18

þ0:18
�0:12

þ0:03
�0:05

þ0:11
�0:08 1.35 2.07 1.79 1.71 1:57þ0:32

�0:32

R�ð�þ��Þ 1:09þ0:22
�0:20

þ0:15
�0:17

þ0:03
�0:06

þ0:02
�0:02

þ0:16
�0:09 0.75 0.97 1.24 0.86 0:80þ0:13

�0:13

R�ð�þ��Þ 2:77þ0:32
�0:31

þ0:15
�0:17

þ0:15
�0:19

þ0:05
�0:06

þ0:23
�0:17 2.44 2.46 2.99 2.44 2:43þ0:47

�0:47

R�ð���þÞ 1:12þ0:20
�0:14

þ0:07
�0:07

þ0:03
�0:06

þ0:02
�0:02

þ0:18
�0:10 1.27 1.01 1.29 1.13 
 
 


R�ð�þ
L �

�
L Þ 2:95þ0:37

�0:35
þ0:15
�0:17

þ0:16
�0:21

þ0:06
�0:07

þ0:28
�0:22 2.61 2.68 3.22 2.64 
 
 


Rð��
L �

0
L=�

þ
L �

�
L Þ 0:65þ0:16

�0:11
þ0:03
�0:02

þ0:13
�0:07

þ0:03
�0:03

þ0:08
�0:08 0.70 0.89 0.59 0.79 0:89þ0:14

�0:14

Rð�þ
L �

�
L =�

��þÞ 2:64þ0:34
�0:36

þ0:31
�0:31

þ0:13
�0:13

þ0:00
�0:00

þ0:06
�0:14 2.06 2.65 2.49 2.33 3:23þ0:69

�0:69

Rð�þ��=�þ��Þ 0:39þ0:04
�0:05

þ0:03
�0:04

þ0:02
�0:02

þ0:00
�0:00

þ0:02
�0:00 0.31 0.39 0.42 0.35 0:33þ0:04

�0:04

Rð���0=�þ��Þ 0:65þ0:19
�0:14

þ0:10
�0:07

þ0:14
�0:07

þ0:03
�0:03

þ0:08
�0:10 0.90 0.98 0.57 0.95 1:01þ0:09

�0:09

Rð�þ��=�0�0Þ 25:7þ26:0
�18:7

þ22:7
�10:8

þ7:0
�11:0

þ2:6
�2:3

þ10:2
�10:4 9.33 8.32 17.3 8.13 3:33þ0:43

�0:43
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our default prediction

Rð�þ��=�0�0Þ ¼ 25:7þ26:0
�18:7 (12)

are thus extremely large, and the central value is in vast
disagreement with the data. This ratio may be brought
down by a factor of �3 in Scenarios A, B, and D, which
may be seen as independent evidence in favor of these
scenarios. The fact, however, that these predictions still
suffer from �60% uncertainties related mainly to the
power corrections, a�2 , �hc, and fB (in decreasing order
of importance), shows that we cannot expect to predict this
ratio precisely. We would like to add that there is no such
puzzle in the ��=�� channels, i.e. there is no general
failure of QCDF to describe color-suppressed modes.

V. CONCLUSIONS

We presented the NNLO QCDF prediction for the ap-
proximate tree decays B� ! ���0=���0 and updated the
global analysis of the other tree-dominated B !
��=��=�� decay modes. Our analysis from Sec. IV
showed that QCDF yields precise theoretical predictions

for particular ratios of decay rates. We found in general
support for the factorization assumption and uncovered
some hints for enhanced color-suppressed amplitudes,
which translate in QCDF into a small value of the Bmeson
parameter �B. Theoretical progress from nonperturbative

methods on the hadronic ratio fM1
f̂B=�BF

BM1ð0Þ, as well
as experimental measurements of the semileptonic B !
�‘� decay spectrum, may shed further light on this issue.
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