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An extension to the soft collinear effective theory description of hard jets is motivated to include the

leading contributions between the propagating partons within the jet with partons radiated from a dense

extended medium. The resulting effective Lagrangian, containing both a leading and a power suppressed

(in the hard scale Q2) contribution, arises primarily from interactions between the hard collinear modes in

the jet with Glauber modes from the medium. In this first attempt, the interactions between the hard jet and

soft and collinear partonic modes have been ignored, in an effort to focus solely on the interactions with

the Glauber modes. While the effect of such modes on vacuum cross sections are suppressed by powers of

the hard scale compared to the terms from the Lagrangian, such subleading contributions are enhanced by

the extent of the medium and result in measurable corrections. The veracity of the derived Lagrangian is

checked by direct comparison with known results from full QCD calculations of two physical observables:

the transverse momentum broadening of hard jets in dense media and a reanalysis of the transverse

momentum dependent parton distribution function.
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I. INTRODUCTION

The study of hard jets in QCD is now a considerably
mature science. Experiments at eþe� annihilation, deep-
inelastic scattering (DIS), and p-pmachines have yielded a
wide array of measurements on a variety of jet observables
including single particle production, multiparticle correla-
tions as well as event shapes. On the theory side, sophis-
ticated factorization theorems have been written down
which factorize the final-state ‘‘jet function’’ from the
initial state and the hard cross section at leading twist
[1]. In the derivation leading to such factorization theorems
[2–6] the infinite class of Feynman diagrams are subjected
to a Landau analysis. Regions of momentum space which
yield pinch singularities are identified. These represent the
leading contributions to such processes and may be decom-
posed into classes of Feynman diagrams which in turn
allow for proofs of factorization. An alternate and equiva-
lent approach has recently been afforded by the methods of
effective field theories such as the soft collinear effective
theory (SCET) [7–11]. While not specifically devised to
rederive factorization, SCET presents a formalism where
the analysis resulting in the identification of the leading
contributions may be carried out within the QCD
Lagrangian resulting in the derivation of an effective
Lagrangian which is only applicable to processes within
the prescribed kinematic regime. In such a formalism,
factorization occurs at the level of the Lagrangian and at
the level of operators [12,13]. The Feynman rules which
arise from an expansion in a small parameter �may then be
used to systematically study hard processes.

Power corrections to hard processes in vacuum are sup-
pressed in the presence of a hard scale Q2 � �2

QCD.

However, there exist scenarios where a specific set of
power corrections (often arising from operators with higher
twist) may be enhanced and become non-negligible com-
pared to the leading process. One example of this is the
case of single-spin asymmetry in DIS, where leading twist
processes yield vanishing results [14]. Another example,
where the leading twist term does not vanish but power
corrections may become enhanced is in the presence of a
medium is in the case of DIS on a large nucleus [15,16].
The inclusive cross section receives contributions from
power suppressed operators which are enhanced by a factor

A1=3 arising from the length of a large nucleus with mass
number A [17,18].
In semi-inclusive processes such as single hadron inclu-

sive events in DIS on a large nucleus, a hard jet is formed in
the collision of the virtual photon with a hard quark. This
jet then begins to shower and lose virtuality on its way to
hadronization. Some part of this space-time evolution oc-
curs within the nuclear medium. Multiple scattering of the
jet in the medium modifies the final distribution of high
momentum hadrons emanating from such a hard jet
[19,20]. Experimental measurements of single and multi-
hadron production from such modified jets and their com-
parison with jets produced in DIS on a proton or in p-p
collisions allow one to quantify the gluon distribution in
dense extended QCD media [21].
This modification depends on a class of higher twist

operators evaluated in the nuclear medium. While there
exists considerable information regarding the ground state
(nucleon) structure of large nuclei which may be invoked
in the modeling of these higher twist operators, there exists
practically no such information regarding the bulk struc-
ture of the deconfined matter produced in high-energy
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heavy-ion collisions. The modification of hard jets, in the
deconfined matter produced in heavy-ion collisions, has
assumed center stage in the experimental program as the
primary probe of the structure of the produced matter [22].
This is due in part to the dramatically large effects seen in
comparison with cold confined matter as well as the pos-
sibility for a first principles computation of this modifica-
tion from perturbative QCD (pQCD). There are many
approaches to this calculation, all involving a different
set of approximations about the medium [23–27]. For a
review of the different approaches see Ref. [28].

While the benefits of an effective field theory description
of power corrections to hard processes in QCD cannot be
overstated, to date there has not been a single attempt to
incorporate the leading effects of medium enhanced higher
twist within an effective theory formalism such as SCET.
There exists an effective theory description of the dense
deconfined matter in the limit of very high temperature.
Here, a consistent effective theory of the medium without a
jet is set up first, then the hard jet is assumed to have
interactions with the soft field in the medium which are
similar to those encountered by a hard thermal parton [29].
This article will take a different route, by trying to extend
an existing effective theory of jets in vacuum to incorporate
the effects of scattering in a medium. In what follows, we
undertake the simplest extension to an SCET like formal-
ism in the presence of an extended QCD medium.

In Sec. II, the emergent scales in the problem will be
discussed and the presence of a new mode, called the
Glauber mode, not present in the current vacuum imple-
mentation of SCET will be motivated. In Sec. III, an
effective Lagrangian which includes the interaction of
such Glauber modes with collinear quarks will be derived
from the QCD Lagrangian. In this first attempt, we will
ignore the further interactions between these Glauber
modes and the soft and collinear gluon modes of the usual
SCET Lagrangian. A new set of Feynman rules arising
from such an effective Lagrangian will be outlined and
their equivalence with the Feynman rules of full QCD
demonstrated at an amplitude by amplitude level. In
Secs. IVand V, the Feynman rules will be used to compute
cross sections in physical processes; two examples will be
dealt with: the transverse broadening of jets in DIS on large
nuclei and the transverse momentum dependent parton
distribution function (TMDPDF). It will be shown explic-
itly that, in light-cone gauge, the Glauber gluons give rise
to the transverse gauge link that enters the definition of the
fully gauge-invariant TMDPDF. The results obtained will
be compared with published calculations in full QCD.
Concluding discussions will be presented in Sec. VI.

II. THE ENERGY SCALES FROM A DENSE
MEDIUM

Consider the DIS of a hard photon with momentum q
and virtuality q2 ¼ �Q2 on a nucleon with momentum p

in vacuum or contained within a large nucleus. In the Breit
frame, the photon has the momentum components

q � ½qþ; q�; ~q?� ¼ ½Q2=2q�; q�; 0� �Qð�1; 1; 0Þ: (1)

The off-shellness of the photon Q is taken as a representa-
tive of the hard scale in the process. This strikes a hard,
almost on-shell quark with a large momentum in the þz
direction or a large (þ ) component of momentum,

pi � ðxBpþ; p�
i ; ~pi;?Þ �Qð1; �2; �Þ: (2)

The number of partons in the infinite momentum frame
which carry an xB � 1 fraction of the nucleon momentum
is rather small and � is a small dimensionless variable
(� ! 0). We then trigger on events where an almost on-
shell jet is produced in the final state (see Fig. 1). This
partonic jet moves with large momentum in the (� )
direction,

pf � ðpþ
f ; q

�; ~pf;?Þ �Qð�2; 1; �Þ; (3)

where, at leading order, ~pf;? ¼ ~pi;?.
In the case of DIS on a single nucleon, this partonic jet

immediately escapes the medium and eventually after a
time�1=ð�2QÞ1 would have decayed into multiple partons
of lower invariant mass and eventually turns into a jet of
hadrons. The invariant mass of the final jet is m� �Q and
its total forward energy from all produced hadrons which
have arisen from this jet is

E ¼ q�=
ffiffiffi
2

p �Q: (4)

In this article, we initiate the construction of the effective
theory for the propagation of such jets through the dense
matter within nucleons and large nuclei.
The first step in such an endeavor is the assignment of

relations between all relevant dimensionfull quantities that
appear in the problem. We assume that the scaling variable
� is so chosen that perturbation theory may be applied
down to momentum transfer scales at or above �2Q. The

pp

xp xp

q q

FIG. 1. Single-inclusive DIS on a nucleon or a large nucleus.

1The formation time of the radiation may be estimated from
the virtuality of the jet ��Q and the boost of the jet ���1.
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medium, also introduces its own set of scales, e.g., the
mass of a nucleon MN ’ 1 GeV. This is assumed to scale
with a new scaling variable � such that it is comparable to
�QCD and in general much smaller than the soft perturba-

tive scale, i.e.,

MN ��QCD ��Q & �2Q: (5)

One may immediately surmise that in the Breit frame when
xB � 1, and pþ �Q, the boost or � factor is of order ��1.
While the inverse size of the nucleon may be thought of as
an even softer scale, in this effort, we will assume that the
hard scales Q, �Q are much harder than the medium scale
�Q and thus the inverse length will be assumed to be of the
order of the mass of the nucleon,

lN � 1

�Q
; (6)

All our considerations will be carried out in the Breit
frame. The scaling introduced at the beginning of this
section regarding the momentum components of the in-
coming and outgoing partons were set up in the Breit
frame. Thus the nucleon (or medium) will have to be
boosted to this frame. The ensuing boost to the Breit frame
will lead to the contracted length of the nucleon,

lN
�

� 1

Q
: (7)

The very introduction of an alternative soft scale such as
�Q may lead the reader to imagine a much more compli-
cated effective theory which will manifestly involve both �
and� and will require a relation between these two scaling
variables. However, as will be demonstrated in the next two
sections, with specific examples, it is possible to construct
an effective theory in dense matter involving only the hard
scale Q and the vacuum scaling variable �.

The construction of an in-medium effective theory
which depends on only the hard scale and the scaling
variables from the vacuum theory has one further require-
ment. In specific examples, such as in Sec. IV, certain in-
medium matrix elements will be enhanced by media with
sizes much larger than a nucleon, e.g., in the case of large
nuclei or a deconfined quark gluon plasma (QGP). In the
case of large nuclei (with mass number A � 1), the en-
hancement factor is usually the nuclear length in units of

the nucleon length, i.e., A1=3. These situations will require
that the enhancement be expressed in powers of �, i.e.,

A1=3 � ��n. The number n is so far unspecified and will
turn out to be observable dependent.

The particular choice of scaling of nucleon size and
momentum leads to certain obvious physical consequen-
ces: In the Breit frame, valence (large x) partons carrying
order one fractions of the forward momentum of the nu-
cleon, have momenta that may be expressed as (by simply
boosting momenta of the order of MN),

k�Qð1; �2; �Þ: (8)

These partons will be found to be completely confined
within nucleons. The off-shellness of these partons
��2Q is very small and, as a result, for processes which
involve momentum transfers of the order of �Q or larger,
these radiated partons may be considered as asymptotic in-
states. In the following, we will often ignore discussion of
the (� ) components of the partonic momenta in the in-
state; these play almost no role in the computation of jet
modification and the TMDPDF.
Because of interactions, a variety of gluons may be

radiated from these valence partons with momenta con-
strained by overall energy-momentum conservation and
determined by the kinematics of the process being trig-
gered on. In the case of transverse broadening, the type of
radiated gluon which plays a leading role will be those with
momenta which scale as

k�Qð�2; �2; �Þ: (9)

Gluons with momenta which scale as in the above equation
are referred to as Glauber gluons, or gluons in the Glauber
region. The role of Glauber gluons in transverse broad-
ening (as well as in transverse momentum dependent
structure functions) may be easily understood in the case
of DIS with a hard jet in the final state. The momenta of the
produced quark jet scales as in Eq. (3). Imagine the mul-
tiple scattering of the struck quark off the remnants of the
nucleon or nucleus. The diagrams under consideration are
of the form of Fig. 2. In order for the produced jet to escape
from the nucleon or nucleus without undergoing any in-
duced radiation, the interactions with the nucleon have to
be such that they do not induce a major change in the off-
shellness of the quark. In order to see how this comes about
we explicitly write out the expression for the q2 propagator
where q2 ¼ qþ pi þ k1 represents the quark momentum,
which, after the hard scattering (with momentum qþ pi)
scatters off one extra gluon with momentum k1, (in order to
simplify the expression we assume that pi

? ¼ 0 and pþ
i ¼

xBp
þ ¼ �qþ) in Fig. 2:

Sðq2Þ ¼ �þq� þ �? ~k1? þ ��kþ1
2q�ðkþ1 Þ � j ~k1?j2

’ �þq�

2q�ðkþ1 Þ � j ~k1?j2
:

(10)

Since, q� �Q and k1? � �Q, the forward momentum has

k 1
k 2

q
 2

y1
y2

FIG. 2. The multiple scattering of a produced jet in deep-
inelastic scattering.
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to scale as kþ1 � �2Q for the jet to remain off-shell by no
more than �2Q2. If the forward momentum scales with a
higher power, i.e., kþ � �Q, this will cause the jet to go
off-shell by �Q2 and lead to the radiation of momenta with

large transverse momenta l? � �1=2Q. This process will
lead to the radiative energy loss of the propagating quark
and will be discussed in a future effort. The reader will note
that the absorption of gluons which are collinear to the
outgoing quark, i.e., with a momentum that scales as
Qð�2; 1; �Þ, also do not raise the off-shellness of the quark
beyond �2Q2. However, the number of such gluons emitted
from a medium moving with a large collinear momentum
in the (þ ) direction is vanishingly small. Hence the effect
of such partons will be ignored.

In the current manuscript, the focus will remain on the
production of a single jet with nonzero transverse momen-
tum. Since the number of gluons with a forward momen-
tum pþ � �2Q far exceeds those with pþ � �Q for the
same transverse momentum, the jet will tend to encounter
multiple interactions with gluons with a soft forward mo-
mentum. These will result in the transverse broadening of
the hard jet. The neglect of gluons with a larger (þ )
component of momentum suppresses radiation from the
hard parton.

With the power counting of the different momentum
components identified, there remains the issue of determin-
ing the power counting (in terms of �) of the 4-vector
potential A

�
a in this regime of momenta. In the case of

effective theories of QCD in a vacuum, the power counting
of the A

�
a field is determined by an estimation of the

powers of � from the gluon propagator. In the case of
Glauber gluons such a methodology will yield incorrect
results. In the Glauber region of momenta, the gluon
propagator obtained from the full QCD Lagrangian is
never on-shell. With the transverse momenta being larger
than the light-cone components, Glauber gluons are always
spacelike off-shell. As demonstrated above, an on-shell
collinear parton may interact with a Glauber gluon and
have its transverse momentum changed by order �Q while
still remaining on-shell. The simplest extension of an
effective theory containing only collinear modes (the jet)
to a mediumwith collinear modes travelling in the opposite
direction (the target) will contain the interactions of the
collinear jet parton with Glauber gluons radiated off the
partons in the target which move in the opposite direction.
The effective action has the simple form,

S ¼
Z

d4x½LSCET þ ja�ðxÞAa�
GðxÞ�: (11)

where, A�
G is the Glauber field radiated from the target and

ja� is the current of the collinear partons from the jet. The

kinetic and interaction terms for the collinear fields which
constitute ja� are contained within LSCET [8] along with

terms for the soft fields. In this effort, LSCET will not
contain the collinear or soft modes from the target. These

will be integrated out and included in effective Glauber
field A

�
G.

Note that there is no kinetic term for the Glauber gluon;
thus, it does not obey a classical equation of motion. It
admits no mode expansion and is not quantized as the
SCET modes. However such exchanges are included in
the full QCD Lagrangian and are prevalent in the interac-
tion of collinear modes from the jet with those from the
target. The Glauber field A

�
G represents the effective clas-

sical field of the target partons. The power counting of the
various components of the Glauber field may be obtained
from a calculation of its production in full QCD.
As our goal here is simply to estimate the power count-

ing of the various components of the Glauber field, we will
ignore subtleties associated with nonlinear terms in an
interacting non-Abelian theory. We will estimate the �
power of the various components in an Abelian theory. In
a classical Abelian theory, the gauge field A� is obtained
from a solution of the inhomogeneous Maxwell’s equation.
This is given as

A�ðxÞ ¼ A
�
0 ðxÞ þ

Z
d4yD��ðx� yÞJ�ðyÞ; (12)

where A
�
0 ðxÞ is a solution of the homogeneous Maxwell’s

equation. By restricting the current to be collinear to the
target direction, and insisting that the incoming partons in
the target remain close to on-shell, we restrict the field
A�ðxÞ to only its Glauber component A�

GðxÞ. In this region

of momenta, there exists no solution of the homogeneous
Maxwell’s equation, i.e., A�

0GðxÞ ¼ 0. As a result, the

Glauber field is obtained from the second term on the right
hand side of Eq. (12). We now evaluate the power counting
of the various components of the Glauber field in covariant
and light-cone gauge.

A. Covariant gauge

At leading order in covariant gauge, the gauge propa-
gator D�� is given as

D ��ðx� yÞ ¼
Z d4k

ð2�Þ4
�ig��e�ik�ðx�yÞ

k2 þ i�
: (13)

In Eq. (12), J�ðyÞ ¼ �c ðyÞ��c ðyÞ is the current of partons
in the target which generates the gauge field. The fermionic
operator may be decomposed as

c ðyÞ ¼
Z dpþd2p?

ð2�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ þ p2

?
2pþ

r X
s

usðpÞaspe�ip�y

þ vsðpÞbsyp eip�y: (14)

The scaling of the fermionic operator depends on the range
of momentum which are selected from the in-state by the
annihilation operator. Note that this influences both the
scaling of the annihilation operator ap as well as the

bispinor uðpÞ. The power counting of the annihilation
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operator may be surmised from the standard anticommu-
tation relation,

farp; asp0
yg ¼ ð2�Þ3�3ð ~p� ~p0Þ�rs; (15)

and the power counting of the bispinor from the normal-
ization condition,X

s

usp �u
s
p ¼ p6 ¼ ��pþ þ �þp� � �? � p?: (16)

Substituting the equation for the current in Eq. (13), and
integrating out y, we obtain the expression for the (þ )
component of the gauge field:

Aþ ’
Z d3pd3q

ð2�Þ6 ffiffiffiffiffiffiffi
pþp ffiffiffiffiffiffi

qþ
p �ie�iðp�qÞ�x

ðp� qÞ2 ayqap �uðqÞ�þuðqÞ:

(17)

If the incoming and outgoing momenta p and q scale as
collinear momenta in the (þ ) direction, i.e., p�
Qð1; �2; �Þ, then we get, �3ð ~p� ~p0Þ � ½�2Q3��1, as one
of the momenta will involve the large (þ ) component and
the remaining are the small transverse components. Thus
the annihilation (and creation) operator scales as

��1Q�3=2. Also in the spin sum p6 �Q and thus uðpÞ �
uðqÞ �Q1=2. The �þ projects out the large (�Q) compo-
nents in u and �u in the expression �uðqÞ�þuðpÞ. We also
institute the Glauber condition that pþ � qþ � �2Q,
p� � q� � �2Q, and p? � q? � �Q.

Using these scaling relations we correctly find that the

bispinor scales as �Q3=2. However, to obtain the correct
scaling of the gauge field Aþ one needs to institute the
approximation that qþ ¼ pþ þ kþ where kþ � �2Q. This
condition is introduced by insisting that the (þ ) momen-
tum of the incoming and outgoing state, which control the

scaling of ayq and ap, are separated by kþ � �2Q. This is

used to shift the dqþ ! dkþ and as a result we obtain the
scaling of the Aþ field as �2Q. Following a similar deri-
vation, with the replacement �þ ! �?ð��Þ we obtain the
scaling of the transverse and (� ) component of the gauge
field as A? � �3Q and A� � �4Q.

B. Light-cone gauge

The power counting of the gauge field is gauge depen-
dent. In this last subsection we surmise the power counting,
in light-cone gauge, for the Glauber field. The primary
difference with Eq. (17) is the gauge field propagator. In
the positive light-cone gauge: n � A ¼ n�Aþ ¼ Aþ ¼ 0,
the only nonzero components are A? and A�. Note that a
Glauber field with transverse momentum k? � �Q can
only be radiated from a collinear parton without changing
the direction of the collinear parton. For A?, the dominant
contribution to the power counting equation arises not from
the g�� term in the numerator of the propagator, but rather
from the ðk�n� þ k�n�Þ=kþ term, i.e.,

A? ’
Z d3pd3q

ð2�Þ6 ffiffiffiffiffiffiffi
pþp ffiffiffiffiffiffi

qþ
p

� iððp?�q?Þn�
pþ�qþ Þe�iðp�qÞ�x

ðp� qÞ2 ayqap �uðqÞ�þuðqÞ: (18)

Comparing this with Eq. (17), we obtain that A? � �Q.
Similarly we obtain A� � �2Q. As a result, in light-cone
gauge, the ( ? ) component of the gauge field is much
more dominant than in covariant gauge and we expect this
to change the power counting of various terms in the
effective Lagrangian. Similar power counting arguments
may also be surmised from the explicit expressions pre-
sented in Ref. [30] and references therein. See also the
discussion at the end of Sec. V.
In the next section, the power counting arguments pre-

sented above will be used to derive the effective
Lagrangian which describes the interaction of collinear
modes with Glauber exchanges with the medium. While
these power counting arguments have been derived for an
Abelian theory, we expect them to remain true in a non-
Abelian theory as well.

III. EFFECTIVE LAGRANGIAN FOR GLAUBER
GLUONS

In the preceding section, the momentum scales associ-
ated with a new mode which arises in the presence of a
medium was outlined. These so-called Glauber gluons
present a mode that was absent in the derivation of the
SCET Lagrangian. In what follows, we introduce these
modes and construct a new additional effective
Lagrangian called the Glauber Lagrangian. In this first
attempt, the kinetic terms which represent the soft and
collinear gluons of the SCET Lagrangian, along with their
interactions with the collinear quarks, will be ignored. The
two active fields will be the collinear quarks and the
Glauber gluons. In principle there will be a similar con-
tribution from Glauber interactions with a collinear gluon.
While such interactions are not included in the derivations
presented in the current paper, these represent a straight-
forward extension of the formalism presented in this
section.
Before we start the derivation of the effective

Lagrangian we comment on the off-shellness of the
Glauber gluons. Since for Glauber gluons the product

kþk� is much less than j ~k?j2 then the Glauber modes are
obviously off-shell degrees of freedom. In principle when
one constructs an effective Lagrangian, the degrees of
freedom involved have to be on-shell so that one can
make use of the classical equations of motions. In our
derivation below we do not make any use of the gluon
equation of motion and it is only the Dirac equation for a
collinear quark that is utilized. Thus the derivation below
should be viewed merely as the limit of the contribution
from gluons with arbitrary momentum taken to the Glauber
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region. This is similar to the well-known method of re-
gions. In this sense we are actually deriving an effective
‘‘vertex’’ between a collinear quark and a Glauber gluon.
This effective vertex could also be obtained on a case by
case basis starting from the full QCD amplitudes and then
taking the Glauber limit. This is illustrated below for a
nontrivial case. The advantage of deriving an effective
Lagrangian is mainly the consistent power counting (of
the gluon fields and momenta) invoked in the derivation.

In DIS, in the Breit frame, the final state after the hard
scattering consists of a hard outgoing quark in the �z or
simply the (� ) direction, which interacts with the rem-
nants of the proton (or nucleus) which move in the þz or
simply the (þ ) direction. These interactions are domi-
nated by soft grazing scatterings with the fast-moving
remnants. Some of these interactions may be hard as
well, resulting in the hard quark going considerably off-
shell and radiating a hard gluon. Such processes constitute
the energy loss of the hard quark and will be ignored in this
first attempt. The incorporation of such interactions will
necessarily involve the reintroduction of both the soft and
collinear modes as well as the inclusion of new interaction
terms between the Glauber modes and these soft and col-
linear modes. In what follows we focus solely on the
Glauber interactions of the hard outgoing quark with the
glue field generated by the remnants of the struck proton
(or nucleus).

Consider a fast-moving quark moving along the �n di-
rection where �n ¼ 1ffiffi

2
p ð1; 0; 0;�1Þ. The þz direction will

be denoted by the unit vector, n ¼ 1ffiffi
2

p ð1; 0; 0; 1Þ. This quark
has large momentum in the �z direction p� ¼ n � p ’ Q
where Q is the hard scale of the process considered. The
interaction of this collinear quark with Glauber gluons
leads to a change of the transver se momentum component
of the collinear quark while the p� component remains
fixed up to Oð�2Þ. Thus the truly label-changing compo-
nent is only the transverse one p?. As such the starting
point to describe the interaction of this collinear quark field
with Glauber gluons would be, as in SCET [7,8], to extract
the label momentum components from the full QCD field.

c ðxÞ ¼ e�ip�xþ
X
~p?

ei ~p?� ~x?c �n; ~p?ðxÞ: (19)

Again as in SCET, we decompose the c �n; ~p? into a sum

of two fields: � �n; ~p? þ �n; ~p? where � �n; ~p? carries the large

momentum components in the �z direction while �n; ~p?
carries the small momentum components. The next step is
to substitute this decomposition into Eq. (19) and then
substitute the result into the interaction term in the full
QCD Lagrangian. In order to maintain consistent power
counting in the effective theory one has to specify the
scalings (in terms of �) of the relevant quantum fields.
For the collinear quark the scaling is the same as in SCET,
namely � �n; ~p? scales as � while �n; ~p? scales as �2. All

derivatives acting on � �n; ~p? or �n; ~p? will further suppress

the power counting by �2. For the Glauber gluon gauge
field the scaling was given in the previous section.
The starting point to obtain the effective Lagrangian is,

as in SCET, the full QCD quark sector expressed in terms
of the fields � �n and �n

Lg ¼ �� �n; ~p?n6 ði �n �DÞ� �n; ~p? þ ��n; ~p?
�6nðn �pþ in �DÞ�n; ~p?

þ �� �n; ~p0
?
ðp6 ? þ i 6D?Þ�n; ~p? þ ��n; ~p0

?
ðp6 ? þ i 6D?Þ� �n; ~p? :

(20)

We notice that in the last result there are terms that scale as
Oð�4Þ, Oð�5Þ, and Oð�6Þ. We now eliminate the nondy-
namical field �n by making use of the tree-level equation of
motion

�n; ~p? ¼ p6 ? þ i 6D?
2ðn � pþ in �DÞn6 � �n; ~p? : (21)

We again have kept leading and subleading contributions
in Eq. (21). It is useful to notice the difference between the
case of Glauber gluons and collinear gluons. For collinear
gluons, the gauge field component in the covariant deriva-
tive (n � A) in the denominator of Eq. (21) scales the same
as n � p. This component of the gauge field, eventually,
leads to the presence of the collinear Wilson lines in SCET,
as was demonstrated in Ref. [9]. However, for Glauber
gluons this covariant derivative is suppressed compared to
n � p. Therefore, we expand the denominator and get

Lg ¼
X

~p?; ~p0
?

eið ~p?� ~p0
?Þ� ~x? �� �n; ~p0

?
ðxÞ

�
�n � iDþ ðp6 ? þ i 6D?Þ

� 1

2n � p
�
1� in �D

n � p
�
ðp6 ? þ i 6D?Þ

�
n6 � �n; ~p?ðxÞ; (22)

where higher orders in � have been dropped out. In this
article we will only consider Glauber gluons in covariant
and light-cone (Aþ ¼ 0) gauge. In covariant gauge the
leading order Lagrangian is given by

L g ¼ �� �n; ~p?

�
i �n �Dþ p2

?
2n � p

�
n6 � �n; ~p? ; (23)

where both terms in the square brackets are of order �2.
This result was first obtained in Ref. [31]. In light-cone
gauge the leading order interaction Lagrangian is given by

L g ¼ �� �n; ~p0
?

�
gsðp6 0

?A6 ? þ A6 ?p6 ?Þ þ g2sA6 2
?

2n � p
�
n6 � �n; ~p? : (24)

The Feynman rules derived from the effective
Lagrangians above are given in Fig. 3. As a first simple
test of these rules we compute the amplitude for the case of
two Glauber gluons attached to a collinear quark line and
compare with the amplitude obtained from full QCD. We
carry out both evaluations only in light-cone gauge as this
is some what nontrivial. In covariant gauge, this same
calculation can be straightforwardly carried out and will

AHMAD IDILBI AND ABHIJIT MAJUMDER PHYSICAL REVIEW D 80, 054022 (2009)

054022-6



be discussed in Sec. V. We show that the effective theory
exactly reproduces the full QCD result at the level of the
amplitudes of Feynman diagrams.

Let us consider the Feynman diagram given in Fig. 4
where two Glauber gluons are attached to the collinear
quark field. In full QCD, the amplitude reads

I ¼ �ðigsÞ2
Z d4k1

ð2�Þ4
d4k2
ð2�Þ4 �uðpÞ

� A6 ðk1Þ½p6 � k6 1�A6 ðk2Þ½p6 � k6 1 � k6 2�
½ðp� k1Þ2 þ i"�½ðp� k1 � k2Þ2 þ i"� ; (25)

where �uðpÞ represents the Dirac spinor for an outgoing
quark and p has no transverse momentum. The scaling of

the quark spinor will be ignored in the following, as it plays
no role in the remaining discussion. When expanding the
numerator in Eq. (25) one should invoke the same power
counting for the gluon gauge fields and the momenta as the
one used in deriving the effective theory. In light-cone
gauge Aþ ¼ 0 and by making use of the Dirac equation
[ �uðpÞp6 ¼ p� �uðpÞ�þ ¼ 0], the leading contribution is

J ¼�ðigsÞ2
Z d4k1

ð2�Þ4
d4k2
ð2�Þ4 �uðpÞ

� A6 ?ðk1Þ½2kþ1 p�A6 ?ðk2Þþ k6 1?A6 ?ðk2Þðk6 1?þ k6 2?Þ�
½ðp� k1Þ2 þ i"�½ðp� k1 � k2Þ2 þ i"� :

(26)

We notice that each contribution in the square bracket
scales as �4 and subleading terms have been dropped out.
In the effective theory (and again working in light-cone

gauge) there are two Feynman diagrams that contribute.

One [denoted below as J ð1Þ] comes from two Glauber
gluons attached at different points. The other contribution
comes from the vertex of two Glauber gluons attached at

the same point. It is denoted by J ð2Þ. Using the Feynman
rules given in Fig. 3 we obtain the first contribution from
the effective theory as

J ð1Þ ¼ �ðigsÞ2
Z d4k1

ð2�Þ4
d4k2
ð2�Þ4

�� �n

A6 ?ðk1Þk6 1?½A6 ?ðk2Þðk6 1? þ k6 2?Þ þ k6 1?A6 ?ðk2Þ�
½2p�kþ1 þ j ~k1?j2 � i"�½2p�ðkþ1 þ kþ2 Þ þ j ~k1? þ ~k2?j2 � i"� : (27)

The second contribution from the effective theory is given as

J ð2Þ ¼ �ðigsÞ2
Z d4k1

ð2�Þ4
d4k2
ð2�Þ4

�� �n

A6 ?ðk1ÞA6 ?ðk2Þ
½2p�ðkþ1 þ kþ2 Þ þ j ~k1? þ ~k2?j2 � i"� : (28)

In the above result we have considered only one contribu-
tion where the color and Lorentz indices are held fixed in
the Feynman rule for the two-gluon vertex. The other
contribution gives an identical result as J ð2Þ upon integra-
tions over k1 and k2. It can be easily verified that J ¼
J ð1Þ þ J ð2Þ thus confirming that the effective theory re-
produces the full QCD result at the level of the amplitudes
of the relevant Feynman diagrams. The case of one-gluon
attachment is trivial and one can easily verify that the

effective Lagrangian also gives the same result as the one
in full QCD.
In what follows, we investigate two physical applica-

tions of the derived effective Lagrangian: The transverse
broadening experienced by hard jets in DIS on a large
nucleus and the TMDPDF in a nucleon. In the first case,
a final physical cross section will be computed and argu-
ments on the enhancement of power corrections by large
lengths in nuclei will be forwarded; hence, this application

FIG. 3. Feynman rules for a collinear quark interacting with
Glauber gluons. In principle, both terms in the parenthesis in the
second diagram contribute in covariant as well as in light-cone
gauge. However, the first term is leading (in terms of power
counting in �) in covariant gauge and is identically zero in light-
cone gauge. The third diagram is only required for calculations
in light-cone gauge.

FIG. 4. Final-state interactions in DIS: two-gluon exchange.
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contains arguments beyond those used to derive the effec-
tive Lagrangian. However, the scaling of the momenta of
the gluons will always lie within the strict boundary pre-
scribed by the Glauber Lagrangian. It may not come as a
surprise that the Glauber gluons which lead to the trans-
verse broadening of hard jets, also play a principal role in
the construction of the gauge-invariant TMDPDF.

IV. APPLICATION I: TRANSVERSE BROADENING
IN LARGE NUCLEI

A straightforward application of the effective
Lagrangian derived in Sec. III, is to the process of jet
broadening in dense matter. As a specific example, we
consider the process of jet broadening in deep-inelastic
scattering in large nuclei. Avirtual photon with momentum
q ¼ ½Q2=2n � q; n � q; 0; 0� is incident on a large nucleus
(A) with momentum Ap � �n where p � �n is the mean mo-
mentum of a nucleon. In the remaining section, we will
refer to q � n as simply q� and p � �n as simply pþ.

We compute the cross section for the semi-inclusive
production of a hard jet in the final state with a net

transverse momentum ~l? with respect to the direction of
the virtual photon, i.e.,

eðL1Þ þ AðpÞ ! eðL2Þ þ Jð~l?Þ þ X: (29)

In the frame chosen, the Bjorken variable is defined as
xB ¼ Q2=ð2pþq�Þ. The differential cross section may be
decomposed into a leptonic and a hadronic part as

EL2
d	

d3L2d
2l?

¼ 
2
EM

2�sQ4
L��

dW��

d2l?
: (30)

where s ¼ ðpþ L1Þ2 is the total invariant mass of the
lepton nucleon system. The leptonic tensor may be ex-
pressed as

L�� ¼ 1
2 Tr½L6 1��L6 2���: (31)

The initial state of the incoming nucleus is defined as
jA;pi. The general final hadronic or partonic state is
defined as jXi. As a result, the semi-inclusive hadronic
tensor may be defined as

W�� ¼ X
X

ð2�4Þ�4ðqþ PA � pXÞhA;pjJ�ð0ÞjXi

� hXjJ�ð0ÞjA;pi

¼ 2 Im

�Z
d4yeiq�yhA;pjJ�ðyÞJ�ð0ÞjA;pi

�
; (32)

where the sum (
P

X) runs over all possible hadronic states
and J� is the hadronic electromagnetic current i.e., J� ¼
Qq

�� �n�
��n, whereQq is the charge of a quark of flavor q in

units of the positron charge e. It is understood that the
factors of the electromagnetic coupling constant have al-
ready been extracted and included in Eq. (30). The leptonic

tensor will not be discussed further. The focus in the
remaining shall lie exclusively on the hadronic tensor.
In a full QCD calculation of Eq. (32), one computes the

hadronic tensor, order by order, in the strong coupling. This
leads to the introduction of a variety of processes leading to
a modification of the structure of the jet. Such processes
include radiative branchings, flavor changes of propagating
partons, as well as transverse diffusion of the partons in the
shower which ensues from the quark produced in the hard
scattering. In this article, we will focus solely on the
processes which lead to the transverse momentum diffu-
sion or transverse broadening of the produced hard quark.
In Ref. [32], the leading contributions to transverse

broadening without induced radiation, at all orders in
coupling, were identified as those of Fig. 5. These diagrams
depict processes where the propagating parton engenders
multiple scattering off the glue field inside the various
nucleons through which it propagates. However, scatter-
ings do not change the small off-shellness of the propagat-
ing parton; as a result, large transverse momentum
radiations do not occur. Using simple kinematics, the
relation between the momentum components of the glue
field ki may be surmised by insisting that the off-shellness
of the iþ 1-th quark line be of the same order as the i-th
line,

ðpþ kiÞ2 ¼ p2 þ k2i þ 2pþk�i þ 2p�kþi � 2 ~p? � ~ki?:
(33)

Insisting that ðpþ kiÞ2 � p2 � �2Q2 and given the known
scaling of the quark momenta (i.e., pþ � �2Q, p� �Q,

~p? � �Q), we obtain that ~ki? � �Q, kþi � �2Q, and k�i
may scale with a range of different choices Q, �Q, �2Q,
etc. The first two cases for the scaling of k� represent
gluons which are emanated with large (� ) momentum
from a nucleon moving with large (þ ) momentum. The
number of such gluons must be vanishingly small. The first
nontrivial population of gluons emanating from a nucleon
moving with a large (þ ) momentum, are those which
scale as k� ½�2; �2; ��, which essentially constitute the
Glauber sector.

q q

APAP y

p’
0 p

0

y y1

1q2q3q3q’2q’1q’

y’ y’1 2 3
y’ 3 2y

FIG. 5. An order n diagram which contributes solely to trans-
verse broadening.
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Using the Feynman rules derived for Glauber gluons in Sec. II, the leading component of n-th order diagrams such as
those of Fig. 5 may be expressed as

W�� ¼
Z

d4y
d4l

ð2�Þ4
Yn�1

i¼0

Yn0�1

j¼0

�
d4yiþ1d

4y0jþ1

d4kid
4k0j

ð2�Þ8
�
gnþn0 hA;pj�nð0Þ ��nðyÞ��

�Yn
i¼1

�
2q�

2q�kþi � j ~ki?j2 � i�

�
2l�2��ð2lþl� � l2?Þ

Y1
j¼n0

�
2q�

2q�k0þj � j ~k0j?j2 þ i�

�
taiAþ

aiðyiÞta
0
jAþ

a0j
ðy0jÞ��jA;pi

� e�i
P

n�1
i¼1

ki�yiei
P

n0�1
j¼1

k0j�y0je½�iyn�fl�ðqþPn�1
i¼0

kiÞg�e½iy
0
n0 �fl�ðqþPn0�1

j¼0
k0jÞg�; (34)

where, it is understood that y00 is the origin and y0 � y. In
the equation above, the gauge fields have been expressed in
coordinate space. At this point an n-th momentum may be
introduced, via

1 ¼
Z

d4kn�
4

�
l� Xn

k¼0

kk � q

�
: (35)

This leads to a considerable simplification of the phase
factors. The complete absence of the (� ) components of
the momentum, from all expressions except for the phase
factors allows for the k� and k0� integrations to be done,
resulting in the localization of the process on the negative
light-cone.

The integrals over the momenta kþi , k0þj may be reex-

pressed in terms of momentum fractions, i.e.,

Q2 ¼ 2xBp
þq�; kþi ¼ xip

þ; k0þj ¼ x0jpþ; (36)

Xi
k¼0

2 ~ki? � ~kk? þ j ~ki?j2 ¼ 2xiDp
þq�; (37)

Xj
l¼0

2 ~k0j? � ~k0l? þ j ~k0j?j2 ¼ 2x0jDpþq�: (38)

Integrating over all the xi and x0j momentum fractions by

contour integration, we obtain the much simplified form of
the hadronic tensor,

W�� ¼ gnþn0
Z d2l?

ð2�Þ2
Yn
i¼0

dy�i d2yi?
Yn0
j¼1

dy0�jd
2y0j?

Z Yn
i¼0

d2ki?
ð2�Þ2

Yn0�1

j¼0

d2k0j?
ð2�Þ2 ð2�Þ2�2ð~l? � ~K?Þ 12

� ðg��g�þ þ g�þg�� � g��Þe�ixBp
þy�

Yn
i¼0

e�ixiDp
þy�i ei

~ki?� ~yi?
Yn0
j¼0

eix
0j
Dp

þy0�je�i ~k0j?� ~y0j?
Y1
i¼n

�ðy�i � y�i�1Þ

� Y1
j¼n0

�ðy0�j � y0�j�1ÞhA;pj ��nðy�; y?Þ�þ�nð0ÞTr
�Yn
i¼1

taiAþ
aiðy�i ; ~yi?Þ

Y1
j¼n0

tajAþ
ajðy0�j; ~y

0j
?Þ
�
jA;pi: (39)

The expression derived above has so far been a direct
application of the Feynman rules derived in the preceding
section. Hitherto, no assumption regarding the nature of the
nuclear state has been made. As a result the nuclear or
nucleon scale of �Q has also not appeared in any of the
expressions. However, the hadronic tensor in Eq. (39) and
any resulting transverse broadening will, ultimately, de-
pend on the expectation of the (nþ n0 þ 2)-parton opera-
tor as indicated in the last line of Eq. (39). To proceed
further, approximations regarding the expectation of this
partonic operator will have to be made. In these approx-
imations, the in-medium scale �Q will appear. However,
as we will show, the final transverse broadening will turn
out to be independent of this scale under certain
assumptions.

Following standard treatments, we approximate the nu-
cleus as a weakly interacting homogeneous gas of nucle-
ons. Such an approximation is only sensible at very high

energy, where, due to time dilation, the nucleons appear to
travel in straight lines almost independent of each other
over the interval of the interaction of the hard probe. All
forms of correlators between nucleons (spin, momentum,
etc.) are assumed to be rather suppressed. As a result, the
expectation value of the nþ n0 þ 2 operators in the nu-
clear state may be decomposed as

hA;pj �� �nðy�; ~y?Þ�þ� �nð0Þ
Ynþn0

i¼1

Aþ
aiðyiÞjA;pi

¼ CA
p0;p2;...pn

hp0j �� �nðy�; ~y?Þ�þ� �njp0i

� Yðnþn0Þ=2

i¼1

hpijAþ
aiðyiÞAþ

a0i
ðy0iÞjpii; (40)

where, the factor CA
p0;p1;...;pn

represents the correlations

between the ðnþ n0Þ=2 nucleons which interact with the
propagating parton. In the decomposition above, we have
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restricted at most two parton operators per nucleon, insist-
ing that any larger number of operators is suppressed. Note
that this is only true outside the saturation regime [33,34].
The decomposition performed above, also restricts n ¼ n0.
The choice of gluon operators per nucleon is also special to
the case of transverse broadening: The maximum broad-
ening is obtained when one gluon operator from the am-
plitude is paired with one from the complex conjugate.
This reason for this is immediately understood with further
simplifications on each gluon pair (written with spin and
color indices suppressed),

Z
d2yi?d

2y0j?hpjAþð ~yi?ÞAþð ~y0j?Þjpi

� exp½�ixiDp
þy�i þ i ~ki? � ~yi? þ ix0jDpþy0�j

� i ~k0j? � ~y0j?�
¼ ð2�Þ2�2ð ~ki? � ~k0j?Þ

Z
d2y?e

�ixiDp
þðy�i �y0�jÞ

� ei
~k?� ~y?hpjAþð ~y?=2ÞAþð� ~y?=2Þjpi; (41)

where ~y? is the transverse gap between the two gluon

insertions and ~k? ¼ ð ~ki? þ ~k0j?Þ=2. The physics of the
above equation is essentially the transverse translation
symmetry of the two-gluon correlator in a very large
nucleus. This is then used to equate the transverse mo-
menta emanating from the two gluon insertions. Thus, if
the two operators were both chosen from the amplitude or
the complex conjugate, then the momenta brought in by
one gluon operator would be immediately taken out by the
other and, as a result, the combination of the two operators
will lead to no net transverse broadening. The integration
above, also simplifies the longitudinal phase factors which
now depend solely on the difference of the longitudinal
positions of the two gluon insertions.

Further simplifications are introduced by Taylor expand-
ing the transverse momentum dependent delta function, as

Yn
i¼1

@2

2!@2ki?
�2ð~l? þX

~ki?Þ
�������� ~ki?¼0

Yn
i¼1

j ~ki?j2; (42)

and combining the j ~ki?j2 with the expectation of the two-
gluon operator hpijAþ

aið ~yi?=2ÞAþ
a0i
ð� ~yi?=2Þjpii to convert

these into the expectation of field strengths in the nucleon
hpijFþ?

ai ð ~yi?=2ÞFþ?
a0i

ð� ~yi?=2Þjpii. The meaning of this de-

composition of the transverse momentum delta function is
the retention of solely the leading twist part of each of the
two-point correlators in each nucleon. Higher powers of a
given transverse momentum will necessarily lead to higher
transverse moments of the two-gluon operator. One further
assumption regarding the two-point function of Eq. (41),
due to color confinement, leads to a constraint on the two
longitudinal y� integrations (ignoring color and spin in-
dices),

Z
dy�dy0�hpjFðy�ÞFðy0�Þjpi ’

Z
dy�hFFiy�conf ; (43)

where, hFFi is the gluon expectation in a nucleon and y�conf
is the confining distance.

Each such integral yields a factor of L� � A1=3 � 1=�
from the unconstrained y� integration. The equating of the
pairs of transverse momenta that appear in each two-gluon
correlation, as well as the relation between the longitudinal
momenta from the � functions in Eq. (39), require that the
largest transverse momentum broadening and largest
length enhancement arises from the terms where the gluon
correlations are built up in a mirror symmetric fashion, i.e.,
where the gluon insertion at yi is contracted with that at y0i.
Averaging over the spins and colors of the two-point

functions in each nucleon, the remaining n longitudinal
position integrals for the gluon insertions may be simpli-
fied as

Z Yn
i¼1

dy�i �ðy�i � y�i�1Þ ¼
1

n!

Z Yn
i¼1

dy�i : (44)

Invoking the above simplifications, the leading length en-
hanced contribution at order 2n to the differential hadronic
tensor is obtained as

d2W��
n

d2l?
¼ CA

p0;...;pn
W��

0

1

n!
½fr2

l?gn�2ð~l?Þ�

�
�
�2
s

2Nc

L� Z dy�

2�
hpjFaþ
Fa


;
þjpi

�
n
;

(45)

where W
��
0 is the leading order transverse momentum

integrated hadronic tensor, given as

W
��
0 ¼ 2�½g��g�þ þ g�þg�� � g���X

q

Q2
qfqðxBÞ;

(46)

where the expectation of the two quark operator in Eq. (40)
leads to the quark structure function in the equation above.
There remains the overall coefficient CA

p0;...;pn
which

contains the weak correlations between the various struck
nucleons. A study of such correlations in Refs. [35,36]
revealed that a simple factorized form such as CA

p0;...;pn
¼

CA
p0
ð�=2pþÞn, where � is the density of nucleons in a

nucleus, is not completely inappropriate. Using this simple
form one may sum over all n, i.e., over multiple scatterings
of the quark in the nucleus, to obtain the resummed equa-
tion,

d2W��

d2l?
¼ e

ðDL�Þr2
l?
d2W

��
0

d2l?
; (47)

where, d2W��
0 =d2l? ¼ W��

0 �2ð~l?Þ, and the constant D is

given as
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D ¼ �2
s

2Nc

�
Z d3yd2k?

ð2�Þ32pþ hpjFaþ
ðyÞFa

;
þð0Þjpi

� exp

�
�i

�j ~k?j2
2q�

y� � ~k? � ~y?
��
: (48)

It is this constant D which controls the broadening expe-
rienced by the hard jet in the extended nucleus.

As shown in Ref. [32], Eq. (47) is a solution of the two
dimensional transverse momentum diffusion equation,
where the initial condition may be taken as a � function
in transverse momentum. Taking moments of the solution
of the diffusion equation, we obtain the total transverse
momentum squared acquired by the hard quark after tra-
versing a length L� in the nucleus as given by the simple
relation,

hk2?iL� ¼ 4DL�: (49)

The reader will note that we have used a two dimensional
delta function as the input to the diffusion equation. This is
an approximation to a very peaked distribution and one
may use any other input distribution as well. The net extra
broadening experienced by the input distribution is given
by Eq. (49). Given that the initial parton is an SCET mode,

the transverse momentum is of the order of j ~k?j2 � ð�QÞ2.
As a last step, we will demonstrate that the broadening
obtained from multiple scattering in the large nucleus is of
this order in power counting and thus one may continue to
think of an SCET mode propagating in the extended
medium.

The power counting of net transverse momentum
squared may be easily estimated from counting powers
of � and � in the expression for D in Eq. (48). As the
expression is frame independent it will be evaluated in the
Breit frame. In this frame, the z component of the length of
the nucleon (� 1=ð�QÞ) is contracted to a length of order
1=Q; hence the nucleon density � scales as

� ¼ 1

V
��2Q3: (50)

The dimension of the nucleon ket is obtained from the
standard normalization of the on-shell nucleon state, given
as

hpjqi ¼ ð2�Þ32pþ�ðpþ � qþÞ�2ð ~p? � ~q?Þ
) jpi � ð�QÞ�2: (51)

The Fþ?Fþ? correlator scales as ð�3Q2Þ2 from the stan-
dard Glauber scaling rules for the transverse momentum
and the vector potential. The enhanced length in the nu-
cleus may be expressed in terms of the nuclear parameter

A1=3 and the length of a nucleon lN, as

L� ¼ A1=3lN � A1=3

Q
: (52)

Substituting the above relations in Eq. (48), and noting
that the y� and the ~y? coordinates are conjugate to the
jk?j2=2q� and ~p? momenta, yields the � power counting
of the net transverse momentum squared picked up by the
hard parton as

hp2
?iL� � A1=3�4Q2; (53)

independent of the medium scaling parameter �. The
broadening is rather small in an object the size of a nu-
cleon, but may get enhanced in large or dense media. As a

result, for small nuclei where A1=3 � ��2 one may ignore
this extra effect of final-state multiple scattering. For nu-

clei, where A1=3 � ��2, or the medium has a very large
gluon density we may obtain a broadening which is com-
parable to the jets’ inherent transverse momentum. In this
case, we are in the ‘‘SCET-Glauber’’ region, where the
derived effective Lagrangian in this paper may be used in
combination with the SCET Lagrangian to understand the
interaction of hard jets in dense media. For nuclei where

A1=3 � ��2, the Glauber modes will broaden the propa-
gating jets beyond the scaling assumed in the derivation of
the SCET Lagrangian and a different set of effective theo-
ries will need to be constructed.
There is an unknown quantity that has been invoked a

number of times in the discussion above: the inherent
gluon density. This is the density of ‘‘small x’’ gluons
that emanate from the current density in the medium and
interact with the hard jet. The number of such gluons is a
dimensionless quantity and thus difficult to estimate in a
power counting calculation. The number of such gluons
may in general also depend on the media in question. It is
well known that the number of such gluons may become
rather large at high energies and may thus lead to consid-
erable broadening of hard jets. While the application in this
section has focused on the broadening of jets in nuclei, the
factorization properties afforded by SCET bode well for
the applicability of this theory to jet broadening in dense
QGPs created in heavy-ion collisions. While QGPs have
been estimated to be from 10 to 100 times denser than
nuclear matter, their lifetimes are rather short and the
majority of jets propagate rather short distances in the
densest part of such environments. Given these experimen-
tal considerations, we expect the derived effective theory in
combination with SCET to have wide applicability.

V. APPLICATION II: TMDPDF

Inclusive hard scattering processes like DIS can be
factorized into perturbatively calculable short-distance
quantities convoluted with nonperturbative long-distance
quantities [1]. The latter quantities are the familiar
Feynman PDFs. For semi-inclusive processes where a
single hadron is observed in the final state with a given
transverse momentum, it is the TMDPDF that enters into
the factorization formula for the cross section. More details
can be found in [37,38]. The TMDPDF were introduced a
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long time ago in [4], as

fðx; ~k?Þ ¼ 1

2

Z d��d2 ~�?
ð2�Þ3 e�ið��kþ� ~�?� ~k?Þ

� hPj �c ð��; ~�?ÞLy
~�?
ð1; ��Þ

� �þL0ð1; 0Þc ð0; ~0?ÞjPi; (54)

where L is a path-ordered gauge link along the light cone in
the (� ) direction, i.e.,

L ~�?
ð1; ��Þ ¼ P exp

�
igs

Z 1

��
d��Aþð��; ~�?Þ

�
: (55)

The Wilson line L ~�?
has a well-known origin: It comes

from the radiation of gluons which are collinear to the
incoming parton. In SCET these Wilson lines are also the
familiar collinear Wilson lines W [9]. In this work we will
not discuss further the emergence of those Wilson lines as
they are not related to Glauber gluons.

The TMDPDF is a physical quantity and thus has to be
gauge invariant under arbitrary gauge transformation.
However the above definition is gauge invariant only in
the set of nonsingular gauges like covariant gauges where
the gluon field vanishes at �� ¼ 1. In singular gauges like
light-cone gauge (with Aþ ¼ 0) the gluon field (specifi-
cally the transverse components A?) does not vanish at
�� ¼ 1 and a gauge transformation performed with
A?ð�� ¼ 1Þ will generate a nonvanishing phase that is
not compensated by any gauge link. Thus the above defi-
nition of the TMDPDF has to be modified by introducing
an additional gauge link formed from the transverse com-
ponents A?:

L��¼1ð ~�?; ~0?Þ ¼ Pexp

�
igs

Z ~�?

0
d ~�

0
? � ~A?ð�� ¼1; ~�

0
?Þ
�
;

(56)

where the line integral in the transverse plane can be
performed in arbitrary direction. The above observations
were first made in Ref. [30].

The important question that arises is what kind of inter-
actions, say in DIS, build up this gauge link. This question
was answered in the work of Belitsky, Ji, and Yuan (BJY)
[39]. There it was shown that the final-state interactions
between the struck quark and the remnants of the incoming
proton are responsible for the appearance of this gauge
link. Those final-state interactions are mediated by
Coulomb gluons that carry mainly a momentum in the
transverse direction. In the next section we will check
whether these gluons are Glauber gluons or not. It is
important to verify this issue as the final-state interactions
are responsible for many physical effects like single-spin
asymmetries and shadowing [40–42]. Any attempt to for-
mulate an effective field theoretic approach to study such
effects has to start from identifying the relevant momentum
modes that mediate the interactions.

We start by briefly reviewing the work of BJY by con-
sidering the Feynman diagram given in Fig. 6. A quark
propagator with momentum p� k has a denominator:
�2p�kþ þ k2 where the quark has essentially large mo-
mentum in the �z direction. The integral over the gluon
momentum k gets contributions from a vanishing denomi-
nator. This could happen if (1) k is collinear to the outgoing
quark. In this case both terms in the denominator scale as
�2. Or, (2) k is soft which means k2 � kþ and kþ scales as
�2. Or, (3) k has Glauber scaling. Assuming the gluon is
emitted from a fast-moving nucleon in the þz direction
then (1) is highly improbable. Case (2) does not lead to any
transverse effects like transverse gauge link or transverse
broadening as all componets of k scale similarly. Moreover
soft gluons give rise to the familiar Eikonal soft Wilson
lines. In SCET soft contributions can be handled by field
redefinitions [12] and they get factorized from the collinear
sector. The remaining contribution comes from (3) where

p�kþ ’ j ~k?j2 ’ k2.
In BJY, the exact scaling of the gluons is not specified.

This issue will be addressed in some detail below. For now,
we continue the review of their work. By making use of the
Chisholm’s representation, one obtains the following form
for the propagator:

1

2p�kþ þ k2? � i"
¼ i

Z 1

0
d
e�i
ð2p�kþþk2?�i"Þ; (57)

where the left-hand side is obtained from the limit 
 ¼ 0.
With the above representation one is then able to carry out
the integrations over kþ for the amplitude of Fig. 6. One
then gets the gluon field A�ðxÞ (in the mixed coordinate-
momentum representation) evaluated at A� (x� ¼ 2
p�,
xþ ¼ 0, ~k?). Now take the scaling limit p� ! 1 before
performing the 
 integrations. This sets the argument of the
gluon field in the light-cone direction at infinity and all the
remaining 
 dependence is now in the exponent. Then

perform the 
 integration. This will result in a j ~k?j2 in
the denominator. By repeating the above set of manipula-
tions one gets the following result for a multigluon ex-
change:

FIG. 6. Final-state interactions in DIS: one-gluon exchange.
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hp�;Njj�ð0ÞjPi ¼ ð�1ÞnðiÞnðigsÞn �uðp�Þ�n
i¼1hNj

Z d2 ~ki
ð2�Þ2

�A6 ð1; ~kiÞ
P

i
j¼1

~6kj?
jPi

j¼1
~kj?j2 � i"

��c ð0ÞjPi:

(58)

In light-cone gauge it is Eq. (58) that gives the transverse
gauge link. It is important to notice that the last result could
be simply obtained by calculating, in full QCD, the ampli-
tude for a Feynman diagram with arbitrary number of
gluon attachments and then setting all the kþ components
of the gluon fields to 0 wherever they show up. The last
equation is only valid if one takes the scaling limit first
which amounts to setting all the kþ to 0. This procedure
clearly violates the Glauber scaling as one has to maintain

the relative scalings of kþ and j ~kj2=ð2p�Þ intact.
The transverse gauge link that results from final-state

interactions was also derived with a somewhat different set
of manipulations in [43], however, the basic observation is
still the same: it is gluons with vanishing kþ that give rise
to that gauge link. Another important issue related to the
correct definition of the TMDPDF was raised in
Refs. [43,44]. There it was claimed that a soft factor, built
up of soft Wilson lines, needs to be subtracted from the
standard definition of the TMDPDF so as to get the desired
features of the anomalous dimension of the TMDPDF. Soft
factor subtractions were also discussed in the traditional
literature of pQCD [45–48] where this subtraction is aimed
to avoid double counting among mainly the collinear and
soft contributions. In the effective field approach the
double counting issue was treated within the ‘‘zero-bin’’
subtraction [49] and later on a connection was made with
the pQCD one [50–52]. It will be interesting to see whether
the arguments of soft subtraction based on the anomalous
dimension arguments are equivalent to the double counting
issue. We will not discuss this issue further here and we
leave it to a future work.

One Glauber exchange

We start our analysis of the TMDPDF in light-cone
gauge �n � A ¼ 0 by considering the relatively simple case
of only one Glauber gluon interacting with a collinear
quark. The kinematics are that of DIS: the incoming quark
is collinear in the þz direction with pþ large and of order
of Q. This quark carries a longitudinal momentum fraction

x and carries transverse momentum ~k?. The virtual photon
moves in the �z direction with momentum q ¼
ð0; 0; 0;�QÞ. Thus after the hard interaction the quark

has momentum with p� ¼ Q=
ffiffiffi
2

p
and transverse momen-

tum ~k?. The Glauber gluon has also ~k? so the outgoing
quark has only p�. Following the notation of BJY we
consider the contribution of Fig. 6 to the matrix element
hp�; Njj�ð0ÞjPi.

For Glauber gluons we now use the Feynman rules given
in Fig. 3. We get

I1 ¼ gs �� �n

��?

2p�
Z dkþ

2�

Z d2 ~k?
ð2�Þ2

� k6 ?
kþ þ j ~k?j2

2p� � i"
A�?ðkþ; ~k?Þ; (59)

where we used �u n6 �6n
2 ¼ �u. We now invoke the Fourier trans-

form of Aðkþ; ~k?Þ:

A�?ðkþ; ~k?Þ ¼
Z

dx�
Z

d2 ~x? ~A�?ðx�; ~x?Þeiðkþx�� ~k?� ~x?Þ;

(60)

and substitute for Aðkþ; ~k?Þ into Eq. (59) and carry the kþ
integral by contour integration picking up the pole from

kþ ¼ � j ~k?j2
2p� þ i". The result is (from now on we drop the

tilde on ~A),

I1 ¼ igs �� �n

��?

2p�
Z

dx��ðx�Þ
Z

d2 ~x?A�?ðx�; ~x?Þ

�
Z d2 ~k?

ð2�Þ2 k6 ?e
�ið½j ~k?j2x�=2p��� ~k?� ~x?Þ: (61)

In order to carry out the integral over d2 ~k? we complete
the square in the exponent and shift the integration variable

to ~k0? ¼ ~k? þ p�
x� ~x?. The resulting integral proportional to

~k0? vanishes by symmetry. The remaining d2 ~k? integral is
obtained as

¼
Z 1

�1
d2 ~k?
ð2�Þ2 e

�iðj ~k?j2x�=2p�Þ

¼ 2p�

x�
1

ð2�Þ2
�Z 1

�1
dkxe

�ik2xx
�=2p�

�
2

¼ 2p�

x�
1

ð2�Þ2
�
ð1� iÞ

ffiffiffiffi
�

2

r �
2 ¼ �i

2�

p�

x�
: (62)

Introducing the above mentioned simplifications in
Eq. (61), the result for I1 reads

I1 ¼ gs
1

2�

��?

2p�
Z

dx��ðx�Þ
Z

d2 ~x? ~6x?A�?ðx�; ~x?Þ

�
�
p�

x�

�
2
e�ip� ~x?j2=2x� : (63)

Let us consider the x� integral:

~I ¼
Z

dx��ðx�ÞA�?ðx�; ~x?Þ
�
p�

x�

�
2
e�ip�j ~x?j2=2x� ; (64)

and perform the integration by parts. To do so we notice
that in light-cone gauge the x� dependence of A�? on x� is

just a �ðx�Þ [53–55]. [See Eq. (68) below.] Moreover the
contribution from a highly oscillating phase (obtained from
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the lower limit of the integral) would give a vanishing
contribution upon integration over the transverse coordi-
nates. The result of the integral over x� is then given as

~I ¼ 2ip�

j ~x?j2
� A�?ð1; ~x?Þ: (65)

Substituting the above result in the expression for I1, we
obtain

I1 ¼ igs
1

2�
��? Z

d2 ~x?
~6x?

j ~x?j2
A�?ð1; ~x?Þ: (66)

In what follows, we decompose, ~x? as ~x? ¼ j ~x?jn̂� where
n̂� � ðcos�; sin�Þ. The integration measure is given as
d2 ~x? ¼ j ~x?jdj ~x?jd�. Substitution in the expression for
I1 leads to the form,

I1 ¼ igs
1

2�
��?�i

Z 2�

0
d�

Z 1

0
dj ~x?jðn̂�ÞiA�?ð1; ~x?Þ;

(67)

with i ¼ 1, 2. Using the trivial relation: ��?�i ¼ 1
2 �ð½��?; �i� þ f��?; �igÞ and the fact that in light-cone

gauge the gluon field A�? at x� ! 1 is a pure gauge

[39], we obtain

A?ðx� ! 1; ~x?Þ ¼ �ðx�Þ ~r�ðrÞ; (68)

where r � j ~x?j and � is an arbitrary scalar function. Then
we have

A?ðx� ! 1; ~x?Þ ¼ d�

dr
n̂�; (69)

which shows that the gluon field A? is directed in the radial
direction. With this, it is straightforward to show that the
contribution from the commutator of the � matrices van-
ishes by symmetry. Thus we obtain

I1 ¼ igs
1

2�

Z 2�

0
d�

Z 1

0
dj ~x?jðn̂�ÞiA?

i ð1; ~x?Þ

¼ igs
Z 1

0
dj ~x?jn̂ � Að1; ~x?Þ; (70)

where, the second equality in the equation above is derived
from the use of Eq. (69).

The above analysis shows that it is indeed the Glauber
gluons, arising from final-state interactions, that build the
transverse gauge link. In this sense, any (gauge-invariant)
effective field theory formulation, of the TMDPDF, in
particular, (see e.g. Ref. [56]) or semi-inclusive hadronic
processes in general, requires the introduction of the
Glauber mode in addition to the soft and collinear modes.

Two remarks are in order. We first notice that the above
treatment could also be carried out with a multiple of
Glauber gluons attachments. The power counting of such
Feynman diagrams would still be leading since those con-
tributions arise from the leading order Lagrangian. The
sum of all those contributions would give the transverse

gauge link. Second, we notice that the power counting of
the Glauber gluon field, in light-cone gauge could be read
off from Eq. (69). In Feynman gauge, the power counting
of Aþ could also be read-of from explicit expressions [see,
e.g., Eq. (14) in [30] ].

VI. CONCLUSIONS

Effective theories now constitute a mainstay in the col-
lection of theoretical methods used to apply perturbative
QCD to phenomenological questions. The soft collinear
effective theory has been identified as a rigorous and
systematic effective approach in the application to phe-
nomena involving hard jets in vacuum. In this article, we
have instituted the first extension of this ‘‘leading twist’’
effective theory to include power corrections from the
medium. As a guide to understanding the effects of the
medium on a jet, we have focused on a description of the
rescattering encountered by a hard quark produced in deep-
inelastic scattering on a nucleon in vacuum or within a
large nucleus. While most of the results derived in this
manuscript are immediately applicable to quark jets prop-
agating through confined media, these may be straightfor-
wardly extended to gluon jets as well as to propagation in
deconfined media.
A jet in SCET is endowed with a very particular relation

as regards the range of its different momentum compo-
nents,

p� � ½pþ; p�; ~p?� �Q½�2; 1; ��; (71)

where, we have specified the case for a jet moving in the
(� ) direction with Q, a hard scale and � a small parame-
ter. The virtuality of this jet allows it to resolve modes in
the medium with transverse momentum k? � �Q. If the
forward or (þ ) momentum components of these in-
medium modes scale as Q (or even as �Q), this will result
in an intermediate parton with large off-shellness of the
order of Q2 (or �Q2) and almost immediate hard radiation
with large transverse momentum. Such interactions will,
no doubt, change the large momentum label of the prop-
agating SCETmode and will be dealt with in more detail in
a future effort. If the forward momenta scale as �2Q, the
off-shellness of the propagating mode remains within the
scaling prescribed by SCET and as a result, the simplest
extension to this vacuum theory is suggested in Sec. II: the
interaction between hard collinear quarks (or gluons) with
gluons in the medium which scale as

k� �Q½�2; �2; ��: (72)

Such gluons are referred to as Glauber gluons and in
Sec. III we have constructed the effective Lagrangian
which describes their interactions with the hard collinear
modes. Although we have denoted the scaling of the k�
momentum to be �2Q, it could indeed have any scaling
k� & Q i.e., not be a hard collinear mode traveling in the
(� ) direction. In the Breit frame with the medium moving
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with a large boost �� ��2 in the (þ ) direction, such
modes are energetically disfavored.

Since Glauber modes carry a small fraction of the for-
ward energy of the nucleon being struck by the hard jet
moving in the (� ) direction, they are quite pervasive and
thus the inclusion of such modes and their interactions with
the hard collinear modes is rather important. Such inter-
actions occur continuously on a hard jet propagating
through a dense medium. Given their off-shellness,
SCET modes may traverse distances of the order of
ð�2QÞ�1 before decay. When hard jets traverse large dis-
tances in dense matter, their total transverse momentum
distribution is broadened. As a first application of the
effective Glauber Lagrangian, this transverse broadening
is derived for the case of DIS on a large nucleus in Sec. IV.
Multiple interactions with Glauber modes may eventually
lead to the generation of off-shellness or transverse mo-
menta beyond the range of applicability of SCET and a
completely different effective theory will have to be con-
structed. The transverse broadening as a function of the
distance travelled allows for an estimation of the range in
size of media, within which the effective theory will re-
main applicable. This is estimated in Sec. IV with the aid of
some phenomenological input. It is argued that the derived
effective theory has a wide range of applicability which
may easily encompass jet propagation in the cold confined
matter in large nuclei to that in hot deconfined matter
created in high-energy heavy-ion collisions.

In Sec. V, as a second example of the role of Glauber
gluons in hard processes, we have considered the treat-
ment, in full QCD, of Belitsky, Ji and Yuan for the
TMDPDF. In their calculation, they have shown that glu-
ons with solely transverse momentum components build up
a transverse gauge link which should be an integral part of
the gauge-invariant definition of the TMDPDF. Their
analysis seemed to depend on taking the scaling limit first.
In the current effort, we have demonstrated that the trans-
verse gauge link may also be derived by keeping the
Glauber scaling of gluon momenta between kþ and

j ~k?j2=2p� explicit throughout the calculation. The full
link structure, in any gauge, has been shown to arise
from a combination of collinear and Glauber gluons.

As a final remark we address certain situations where the
Glauber gluons do not contribute. A standard example
would be DIS on a nucleon with its related physical
quantities: The quark form factor and the PDF. It has
been demonstrated that the only relevant modes that pro-
duce the infrared behavior of QCD for DIS are the soft and
collinear (see, e.g, [57] and references therein). Also for
the factorization of the PDF itself (in the large x limit)
similar arguments and conclusions have been given in
Ref. [58]. The fact that Glauber gluons do not contribute
to the factorization of DIS on a nucleon could, in principle,
be shown (in the effective field theory approach) when one

combines the soft, collinear, and Glauber in one framework
and then certain cancellations of the Glauber contributions
should become manifest. This is a somewhat more in-
volved topic, which we leave for a future effort.
One may also compute the corrections to the single

hadron inclusive cross section in DIS on a nucleon from
the Glauber sector. In large nuclei, the produced jets tend to
have a distribution in transverse momentum which is much
wider than the case of DIS on a nucleon. It is well estab-
lished that such corrections are not leading and are power
suppressed, hence are unimportant in the case of DIS on a
nucleon. This result is also consistent with the Glauber
Lagrangian derived in the current manuscript. The magni-
tude of the correction from Glauber scattering may be
estimated from Eq. (53) by setting A ¼ 1. It is clear that
the hp2

?i generated is suppressed by �2 compared to that in

a purely SCET process. Thus in the computation of the
single hadron inclusive cross section from DIS on a nu-
cleon, the contribution of the Glauber Lagrangian is power
suppressed. In the case of the Drell-Yan process, the rele-
vance of Glauber gluons is a more complicated issue. We
will not discuss it further and refer the reader instead to
Refs. [5,59–61].
In future efforts, the interaction between the Glauber

modes emanating from the medium and the soft and col-
linear gluons of the SCET Lagrangian will have to be
derived. This will represent the first complete theoretical
description of jets with off-shellness in the range of ð�QÞ2
propagating through dense media. The setup of such a
formalism will allow for the first systematic approach to
such difficult problems such as factorization in hard jet
production and modification in heavy-ion collisions.
Embellishments of the heavy quark effective theory with
Glauber modes will lead to more rigorous formulations of
heavy-quark propagation in dense matter. Such extensions
of SCET and heavy quark effective theory will lead to
important advancements in our understanding of parton
propagation and energy loss in dense matter and will no
doubt play a leading role in the detailed theory and experi-
mental comparison currently underway in DIS and heavy-
ion collisions.
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