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We investigate the model dependence of no-helicity flip generalized parton distribution of the pion upon

different approaches for the quark-hadron and quark-photon vertices, in the spacelike region. In order to

obtain information on contributions from both the valence and the nonvalence regions, we compare results

for spacelike momentum transfers obtained from (i) an analytic covariant model with a bare quark-photon

vertex, (ii) a light-front approach with a quark-photon vertex dressed through a microscopic vector-meson

model, and (iii) a light-front approach based on the relativistic Hamiltonian dynamics. Our comparisons

lead us to infer the same dynamical mechanism, the one-gluon-exchange dominance at short distances, as

a source of both the electromagnetic form factor at large momentum transfer and the parton distribution

close to the end points. The expected collinear behavior of the generalized parton distributions at high-

momentum transfer, i.e. a maximum for x� 1, is also illustrated, independently of the different

approaches. Finally, a comparison with recent lattice calculations of the gravitational form factors is

presented.
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I. INTRODUCTION

In recent years, a growing interest in the study of the
deeply virtual Compton scattering (DVCS) has motivated
an impressive amount of work aimed at the extraction of
the so-called generalized parton distributions (GPDs) from
experimental data (see, e.g., Refs. [1–6] for recent re-
views). In principle, GPDs allow one to achieve an unpre-
cedented level of detail on the knowledge of hadronic
states.

Naturally, the pion GPD should represent a test ground
of any approach that addresses the issue of obtaining a
detailed description of hadron structure, and this explains
the wealth of papers devoted to such a task (see, e.g., [4,7–
16]). In what follows, we focus on the GPDs that do not
depend upon the helicities of the constituents; namely, we
analyze the pion isoscalar and isovector GPDs, as defined,
e.g., in [12].

The aim of our paper is the investigation of the model
dependence of those no-helicity flip (chiral-even) GPDs of
the pion upon different relativistic approaches in the space-
like region, i.e. for negative values of t ¼ ðp0 � pÞ2, where
p and p0 are the initial and final four-momenta of the pion,
respectively. In particular, the study of the GPDs in the
valence and nonvalence regions (see the following section)
is emphasized by the choice of three different models that
explore different kinematical regions: (i) a covariant ana-
lytic constituent quark (CQ) model that covers the whole
kinematical domain and allows us to interpolate between
the other two models; (ii) two phenomenological models,
elaborated within a light-front (LF) framework (see, e.g.,

[17–19] for a review), which have a smaller kinematical
range of applicability; namely, one addresses the nonva-
lence region and the other the valence one.
The first model is analytic and covariant and depends

upon the mass of the constituents and a parameter, fixed by
the decay constant of the pion. The main ingredients of
such an approach are (i) the Bethe-Salpeter amplitude
(BSA) of the pion, modeled through an analytic ansatz in
the Minkowski space, (ii) the Mandelstam formula [20] (or
impulse approximation formula) for the matrix elements of
the current operator, and (iii) a bare quark-photon vertex. A
peculiar feature of our ansatz for the pion BSA is given by
the symmetry under the exchange of the constituent mo-
menta. The first version of such a model was adopted in
Ref. [21] to investigate the frame dependence of the de-
scription of the electromagnetic (em) pion form factor,
putting in evidence the possibility to study the nonvalence
content of the pion by using a suitable reference frame. In
the present work, we consider a natural extension of the
model that features a better end-point behavior of the BSA,
as well.
A second model, developed within the LF dynamics and

already applied to the em pion form factor in both the
space- and timelike regions [22], is still based on the
Mandelstam formula. However, this model retains only
the analytic structure given by the poles of the Dirac
propagators in the analytic integration over k� ¼
k0 � k3, i.e. the minus component of the constituent four-
momentum appearing in the loop formula. An important
consequence of the k� integration can be reached in a

PHYSICAL REVIEW D 80, 054021 (2009)

1550-7998=2009=80(5)=054021(22) 054021-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.054021


frame where the plus component of the virtual-photon
four-momentum is different from zero, i.e. �þ ¼
�0 þ �3 � 0. Indeed, in this frame the contributions in
the valence and nonvalence regions can be obtained, al-
lowing an investigation of the Fock components of the
hadronic state (see [4,18,19,23,24] for an overview of the
Fock expansion of a hadron state, within the LF frame-
work). Another relevant feature of this model, that has a
fundamental impact in the timelike region, is the quark-
photon vertex dressed by a microscopic version of the
vector-meson model (VMD) [22]. Finally, as explained in
detail in Ref. [22], the model lives in the nonvalence
region, in the limit of vanishing pion mass.

A third model is constructed within the LF relativistic
Hamiltonian dynamics (LFHD), where the Poincaré co-
variance is fully satisfied (see, e.g., [17] for a detailed
review). In particular, the rotational covariance is fulfilled
through the introduction of the Melosh rotations and the
proper definition of the total intrinsic angular momentum.
At the present stage, the model explores only the valence
region.

The paper is organized as follows: In Sec. II, a brief
résumé of the general properties of the pion isospin-
dependent GPDs is presented; in Sec. III, the Fock decom-
position of the GPDs is discussed, in view of a frame-
dependent analysis; in Sec. IV, a covariant CQ model that
allows an analytic evaluation of the pion GPDs is de-
scribed; in Sec. VA, a first CQ light-front model, with a
quark-photon vertex dressed by a microscopic version of
the vector-meson dominance model, is presented; in
Sec. VB, the LFHD model, where the full Poincaré co-
variance is implemented, is described. Finally, in Secs. VI
and VII, the results are discussed and the conclusions
drawn.

II. PION GPDS: KINEMATICS AND GENERAL
FORMALISM

In the spacelike region, let us first illustrate the kinemat-
ics of the DVCS process with the symmetric momenta
convention shown in Fig. 1 (see [13] for the reduction of
the DVCS diagram to the one presented in Fig. 1, and the
pioneering paper [25] for the deep inelastic scattering

regime). For on-mass-shell pions, i.e. p02 ¼ p2 ¼ m2
�,

and adopting standard notations (see, e.g., [4,6])

t ¼ �2 ¼ ðp0 � pÞ2;

� ¼ � � � n
2P � n ¼ � �þ

2Pþ ¼ pþ � p0þ

pþ þ p0þ ; ðj�j � 1Þ;

x ¼ k � n
P � n ¼ kþ

Pþ ; ð1 � x � �1Þ; (1)

where n is a lightlike four-vector, such that vþ ¼ n � v ¼
v0 þ v3 [the scalar product is defined as a � b ¼ ðaþb� þ
a�bþÞ=2� a? � b?], P ¼ 1

2 ðp0 þ pÞ, and k is the average
momentum of the active quark, i.e. the one that interacts
with the photon (see Fig. 1). Notice that pþ and p0þ are
necessarily positive, while �þ � 0 is taken by choice.
From Eq. (1) one can trivially obtain the following useful
relations:

p0þ ¼ �þ

2

�
1� 1

�

�
; pþ ¼ ��þ

2

�
1þ 1

�

�
: (2)

As is well known, the variable x allows one to single out
(i) the valence region (where one has only contributions
diagonal in the Fock space; cf. the following Sec. III) given
by the union of two intervals x 2 ½�1;�j�j� (correspond-
ing to an active antiquark) and x 2 ½j�j; 1� (corresponding
to an active quark) and (ii) the nonvalence region x 2
½�j�j; j�j�. Figure 2(a), shows a representative of the con-
tribution with an active quark in the kinematical region
x 2 ½j�j; 1� (all of the constituents have a plus component
of their own momentum bounded from above by the cor-
responding quantity of the parent pion). In Fig. 2(b), a
contribution is shown from a pair-production process, non-
diagonal in the Fock space. In Appendix A, a more detailed
kinematical discussion is given. Finally, as a short detour,
let us remind the reader that the pion BSA, integrated over
the minus component of the quark momentum, yields the
two-body Fock contribution to the pion state, notably non-
vanishing only in the valence sector (see [19]).
Within the QCD-evolution framework, the valence re-

gion is called the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) [26] region, while the nonvalence one is
called the Efremov-Radyushkin-Brodsky-Lepage (ERBL)
[27,28] region.
In the interval ½j�j; 1�, the relation between the LF

momentum fraction xq of the active constituent in the

initial pion (with the support ½0; 1�) and the variable x
defined in Eq. (1) is given by

xq ¼ kþ � �þ=2
pþ ¼ kþ ��þ=2

Pþ � �þ=2
¼ xþ �

1þ �
¼ x� j�j

1� j�j :
(3)

The isospin-dependent GPDs (see, e.g., [4,7,12,14]) are
the matrix elements of light-cone bilocal operators sepa-
rated by a lightlike distance, z2 ¼ zþz� � jz?j2 ¼ 0, eval-
uated between pion states with different initial and final

FIG. 1. Diagrammatic representation of the pion GPD, with
four-momenta definitions.
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momenta. In the light-cone gauge, where Agluon � n ¼ 0

and the gauge link becomes unity, one can introduce iso-
scalar and isovector combinations for the off-forward (t �
0), nondiagonal (� � 0) GPDs, as follows:

HI¼0
�� ðx; �; tÞ ¼

Z dz�

4�
eixP

þz�h��ðp0Þj �c q

�
� 1

2
z

�

� � � nc q

�
1

2
z

�
j��ðpÞij~z¼0

¼ 1

2
½Hu

�þðx; �; tÞ þHd
�þðx; �; tÞ�

¼ 1

2
½Hd

��ðx; �; tÞ þHu
��ðx; �; tÞ� (4)

and

HI¼1
�� ðx; �; tÞ ¼

Z dz�

4�
eixP

þz�h��ðp0Þj �c q

�
� 1

2
z

�

� � � n�3c q

�
1

2
z

�
j��ðpÞij~z¼0

¼ 1

2
½Hu

��ðx; �; tÞ �Hd
��ðx; �; tÞ�

¼ � 1

2
½Hu

�þðx; �; tÞ �Hd
�þðx; �; tÞ�; (5)

where ~z 	 fzþ; z?g, while c qðzÞ and �3c qðzÞ are the

following doublets of quark fields:

UðzÞ
DðzÞ

� �
;

UðzÞ
�DðzÞ

� �
; (6)

respectively. In Eqs. (4) and (5), following [7], instead of
the Cartesian components �0, �1, and �2 (adopted in
[4,12,14]), the charged pions have been introduced, viz.,

j��i ¼ j�1i � ij�2iffiffiffi
2

p ; j�0i ¼ j�3i: (7)

The functionsHuðx; �; tÞ andHdðx; �; tÞ are u and d GPDs,
respectively, and contain quark and antiquark contributions
(cf. the parton interpretation of Hq, e.g., in [1,4] and
Fig. 2). It is worth noting that Hqðx; �; tÞ has the support
x 2 ½�1; 1�. Finally, due to the isospin symmetry, one has

Hu
�þ ¼ Hd

�� ; (8)

and combining charge and isospin symmetry (G parity)
one gets

Hu
�þðx; �; tÞ ¼ �Hu

��ð�x; �; tÞ ¼ �Hd
�þð�x; �; tÞ: (9)

In what follows, we deal with a charged pion, and the
subscript �þ in the quark GPDs is dropped out whenever
no ambiguity is present.
For vanishing � and t, one has the following partonic

decomposition (cf. [1,4]):

Huðx; 0; 0Þ ¼ �ðxÞuðxÞ � �ð�xÞ �uð�xÞ;
Hdðx; 0; 0Þ ¼ �ðxÞdðxÞ � �ð�xÞ �dð�xÞ: (10)

Equations (8) and (9) together with the partonic interpre-
tation lead to the well known relations between the stan-
dard parton distribution functions (let us remind the reader
that the relations pertain to active quarks), viz.,

u�þðxÞ ¼ d��ðxÞ; u�þðxÞ ¼ �d�þðxÞ: (11)

The symmetry property of HI¼0;1ðx; �; tÞ (see, e.g.,
[4,7]) under the transformation x ! �x, that just reflects
(i) the charge conjugation (p ! �p and p0 ! �p0) and
(ii) the isospin invariance, reads [recalling Eqs. (8) and (9)]

HI¼0ðx; �; tÞ ¼ 1
2½Huðx; �; tÞ �Huð�x; �; tÞ�

¼ �HI¼0ð�x; �; tÞ; (12)

HI¼1ðx; �; tÞ ¼ 1
2½Huðx; �; tÞ þHuð�x; �; tÞ�

¼ HI¼1ð�x; �; tÞ: (13)

Therefore the two GPDs are odd or even in x depending
upon the isospin combination. In addition, under the trans-
formation � ! ��, that amounts to apply a time-reversal
transformation (since we have to exchange the initial and
final pion momenta) and to exploit Hermiticity, one has
(see, e.g., [4,7])

HIðx; �; tÞ ¼ HIðx;��; tÞ; (14)

namely, HIðx; �; tÞ must be even in �.

FIG. 2. LF time-ordered analysis of the pion GPD. Diagram (a) A contribution in the valence region, 1 � x � j�j (see text).
Diagram (b) A contribution in the nonvalence region, j�j> x>�j�j (see text). The vertical dashed lines indicate a given value of the
LF time, in order to single out the number of constituents in flight.
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From Eqs. (4) and (5) one has

Huðx; �; tÞ ¼ HI¼0ðx; �; tÞ þHI¼1ðx; �; tÞ;
Hdðx; �; tÞ ¼ HI¼0ðx; �; tÞ �HI¼1ðx; �; tÞ: (15)

As is well known, the following sum rules hold [note a
different overall factor with respect to Refs. [12,14] due to
our choice of dealing with a charged pion; cf. Eq. (7)]:Z 1

�1
dxHI¼1ðx; �; tÞ ¼

Z 1

�1
dxHuðx; �; tÞ ¼ F�ðtÞ; (16)

Z 1

�1
dxxHI¼0ðx; �; tÞ ¼

Z 1

�1
dxxHuðx; �; tÞ

¼ 1

2
½�2ðtÞ � �2�1ðtÞ�: (17)

In Eq. (16), F�ðtÞ is the pion em form factor (see
Appendix C), while, according to Ref. [29], in Eq. (17),
�1ðtÞ and �2ðtÞ are the gravitational form factors (see also,
e.g., [7,12,15]) that enter in the parametrization of the
matrix elements of the quark part of the energy-momentum
tensor [notice that in the chiral limit one has �1ð0Þ �
�2ð0Þ ¼ Oðm2

�Þ]. It should be pointed out that the sum rule
(17) for t ¼ 0 and � ¼ 0 yields the longitudinal-
momentum sum rule for the pion, i.e. hxqi, as numerically

illustrated in Sec. VI.
For vanishing � and t, one can exploit (i) Eqs. (12) and

(13) and (ii) the partonic decomposition [cf. Eq. (10)]
obtaining

HI¼0ðx; 0; 0Þ ¼ 1
2½Huðx; 0; 0Þ þHdðx; 0; 0Þ�

¼ 1
2½Huðx; 0; 0Þ �Huð�x; 0; 0Þ�

¼ �ðxÞ12½uðxÞ þ �uðxÞ�
� �ð�xÞ12½ �uð�xÞ þ uð�xÞ� (18)

and

HI¼1ðx; 0; 0Þ ¼ 1
2½Huðx; 0; 0Þ �Hdðx; 0; 0Þ�

¼ 1
2½Huðx; 0; 0Þ þHuð�x; 0; 0Þ�

¼ �ðxÞ12½uðxÞ � �uðxÞ�
� �ð�xÞ12½ �uð�xÞ � uð�xÞ�: (19)

Analogous relations, with singlet qðxÞ þ �qðxÞ and valence,
qðxÞ � �qðxÞ combinations for the d quark can be easily
obtained, by using Eq. (11) (see also [7]). It is worth noting
that for � ¼ �þ ¼ 0 the ERBL region shrinks to zero and
the variable x reduces to xq [Eq. (3)]. Finally, from Eq. (16)

one has a normalization for the valence combination
uvðxÞ ¼ uðxÞ � �uðxÞ given by

R
1
0 dxuvðxÞ ¼ 1.

It should be pointed out that the parton distributions
represent a bridge toward the chiral-even transverse-
momentum-dependent distribution (TMD) f1ðx; jk?j2Þ
(see, e.g., [30–32] for the nucleon case), as shown by the
following relation:

qðxÞ ¼
Z

dk?f
q
1 ðx; jk?j2Þ ðx � 0Þ: (20)

Furthermore, it is worth noting that an experimental access
to f1ðx; jk?j2Þ and to other TMDs is a fundamental step in
order to understand the correlations between constituents
inside the pion and eventually the dynamics.
To complete this brief résumé of the general formalism,

we have to mention that the sum rules in Eqs. (16) and (17)
are the lowest order of the moments of the isovector and
isoscalar GPDs. In particular, HI¼1ðx; �; tÞ [see Eq. (13)]
has only even moments, while HI¼0ðx; �; tÞ [see Eq. (12)]
has only odd moments. Moreover, it turns out (see, e.g.,
[4]) that the nth Mellin moments of the GPDs are poly-
nomials of � with highest power n for even moments and
nþ 1 for odd moments; i.e. only even powers of � appear,
as expected from Eq. (14). It is worth noting that the so-
called polynomiality follows from general properties, such
as Hermiticity, covariance, parity, and time-reversal invari-
ance [1,2]. The isospin-dependent moments are given by
(j � 0)Z 1

�1
dxx2jHI¼1ðx; �; tÞ ¼ Xj

i¼0

AI¼1
2jþ1;2iðtÞð2�Þ2i; (21)

Z 1

�1
dxx2jþ1HI¼0ðx; �; tÞ ¼ Xjþ1

i¼0

AI¼0
2jþ2;2iðtÞð2�Þ2i: (22)

In particular, numerical calculations of (i) F�ðtÞ ¼ AI¼1
1;0 ðtÞ

and (ii) AI¼0
2;0 ¼ �2ðtÞ=2 and AI¼0

2;2 ¼ ��1ðtÞ=8 will be pre-

sented in Sec. VI.
In conclusion, approaches that satisfy the basic field-

theoretic assumptions underlying polynomiality, i.e. ex-
tended Poincaré covariance, automatically fulfill the con-
ditions (21) and (22). In general, such a property is an
important test of consistency of the model.

III. FOCK DECOMPOSITION

Let us introduce the Fock expansion of the pion state,
taking care of the colorless feature of each component and
including the amplitudes inside the kets to simplify the
notations in this section (see, e.g., [18,19]), viz.,

j�i ¼ jq �qi þ jq �q; gi þ jq �q;q �qi þ � � � : (23)

Then one can decompose the GPDs in terms of their Fock
contents (see also [4,23]); i.e. one can rewrite Eqs. (4) and
(5) by using, e.g.,

Hqðx;�;tÞ¼ XFock
n

h�;nj�q
Dj�;ni�ðjxj�j�jÞ�ð1�jxjÞ

þ�ðj�j�jxjÞ
�XFock

n

h�;nj�q
NDj�;nþ2i�ð�Þ

þXFock
n

h�;nþ2j�q
NDj�;ni�ð��Þ

�
þ��� ; (24)
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where n indicates the number of quarks and antiquarks, �D

and �ND are the diagonal and nondiagonal, in the Fock
space, terms of the current operator, respectively, and dots
represent all of the other transition matrix elements, pos-
sibly containing states with gluons. The diagonal terms
yield contributions to the valence region (DGLAP region),
while the nondiagonal ones have to be considered in the
nonvalence region (ERBL region). In Eq. (24), we have
shown only transitions involving fermionic fields, and this
explains the selection rule �n ¼ 0; 2.

In a simple picture of a hadron, the valence state has a
dominant role at the hadron scale, and this leads one
naturally to associate the DGLAP region with this Fock
component.

The same decomposition can be applied to the em and
gravitational form factors and to all of the t-dependent
‘‘generalized’’ form factors appearing in Eqs. (21) and
(22). Clearly, this kind of decomposition could allow a
deeper understanding of the dynamics related to the com-
ponents beyond the valence one. As a simple application,
let us consider the em form factor. From Eqs. (16) and (24),
retaining only the fermionic transitions, one has

FðvÞ
� ð�; tÞ ¼ 2

Z 1

j�j
dxHI¼1ðx; �; tÞ

¼ 2
XFock
n

Z 1

j�j
dxh�;nj�I¼1

D j�;ni; (25)

FðnvÞ
� ð�; tÞ ¼ 2

Z j�j

0
dxHI¼1ðx; �; tÞ

¼ 2
XFock
n

Z j�j

0
dx½�ð�Þh�; nj�I¼1

ND j�; nþ 2i

þ �ð��Þh�; nþ 2j�I¼1
ND j�; ni�: (26)

The valence termFðvÞ
� ð�; tÞ receives the largest contribution

from the valence component of the pion state, but it does
not give the full result in the whole kinematical range, as
indicated by the residual dependence upon �. The non-

valence termFðnvÞ
� ð�; tÞ is due to contributions like the pair-

production mechanism; see Fig. 2(b). The sum of Eqs. (25)
and (26) leads to the full result, viz.,

F�ðtÞ ¼ FðvÞ
� ð�; tÞ þ FðnvÞ

� ð�; tÞ; (27)

and it is independent of � and a function of t only. One can
also express the invariance of the sum under changes of �
as

@m

@�m FðvÞ
� ð�; tÞ ¼ � @m

@�m FðnvÞ
� ð�; tÞ; (28)

with m � 1. It is worth noting that all of the derivatives of
F�ðtÞ are independent upon �, and therefore relations like
the one in Eq. (28) can be generalized, i.e.

@m

@�m

@‘

@t‘
FðvÞ
� ð�; tÞ ¼ � @m

@�m

@‘

@t‘
FðnvÞ
� ð�; tÞ; (29)

with m � 1 and ‘ � 0. As a consequence, with the help of
Eq. (16), one can deduce interesting sum rules for the
partial derivatives of HI¼1ðx; �; tÞ.
Let us remind the reader that calculations of the elastic

form factors have been performed in different frames. In
particular, we have chosen (i) the Drell-Yan frame, where
�þ ¼ 0 and therefore � ¼ 0 (see Ref. [18] for generalities
on the Drell-Yan frame), or (ii) a Breit frame (i.e. �þ ¼
���) where?¼ 0 (see [33] for an extended discussion of
the motivations for adopting such a frame), and then �
follows a kinematical trajectory in the ð�; tÞ plane given by
j�j ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�=t
p

[see below Eq. (33)]. In the first case,
the em form factor is saturated by the valence contribution,
because of � ¼ 0 [cf. Eqs. (27) and (25)], while in the
second frame both valence and nonvalence terms contrib-
ute, since � does not vanish but changes with t. For�t2 

m2

� the value of � approaches 1, and therefore the non-
valence term saturates the em form factor [cf. Eqs. (27) and
(26)]. In model calculations this general behavior was
indeed observed [21]. It is understood that, for an experi-
mental investigation of the whole ð�; tÞ plane, different
kinematical conditions are needed, also exploiting the
helpful properties of the LF boosts (see, e.g., [17]).
Following the same spirit, one could extend this analysis

to the other form factors that appear in Eqs. (21) and (22);
i.e. one can consider the partial derivatives of the valence
and nonvalence contribution to the generalized form fac-
tors AI¼0

2jþ2;2iðtÞ and AI¼1
2jþ1;2iðtÞ, obtaining final relations that

have the same structure as the ones in Eqs. (28) and (29).

IV. COVARIANT MODEL OF THE PION WITH
PAULI-VILLARS REGULATORS

In Ref. [21], an analytic covariant model, symmetric in
the exchange of the constituent four-momenta (see
Refs. [34,35] for previous nonsymmetric versions), was
adopted for evaluating the em form factor. In this work, a
direct extension of the symmetric covariant model to
DVCS is exploited for calculating the no-helicity flip
GPD, in the spacelike interval 0 � t � �10 ðGeV=cÞ2.
In a Breit frame, one has �0 ¼ 0, i.e. �þ ¼ ���, and

p0 ¼ �p ¼ �=2. By choosing �þ � 0 and recalling that

p0� ¼ m2
� þ j�?j2=4

p0þ ; p� ¼ m2
� þ j�?j2=4

pþ ;

�� ¼ p0� � p� ¼ ��þ m2
� þ j�?j2=4
p0þpþ

¼ �� m2
� þ j�?j2=4

ðpþ þ �þÞpþ ;

(30)

one gets
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pþ ¼ ��þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��2 þ 4m2
�

p
2

¼ ��þ

2

�
1þ 1

�

�
;

p0þ ¼ �þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��2 þ 4m2
�

p
2

¼ �þ

2

�
1� 1

�

�
:

(31)

Then the following relation holds (notice that 2Pþ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��2 þ 4m2
�

p
):

�2 ¼ ��þ2 � j�?j2 ¼ �4�2Pþ2 � j�?j2
¼ ��2ð��2 þ 4m2

�Þ � j�?j2; (32)

which leads to a constraint on the maximal value for the
variable �. As a matter of fact, in the spacelike region
��2 þ 4m2

� � 0, and one has

�2 ¼ ��2 � j�?j2
��2 þ 4m2

�

: (33)

Then the maximum value of �2 is found for �? ¼ 0, viz.,

�2 � ��2

��2 þ 4m2
�

� 1: (34)

For m� ¼ 0 (and �2 � 0), one has

�2 ¼ 1þ j�?j2
�2

: (35)

If one additionally chooses a frame where �? ¼ 0 (i.e.
only �z � 0), then � ¼ �1, and therefore, in this extreme
case, only the nonvalence region contributes.

A basic ingredient in the analytic covariant model of
Ref. [21] is the pion BS amplitude, that can be quite well
approximated by retaining only the pseudoscalar Dirac
structure (see, e.g., [36]), namely,

�ðk� P; pÞ ¼ � m

f�
Sðk� �=2Þ�5�ðk� P; pÞSðk� PÞ;

(36)

where m
f�

is the quark-pion coupling, as suggested by a

simple effective Lagrangian (see, e.g., [25]), f� ¼
92:4 MeV is the pion decay constant, and m and SðkÞ are
the mass and the Dirac propagator of the CQ, respectively.
In Eq. (36), �ðk� P; pÞ is a scalar function that describes
the momentum-dependent part of the coupling between the
constituents and the spin-0 system and plays the role of the
Pauli-Villars regulator of the otherwise divergent integrals
that yield GPDs or the em form factor. In particular, in this
work we adopt two symmetric (in the exchange of the CQ
four-momenta) covariant forms: (i) the one considered in
Ref. [21], and based on the following sum:

�1ðk� P; pÞ ¼ C1

�
1

½ðk��=2Þ2 �m2
R þ {��

þ 1

½ðP� kÞ2 �m2
R þ {��

�
; (37)

and (ii) a natural extension based on a product, viz.,

�2ðk� P; pÞ ¼ C2

1

½ðk��=2Þ2 �m2
R þ {��

� 1

½ðP� kÞ2 �m2
R þ {�� : (38)

This product form provides a more realistic transverse-
momentum falloff, as seen from the expected behavior of
the BS amplitude obtained by using a simple (one-boson-
exchange) kernel (see, e.g., [37]), and this has a sizable
impact on both the high-momentum tail of the em form
factor and the end-point behavior of the parton distribution,
as shown in the results presented in Sec. VI. We can
anticipate that the most favorable comparison with the
experimental data of the em form factor is obtained by
using the product form, as also expected if one follows a
perturbative QCD (pQCD) analysis, where a one-gluon
exchange represents the leading contribution to the kernel
[28,38].
In both expressions, once the constituent mass m is

chosen, mR is determined by fitting the experimental value
for f� (cf. [21]), while the constants C1 and C2 are fixed by
exploiting the charge normalization, as discussed below.
As a final comment on the Dirac structure that appears in

Eq. (36), we remind the reader that it leads to the standard
Melosh rotation for a pair of fermions coupled to a total
spin S ¼ 0 (see [39]), once we consider the valence wave
function, defined as follows (see, e.g., [19]):

�valð�þ;�?; pÞ ¼ � m

f�

Z d��

2�
Sonð�� pÞ

� �5�ð�; pÞSonð��Þ; (39)

where Sonð�Þ ¼ ð�6 on þmÞ=ð�2 �m2 þ i�Þ with �
�
on 	

f��
on ¼ ðm2 þ j�?j2Þ=�þ; �þ;�?g.
The no-helicity flip GPD for the pion is calculated in the

one-loop approximation (triangle diagram; cf. Fig. 1) with
the BS amplitude of Eq. (36) and the symmetrical forms
shown in Eqs. (37) and (38). In particular, the u-quark GPD
is given in the impulse approximation by

Huðx;�; tÞ ¼ �{NcR�
Z d4k

2ð2�Þ4	ðP
þx� kþÞ

�Vþðk;p;p0Þ�ðk�P;p0Þ�ðk�P;pÞ; (40)

where Nc ¼ 3 is the number of colors, R ¼ 2m2=f2�, and

Vþðk; p; p0Þ ¼ Tr

�
Sðk� PÞ�5S

�
kþ �

2

�
�þS

�
k� �

2

�
�5

�
:

(41)

The presence of the delta function in Eq. (40), given the
kinematical relations in Eq. (1), imposes the correct sup-
port ½�j�j; 1� for the variable x as discussed in detail in
Appendix B (note that Hd has the support ½�1; j�j� for the
variable x). A relevant feature in the analysis of the GPD,
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as well as in the case of the em form factor, is given by the
instantaneous term present in SðkÞ. As a matter of fact, the
Dirac propagator can be decomposed using the LF kine-
matics as follows [18]:

SðkÞ ¼ k6 þm

k2 �m2 þ {�
¼ SonðkÞ þ �þ

2kþ

¼ k6 on þm

kþðk� � k�on þ {�
kþÞ

þ �þ

2kþ
; (42)

where the second term, proportional to �þ, is an instanta-
neous one in the LF time. It should be pointed out that the
instantaneous contribution to the GPD is produced only by
the spectator fermion (in the present example, an antifer-
mion), i.e. by Sðk� PÞ. Indeed, the instantaneous terms
pertaining to the other propagators do not contribute, be-
cause of the property ð�þÞ2 ¼ 0. In our symmetric model,
the instantaneous term of Eq. (42) contributes toHuðx; �; tÞ
both in the valence and in the nonvalence region [see Eqs.
(B10)–(B15)], since we take fully into account the analytic
structure of the symmetric vertex function (for a different
approach, where such an analytic structure is disregarded,
see [13]).

The pion em form factor is obtained by using the sum
rule (16):

F�ðtÞ ¼
Z 1

�1
dxHuðx; �; tÞ

¼ �{Nc

R
ðp0þ þ pþÞ

Z d4k

ð2�Þ4 V
þðk; p; p0Þ

��ðk� P; p0Þ�ðk� P;pÞ: (43)

The last expression for F�ðtÞ can be extracted directly from
the Mandelstam formula for the matrix elements of the em
current [20] (see, e.g., [40,41]), as well. Notice that the
model preserves current conservation, as discussed in [21].

The normalization of the form factor, Eq. (43), allows us
to determineC1 andC2 in Eqs. (37) and (38). Such a charge
normalization represents the impulse approximation of the
normalization condition in the fully interacting BS theory
[20,42].

A standard analytic integration on k� (see Appendix B
for details) leads to the following decomposition of
Huðx; �; tÞ in valence and nonvalence contributions:

Huðx; �; tÞ ¼ Hu
ðvÞðx; �; tÞ�ðx� j�jÞ�ð1� xÞ

þHu
ðnvÞðx; �; tÞ�ðj�j � xÞ�ðj�j þ xÞ: (44)

Notice that Hu
ðvÞ and Hu

ðnvÞ are given in Appendix B for the

two momentum dependences shown in Eqs. (37) and (38).
The d-quark GPD can be obtained by recalling Eq. (9).
Within our covariant model the valence component Hu

ðvÞ
in Eq. (44) is an approximation to the diagonal terms in
Eq. (24), while the component Hu

ðnvÞ contains the contri-

bution of the pair-production mechanism from an incom-

ing virtual photon with �þ > 0 and approximates the
nondiagonal terms.
An interesting approximation of the contribution to GPD

in the valence region can be obtained once the analytic
structure of the BS amplitude is disregarded and only the
poles of the propagators are retained in the integration over
k� (see Appendix B). As a matter of fact [see Eq. (B7)],
within the mentioned approximation

Hu
ðvÞðx; �; tÞ �Hu

ðvÞonðx; �; tÞ

¼ � NcR
4ð2�Þ3

Z
d�?

Z pþ

0
d�þ

� 	½Pþð1� xÞ � �þ�
�þðpþ � �þÞðp0þ � �þÞ Tr½O

þð��
onÞ�

� �ð�; pÞj��
on

½p� � ��
on � ðp� �Þ�on�

� �ð�; p0Þj��
on

½p0� � ��
on � ðp0 � �Þ�on� ; (45)

where � ¼ P� k, ��
on ¼ ðm2 þ j�?j2Þ=�þ, and

Tr½Oþð��
onÞ� ¼ Trfð�6 on þmÞ½ðp6 0 � �6 Þon þm�

� �þ½ðp6 � �6 Þon þm�g: (46)

Moreover, if in Eq. (45) we identify the following ratio:

�ð�; pÞj�on

½p� � ��
on � ðp� �Þ�on�

with a model LF wave function, then the final expression
coincides with the result obtained within a LFHD approach
(see the following Sec. VB), since the trace Tr½Oþð��

onÞ�
generates the correct Melosh-rotation factor [39]. We
would stress that the identification is meaningful once the
analytic structure of the BS amplitude is disregarded.

V. LIGHT-FRONT MODELS OF THE PION

In this section we present models that at different extent
(i) fulfill the Poincaré covariance and (ii) take into account
the Fock components of the pion state beyond the valence
contribution. A first important difference between the mod-
els is given by the framewe choose. In the approach we call
the Mandelstam-inspired LF model, a Breit frame, where
�? ¼ 0, is considered. This choice was followed in
Ref. [22] in order to perform a microscopical calculation
of the em pion form factor in both the space- and timelike
regions. It should be pointed out that such a frame leads
one to consider contributions from a pair-production
mechanism, differently from what happens in a Drell-Yan
frame, where �þ ¼ 0. This second frame is the one
adopted in the second approach illustrated in this section,
based on a LF Hamiltonian dynamics description of the
pion state (see, e.g., [17] for a general review of LFHD).
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A. Mandelstam-inspired LF model

In Ref. [22] an approach was elaborated to calculate the
em form factor of the pion starting from a covariant ex-
pression of the matrix elements of the current given by the
Mandelstam formula [20] [cf. also Eq. (40)]. Moreover, a
microscopic VMD was used for dressing the quark-photon
vertex. The dynamical inputs of such an approach were the
wave functions of both the pion and vector mesons, taken
as eigenstates of the relativistic CQ square mass operator
of Ref. [43], which includes both confinement, through a
harmonic oscillator potential, and �� 
 splitting through
a Dirac-delta interaction in the pseudoscalar channel. In
what follows we apply the same approach for evaluating
the no-helicity flip GPDs.

Let us first illustrate the kinematics in the adopted frame,
where �? ¼ 0 (i.e. �� ¼ �2=�þ) and p? ¼ p0

? ¼ 0.
Then in the spacelike region, for �þ � 0, one has for pþ
and p0þ

pþ ¼ �þ

2

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

m2
�

�2

s �
¼ ��þ

2

�
1þ 1

�

�
;

p0þ ¼ �þ

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

m2
�

�2

s �
¼ �þ

2

�
1� 1

�

�
;

(47)

since

p0� ¼ m2
�

p0þ ; p� ¼ m2
�

pþ ;

�� ¼ p0� � p� ¼ ��þ m2
�

ðpþ þ �þÞpþ :

(48)

The following simple relation between � and �2 holds:

� ¼ � �þ

2Pþ ¼ � �þ

ðp0þ þ pþÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 m2

�

�2

q : (49)

It is easily seen that, if m� ¼ 0, one has � ¼ �1 for any
�2.

Extending the approach of Ref. [22], one can find for the
quark GPD the same formal expression of Eq. (40), but (i) a
microscopic VMD dressing ��ðk;�Þ is considered instead
of the bare quark-photon vertex ��, and (ii) phenom-
enological Ansätze for the BS amplitudes in the valence
and nonvalence regions are adopted. Another basic differ-
ence with respect to the analytic model presented in the
previous section is that only the simple analytic structure of
the Dirac propagators is retained; i.e. the analytic structure
is disregarded in the BS amplitudes of both (i) the initial
and final pions and (ii) the VM dressing of the quark-
photon vertex. This approximation turns out to be a very
effective one in the calculation of the em form factor just in
the �? ¼ 0 frame [44].

In Ref. [22], a further simplification in the calculation
was achieved by a quite natural assumption, namely, a
vanishing pion mass. Within such an approximation, only

diagrams with a q �q production contribute [cf. Fig. 2(b)],
and this implies the necessity to introduce the VMD dress-
ing. We have to stress that a bare term is missing, due to the
vanishing pion mass (cf. the discussion in [22]). Therefore,
in the quark-photon vertex for the covariant model,
Eq. (41), the Dirac matrix �þ is replaced by the plus
component of the following four-vector that microscopi-
cally describes a VM dressing. For t � 0 one has

��ðk;�Þ ¼ ffiffiffi
2

p X
n;�

½�� � V̂nðk; PnÞ��nðk; PnÞ ½�
�
� ��fVn

ðt�M2
nÞ
;

(50)

where fVn is the decay constant of the nth VM into a
virtual photon (calculated in the model), P�

n 	
fM2

n=�
þ;�þ; 0?g is the four-momentum of an on-mass-

shell VM with a square mass given by P2
n ¼ M2

n, and
��ðPnÞ is its polarization. Moreover, the VM BS amplitude
is approximated as follows:

�n�ðk; PnÞ ¼ k6 þm

k2 �m2 þ {�
½��ðPnÞ � V̂nðk; PnÞ��nðk; PnÞ

� k6 � P6 n þm

ðk� PnÞ2 �m2 þ {�
; (51)

where V̂nðk; PnÞ is the proper Dirac structure and�nðk; PnÞ
the momentum-dependent part, approximated on the LF
hyperplane, as discussed below.
In the valence sector, after performing the k� integra-

tion, both pion and VM BS amplitudes reduce to 3D
amplitudes with one constituent on its mass shell. In
Ref. [22], the momentum-dependent part of the on-shell
VMBS amplitude (that contains on both sides proper Dirac
projectors) is described through a LF VM wave function,
i.e.

Pþ
n �nðk; PnÞjk�¼k�on

½M2
n �M2

0ðkþ;k?;Pþ
n Þ�

¼ c nðkþ;k?;Pþ
n Þ (52)

and

M2
0ðkþ;k?;Pþ

n Þ� ¼ Pþ
n ½k�on þ ðPn � kÞ�on�:

In Eq. (52), c nðkþ;k?;Pþ
n Þ is an eigenfunction of the

relativistic CQ square mass operator of Ref. [43], as men-
tioned at the beginning of this section. Moreover, it is
normalized to the probability of the valence Fock state,
according to the model elaborated in Ref. [22].
The valence component of the pion was modeled adopt-

ing an analogous ansatz. Moreover, in Ref. [22] two differ-
ent calculations were generated by using (i) the pion
eigenstate of the model in Ref. [43] and ii) the pQCD
asymptotic wave function (see, e.g., [28]).
In the nonvalence region, namely, the only region con-

tributing to the GPDs for m� ¼ 0 [see Eq. (49)], besides
the pion valence component in the initial state one has to
deal with a nonvalence component of the pion state, since
the process depicted in Fig. 2(b) can be interpreted as a
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transition from a state composed by the valence component
of the initial pion and the virtual photon, jq �q; ��i, to a
higher Fock component, jq �q; q �qi, pertaining to the final
pion. At the level of the pion BS amplitudes, one has to
model an off-shell BS amplitude that takes into account the
absorption of the initial pion by an antiquark [according to
the case illustrated in Fig. 2(b)]. In Ref. [22], a simple
ansatz, namely, a constant vertex, was assumed, like in
Ref. [45]. Notice that such a coupling constant is fixed by
the normalization of the pion form factor, since the dia-

gram shown in Fig. 2(a) does not contribute, as a conse-
quence of the simplification m� ¼ 0.
Within the approach presented in this subsection, since

j�j ¼ 1 (given the vanishing m�), the quark GPD has only
a contribution from Hu

ðnvÞ, i.e.

Huðx; j�j ¼ 1; tÞ ¼ Hu
ðnvÞðx; j�j ¼ 1; tÞ�ð1� xÞ�ð1þ xÞ;

(53)

where, by introducing � ¼ P� k,

Hu
ðnvÞðx; j�j ¼ 1; tÞ ¼ �X

n

fVn
t�M2

n

Nc

ð2�Þ3
D�ffiffiffi
2

p
Z p0þ

pþ

d�þ	½Pþð1� xÞ � �þ�
�þðp0þ � �þÞðpþ � �þÞ

�
Z

d�?
�
c nððp0 � �Þþ;��?;Pþ

n Þ½M2
n �M2

0ð�þ;�?;Pþ
n Þ�

½t�M2
0ð�þ;�?;Pþ

n Þ þ i�� I1 þ c �
�ððp0 � �Þþ;��?;p0þÞI2

�
;

(54)

where D� is the constant describing the off-shell quark-
pion vertex, while I1 and I2 are given by

I1 ¼ � 1

2

m

f�
�ððp0 � �Þ; p0Þj��¼p0��ðp0��Þ�on

� Trf�þ½ðp6 0 � �6 Þon þm�
� ½V̂nzðp0 � �; PnÞ�on½ðp6 � �6 Þon þm�g;

I2 ¼ 1

2
Trfð�6 on þmÞ½ðp6 0 � �6 Þon þm�

� ½V̂nzðp0 � �; PnÞ�on�þg
��nðp0 � �; PnÞj��¼p0��ðp0��Þ�on : (55)

The Dirac structure ½V̂�
n ðp0 � �; PnÞ�on, where all of the

constituents are on their own mass shell, is chosen in order
to generate the proper Melosh rotations for 3S1 states [39].
Furthermore, the traces previously shown contain the in-
stantaneous terms [see Eq. (42)] that survive after assum-
ingm� ¼ 0. In order to model the instantaneous part of the
vertex functions directly attached to �þ, we performed the
following replacements:

m

f�
�ððp0 � �Þ; p0Þj��¼p0��ðp0��Þ�on

! C�c �ð�þ;�?;p0þÞ ½m
2
� �M2

0ð�þ;�?;p0þÞ�
p0þ (56)

for the pion and

�nððp0 � �Þ; PnÞj��¼p0��ðp0��Þ�on
! CVMc nððp0 � �Þþ;��?;Pþ

n Þ

� ½M2
n �M2

0ððp0 � �Þþ;��?;Pþ
n Þ�

Pþ
n

(57)

for the VMs, as in Ref. [22]. In Eqs. (56) and (57), the
constants C� and CVM roughly describe the effects of the

short-range interaction. Indeed, a relative weight wVM ¼
CVM=C� can be used as a free parameter. Let us remind the
reader that the on-shell parts of the BS amplitudes have on
the left and right sides the proper Dirac projectors.
Finally, it is worth noting that the results presented in the

following Sec. VI have been calculated by using all of the
parameters adopted in Ref. [22], but with a CQ mass m ¼
200 MeV and wVM ¼ �1 (see [22] form ¼ 265 MeV and
different values forwVM). It should be pointed out that only
one adjusted parameter is necessary for describing the em
form factor in the spacelike region.
The model remains invariant for kinematical transfor-

mation, after the approximation we have applied.

B. Light-front Hamiltonian dynamics model

Within a LFHD approach (see [17] for a review of the
three forms of the relativistic HD introduced by Dirac in
[46]), the Poincaré covariance of the description of the pion
can be fully implemented, once the current operator is
chosen in order to fulfill the proper commutation rules
with respect to all of the generators (i.e. both the kinemati-
cal and the dynamical ones). A widely adopted strategy,
within the LFHD approach, is to model the em current by
using a one-body operator, but in the Drell-Yan frame, i.e.
where �þ ¼ 0. For instance, in this frame the em form
factor can be obtained by using only the matrix elements of
the plus component of the current operator, and this allows
one to overcome some difficulties that manifestly appear
for hadrons with angular momentum� 1 (see [17,33] for a
general discussion).
In the Drell-Yan frame, �? � 0 and one can choose

p0
? ¼ �p? ¼ �?=2. It is worth noting that only the

spacelike region can be addressed, since �2 ¼ �j�?j2.
Moreover, one has pþ ¼ p0þ and therefore � ¼ 0 for any
�2.
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In this section, the LFHD model with CQs, already
successfully applied for describing the charge form factor
and decay constant of the pion [47,48], is adopted for
investigating the DGLAP contribution to the no-helicity
flip GPD. This corresponds to considering in the Fock-
space expansion of Eq. (24) the diagonal contribution with
n ¼ 2 constituents [i.e. the valence component; cf. also
Eq. (39), introducing the explicit representation in terms of
overlap of light-cone wave functions (LCWFs) [18,23]].
The quark contribution to the GPD in the region 0 � x � 1
can be written in terms of the LCWF��ðx;�?;�q; � �qÞ for
the quark-antiquark system as

Huðx; � ¼ 0; tÞ ¼ X
�0
q;�q;� �q

Z dk?
2ð2�Þ3 �

�
�ðx;�0

?;�
0
q; � �qÞ

� �uðx;k? þ �?
2 ; �0

qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ þ �þ

2

q �þ

� uðx;k? � �?
2 ; �qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ � �þ
2

q ��ðx;�?;�q; � �qÞ

¼ X
�q;� �q

Z d�?
2ð2�Þ3 �

�
�ðx;�0

?;�q; � �qÞ

���ðx;�?;�q; � �qÞ; (58)

where uðx;�?; �Þ is a LF Dirac spinor (see, e.g., [39]) and
�i are the spin projections. The perpendicular component
of the active quark momenta, k? �? =2, becomes in the
intrinsic frame

�? ¼ k? � ð1� xÞ�?
2

;

�0
? ¼ k? þ ð1� xÞ�?

2
¼ �? þ ð1� xÞ�?;

(59)

with x given by Eq. (1). Notice that in the Drell-Yan frame
xq ¼ x [cf. Eq. (3)], since � ¼ 0.

For the model calculation, we use a phenomenological
LCWF which satisfies Poincaré covariance and is an ei-
genstate of the total angular momentum operator in the
light-front dynamics. As outlined in Ref. [47], these prop-
erties can be fulfilled by constructing the wave function as
the product of a momentum wave function c ðx;�?Þ,
which is spherically symmetric and invariant under permu-
tations, and a spin wave function, which is uniquely de-
termined by symmetry requirements. Therefore, within
LFHD one has

��ðx;�?;�q; � �qÞ ¼ c �ðx;�?Þ
X

�q;� �q

�
1

2
�q

1

2
� �qj00

�

�D1=2�
�q�q

½RMð�Þ�D1=2�
� �q� �q

½RMð��Þ�;
(60)

where � 	 f�?; �zg with

�z ¼ M0ðx;�?Þðx� 1
2Þ; (61)

and the free mass defined by

M2
0ðx;�?Þ ¼ m2 þ j�?j2

xð1� xÞ : (62)

The spin-dependent part contains the Melosh rotations
RMð�Þ which convert the instant-form spins of both the
quark and antiquark into LF spins and ensure the rotational
invariance of the pion wave function. The representation of
the Melosh rotation is explicitly given by

D1=2
�� ½RMð�Þ� ¼ h�jRMð�Þj�i

¼ h�jmþ xM0ðx;�?Þ � i� � ðẑ� �?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ xM0ðx;�?ÞÞ2 þ �2

?
q j�i:

(63)

For the momentum-dependent part of the pion wave
function, we adopt the following exponential form used
in Refs. [47,48]:

c �ðx;�?Þ ¼ ½2ð2�Þ3�1=2
�
M0ðx;�?Þ
4xð1� xÞ

�
1=2 1

�3=4�3=2

� expð��2=ð2�2ÞÞ: (64)

The wave function in Eq. (64) is normalized as

Z 1

0
dx

Z d�?
2ð2�Þ3 jc �ðx;�?Þj2 ¼ 1

[recalling that d�z ¼ dxM0ðx;�?Þ=½4xð1� xÞ�] and de-
pends on the free parameter � and the quark mass m,
which have been fitted to the pion charge radius and decay
constant.
Inserting the model wave function of Eq. (60) in the

LCWF overlap representation of GPD in Eq. (58), one
obtains

Huðx; � ¼ 0; tÞ ¼
Z d�?

2ð2�Þ3 c �ðx;�0
?Þc �ðx;�?Þ

� m2 þ �0
? � �?

xð1� xÞM0ðx;�0
?ÞM0ðx;�?Þ : (65)

In the forward limit �� ! 0, the Melosh-rotation ma-
trices combine to the identity matrix, and one obtains the
ordinary parton distribution as the momentum density
distribution given by the square of the momentum-
dependent part of the wave function [18]; i.e. for x � 0
one gets

uðxÞ ¼
Z d�?

2ð2�Þ3 jc ðx;�?Þj2: (66)
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VI. RESULTS AND DISCUSSION

In this section the results obtained from the different
models described in the previous sections are presented
and discussed. Let us first illustrate the actual values of the
parameters entering the three models.

For the covariant model (Sec. IV), the CQ mass and the
pion mass have values m ¼ 220 MeV and m� ¼
140 MeV, respectively. It should be pointed out that, for
some runs, the value m� ¼ 0 has been used in order to
match the vanishing pion mass adopted for the
Mandelstam-inspired model (see Sec. VA). This change
will be adequately emphasized whenever applied (in this
case, the CQ mass is a little bit lowered, i.e. m ¼
210 MeV). The parameter mR present in the pion Bethe-
Salpeter amplitudes is fixed through the pion decay con-
stant, obtainingmR¼600MeV for the sum form [Eq. (37)]
and mR ¼ 1200 MeV for the product form [Eq. (38)].

In the Mandelstam-inspired model, as already men-
tioned, all of the parameters are the same ones used in
Ref. [22], except for (i) wVM ¼ �1 that yields the relative
weight of the instantaneous contributions and (ii) the CQ
mass m ¼ 200 MeV, i.e. the one adopted in Ref. [49]
within the same approach for the very detailed description
of the nucleon em form factors in both the spacelike and
the timelike region. As already mentioned, given the com-
plexity of the calculation, a simplifying assumption of a
vanishing pion mass has been also added. Finally, in the
VM dressing of the quark-photon vertex [cf. Eq. (50)] up to
20 isovector mesons have been considered in order to have
a good convergence even for t ¼ �10 ðGeV=cÞ2.

In the LFHD model (see Sec. VB), a CQ mass m ¼
250 MeV and a wave-function parameter � ¼ 319:4 MeV
have been used in order to reproduce the pion charge radius
(rch ¼ 0:670� 0:02 fm) and the pion decay constant [48].

First of all, the theoretical models have been compared
with available experimental data, in particular, the pion em
form factor in the spacelike region.

Figure 3 shows the ratio between the spacelike form
factors, calculated by using our models, and the monopole
form factor Fmon ¼ 1=ð1þ jtj=m2


Þ (m
 ¼ 0:770 GeV).

The relevance of such a presentation of the form factor is
twofold: (i) Dividing by Fmon allows one to avoid the log
plot that hinders a detailed analysis; (ii) more importantly,
one can immediately discriminate between models that
produce a divergent charge density at short distances and
models that do not (cf. e.g., [50]), since their falloff is more
rapid than Fmon.

For the sake of completeness, we have also displayed
two different fits (thick solid and dotted-dashed lines in
Fig. 3) to the lattice data as obtained in Ref. [51]. In that
paper, lattice data have been extrapolated to the experi-
mental pion mass, and they were described up to t ¼
�4 ðGeV=cÞ2 in terms of both (i) a monopole function

Flat
� ðtÞ ¼ 1=½1� t=M2ðmphys

� Þ�, with Mðmphys
� Þ ¼

0:727 GeV, and (ii) a function with a falloff faster than

the monopole one, i.e. Flat
� ðtÞ ¼ 1=½1� t=ðpM2ðmphys

� Þ�p,
with p ¼ 1:173� 0:058 and Mðmphys

� Þ ¼ 0:757�
0:018 GeV. In Fig. 3, the lattice results have been arbi-
trarily extended by using the previous functions from t ¼
�4 ðGeV=cÞ2 to t ¼ �10 ðGeV=cÞ2, with a quite reason-
able outcome.
To show the sensitivity of the covariant model of Sec. IV

upon the change of the pion mass, a comparison between
calculations performed with a vanishing pion mass and
with m� ¼ 140 MeV is presented in Fig. 4. These calcu-
lations are helpful in view of the following comparisons
with the Mandelstam-inspired model, where the value
m� ¼ 0 has been adopted. It is interesting to notice from
Figs. 3 and 4 that the sum form for the BS amplitude is
unable to accurately describe the experimental em form
factor at high values of jtj.
In order to illustrate the frame dependence of the Fock

decomposition of the em form factor, in Fig. 5 the valence
and nonvalence contributions to the pion form factor
[Eq. (27)] within the covariant model based on the product

0.01 0.1 1 10

-t  (GeV/c)
2

0.4

0.6

0.8

1

1.2

F
π(t

)/
F m

on
(t

)

FIG. 3. Pion form factor vs �t. Thin dashed line: Covariant
symmetric model of Ref. [21], with the momentum dependence
of the pion Bethe-Salpeter amplitude given by the sum form of
Eq. (37), and m� ¼ 140 MeV. Double-dotted-dashed
line: Calculation performed within the LF Mandelstam-inspired
model (cf. Sec. VA), by using an asymptotic pion wave function
[28] with m� ¼ 0 and adopting a CQ mass of m ¼ 200 MeV
(notice that in Ref. [22] m ¼ 265 MeV). Thick solid
line: Monopole fit to lattice data as obtained in Ref. [51],
arbitrarily extended in this figure from �4 to �10 ðGeV=cÞ2
(see text). Thick dotted-dashed line: Faster-than-monopole fit to
lattice data as obtained in Ref. [51], arbitrarily extended in this
figure from �4 to �10 ðGeV=cÞ2 (see text). Dotted-dashed
line: The same as the double-dotted-dashed line but with a
nonperturbative pion wave function, eigenstate of the squared
LF mass operator of Ref. [43]. Dotted line: The same as the thin
dashed line but with the product form of Eq. (38) for the pion
Bethe-Salpeter amplitude. Thick dashed line: LFHD model (cf.
Sec. VB) with a Gaussian pion wave function and the proper
Melosh rotations. Experimental data: Full dots from the collec-
tion of Ref. [52]; open squares: Thomas Jefferson Lab data from
Ref. [53].
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form and m� ¼ 0 are presented. Such a choice for m� is
suggested [cf. Eq. (35)] by the need to explore the whole
range 0 � j�j � 1. The sum of the two contributions be-
comes � independent, and the result is shown in Fig. 4 by
the dotted-dashed line. Figure 5 allows us to disentangle
the valence and nonvalence contributions. Indeed, different
values of � correspond to different choices of the frame (let
us remind the reader that � ¼ 0 corresponds to the Drell-
Yan frame and � ¼ �1 to the frame where �? ¼ 0).

Moreover, it is worth noting that the operator ‘‘number
of constituents’’ does not commute with the whole set of
the Poincaré generators, and therefore a change of frame
alters the nonvalence content. The knowledge of valence
and nonvalence contributions in the plane ð�; tÞ could
impose new constraints to models that aim to go beyond
the standard CQM.
After completing the analysis of the em form factor

within our models, in Fig. 6, the isovector GPD for positive
x, namely,HI¼1ðx; 0; 0Þ ¼ uvðxÞ=2 [see Eq. (19)], is shown
as a function of x 	 xq [since for � ¼ 0 one recovers the

longitudinal-momentum fraction, Eq. (3)]. It should be
pointed out that, at this stage of our analysis, no evolution
has been applied. The effects of the evolution for the parton
distribution will be considered elsewhere, together with a
study of the evolution for the whole GPD. Calculations for
the covariant model of Sec. IV and the LFHD model of
Sec. VB are shown in Fig. 6. Notice that the Mandelstam-
inspired LF model presently allows predictions only for
j�j¼1. In order to extend to � ¼ 0 this approach, a non-
vanishing value of m� and a bare term, besides the VMD
one, should be considered. Thus one can take into account
the contribution depicted in Fig. 2(a) that produces the
valence term in HI¼1ðx; �; tÞ, but new, nontrivial parame-
ters have to be added (cf. the nucleon case in [49]).
The comparison in Fig. 6 shows the difficulty of the sum

form [Eq. (37)] for the pion Bethe-Salpeter amplitude to
give a realistic parton distribution, i.e. to have a vanishing
value at the end points. Recalling that, for �¼0, the
presence of the delta function in Eq. (40) and the kinemat-
ical relations in Eq. (1) impose the correct support ½0; 1� for
the variable x (recall that, for �¼0, one has x¼xq), the

t (GeV/c)2

|ξ|

Fπ

 v
(|ξ|,t)/Fmon(t)

|ξ|
 t (G

eV/c)
2

Fπ

 nv
(|ξ|,t)/Fmon(t)

FIG. 5. Left panel: Valence contribution FðvÞ
� ðj�j; tÞ to the em pion form factor [see Eq. (25)], evaluated within the covariant

symmetric model of Sec. IV by using the product form for the momentum-dependent part of the Bethe-Salpeter amplitude [cf. Eq. (38)
] and choosingm� ¼ 0 for covering the whole range 0 � j�j � 1, according to Eq. (35). Right panel: The same as in the left panel, but

for the nonvalence contribution FðnvÞ
� ðj�j; tÞ [see Eq. (26)]. Note the different orientations of the axes in the two panels, for a

straightforward selection of the relevant regions.
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FIG. 4. Pion form factor calculated within the covariant model
of Sec. IV, with and without a vanishing pion mass. Solid
line: Sum form for the pion Bethe-Salpeter amplitude [Eq.
(37)] and m� ¼ 0. Dashed line: The same as the solid line, but
with m� ¼ 140 MeV. Dotted-dashed line: Product form for the
pion Bethe-Salpeter amplitude [Eq. (38)] and m� ¼ 0. Dotted
line: The same as the dashed-dotted line, but with m� ¼
140 MeV. Experimental data as in Fig. 3.
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sum form produces a discontinuity at the end points, i.e. an
infinite derivative. It is instructive to correlate such a draw-
back to the one already seen in Fig. 3, where the sum form
is not able to reproduce the em form factor at high values of
(� t). Indeed, in both cases, the high-momentum part of
the valence component of the pion state is involved. As a
matter of fact, for x ¼ 0 and x ¼ 1, the intrinsic three-
momentum becomes infinite [cf. Eqs. (61) and (62)], and
therefore small distances are involved, just as in the case of
the tail of the em form factor, where the influence upon the
small-r part of the pion wave function is felt. The more
realistic behavior of the product form (38) can be ascribed
to a jk?j falloff like the one dictated by a BS kernel
dominated by a one-gluon exchange, as already pointed
out in Sec. IV. An important, final remark is the clear shift
towards small x of the curves evaluated within the cova-
riant model, while the prediction obtained within the
LFHD model is symmetric with respect to x ¼ 1=2. Such
an interesting difference could be explained by the fact that
the full covariance of the model of Sec. IV together with its
dynamical content, related to the adjusted parameter mR,
could take into account some effects beyond the pure q �q
component of the pion state. First, one should note that the
valence component [Eq. (39)] generates a quark distribu-
tion symmetric with respect to x ¼ 1=2 and a probability
definitely less than 1: For the sum form Pval ¼ 0:78, and
for the product form Pval ¼ 0:84 (see also [21]). Then, by
using the Fock decomposition of the pion state (see, e.g.,
[4] for a general discussion), one immediately recognizes
contributions from both the q �q component (i.e. the valence
component) and from other components with more con-

stituents [see, e.g., the instantaneous contributions in
Eqs. (B10)–(B12) and the analysis in [54]]. Thus, the
active quark shares the longitudinal momentum of the
pion with more than one spectator parton, belonging to
the Fock-space configuration beyond the valence one.
Therefore, the shift toward values of x less than 1=2 is
expected, since our covariant model contains more physi-
cal effects than the basic one. In particular, for a non-
vanishing pion mass the average longitudinal-momentum
fraction for the sum form is hxqi � 0:483 and for the

product form is hxqi � 0:471, i.e. quite similar but a little

bit different from 1=2. As a simple cross-check we have
reobtained those values also from AI¼0

2;0 ð0Þ ¼ hxqi [cf.

Eq. (22) with j ¼ 0 and Eq. (18)].
A more detailed analysis of the parton distribution can

be achieved by using the chiral-even TMD distribution
f1ðx; jk?jÞ; see Eq. (20). In Fig. 7, the TMD distributions
calculated within the covariant model by using the differ-
ent BS amplitudes of Eqs. (37) and (38) are shown. In order
to avoid a log plot, f1ðx; jk?jÞ has been divided by
Gðjk?jÞ ¼ 1=ð1þ jk?j2=m2


Þ4 (with m
 ¼ 770 MeV).

Clearly, the product form has a jk?j falloff faster than
the sum form does; i.e. low transverse-momentum partons
are favored in the first case.
The analysis of both of the generalized form factors

involved in the second moment of the isoscalar pion
GPD, i.e. AI¼0

2;0 ðtÞ and AI¼0
2;2 ðtÞ [cf. Eq. (22) with j ¼ 0],

has to be performed necessarily within the covariant ana-
lytic model of Sec. IV. This is obvious if we look at
Eq. (17), where the polynomiality imposes a square de-
pendence upon �, and therefore one needs a model that
covers an extended range for the variable �. Indeed, for
each value of t, we have first numerically checked the
parabolic behavior against �, and then we have extracted
the coefficients of the parabolic fit getting the values of
AI¼0
2;0 ðtÞ and AI¼0

2;2 ðtÞ. Figure 8 shows a comparison between

(i) recent results from lattice QCD, extrapolated to the
physical pion mass [55,56], (ii) our covariant calculations
evaluated with both m� ¼ 0 and m� ¼ mphys by using the

sum and the product form for the BS amplitude [Eqs. (37)
and (38)], and (iii) the LFHD result (see Sec. VB) for
AI¼0
2;0 ðtÞ only, since this approach at the present stage allows

one to perform calculations exclusively for � ¼ 0. Indeed,
the ratios AI¼0

2;0 ðtÞ=AI¼0
2;0 ð0Þ and AI¼0

2;2 ðtÞ=AI¼0
2;2 ð0Þ are pre-

sented in order to get rid of the evolution (see Ref. [14]
for a detailed discussion of this issue). The lattice calcu-
lations are described through a monopole form 1=ð1�
t=M2

2;iÞ, as obtained in Ref. [55] from the analysis of their

lattice data, without evolution and with evolution in theMS
scheme at the scale � ¼ 2 GeV. In particular, we have
used the following values:M2;0 ¼ 1:329� 0:058 GeV and

M2;2 ¼ 0:89� 0:25 GeV, corresponding to an analysis of

the lattice data that satisfies the low-energy theorem, i.e.
AI¼0
2;0 ð0Þ ¼ �4AI¼0

2;2 ð0Þ. The uncertainties on the previous
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FIG. 6. Isovector GPD HI¼1ðx; 0; 0Þ, equal to half of the parton
distribution [see Eq. (19)], vs x. Thin dashed line: Covariant
model of Sec. IV, calculated by using the sum form [Eq. (37)] for
the pion Bethe-Salpeter amplitude and m� ¼ 140 MeV. Dotted
line: The same as the thin dashed line, but for the product form
[Eq. (38)]. Thick dashed line: LFHD model of Sec. VB, with a
Gaussian pion wave function and the proper Melosh rotations.
The variable x, given in Eq. (1), coincides with the usual LF
longitudinal fraction xq, since � ¼ 0 [see text below Eq. (10)].
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masses generate the shaded areas in the left and right
panels in Fig. 8.

Unfortunately, (i) the available range of (� t) (we re-
frained from enlarging the interval as we did in the case of
the em form factor, since we do not have experimental data
yielding confidence in an arbitrary extension of the mono-
pole fit) and (ii) the large uncertainties in the lattice calcu-
lations of AI¼0

2;2 do not allow us to elaborate too much on the

comparison between our phenomenological models and
the lattice results. On the other hand, for large values of
jtj the calculations obtained by using the covariant model
with the product form and m� ¼ 140 MeV could give
some insight on the expected behavior of the lattice calcu-
lations, since one could argue that the covariant model with
the product form phenomenologically contains to some
extent dynamical features typical of QCD, like the one-
gluon-exchange dominance at small distances. In order to

complete the information, in Table I the values of AI¼0
2;0 ð0Þ

and AI¼0
2;2 ð0Þ are shown. It is worth noting that, while the

lattice calculations largely fulfill the low-energy theorem,
as already mentioned, our calculations do not.
Furthermore, it should be pointed out that for small t the
disagreement between lattice data and the calculation with
the covariant approach to some extent is an expected one,
since the mechanism responsible for the confinement is not
present in our model, and therefore we have a free propa-
gation of the q �q pair. A possible solution could be elabo-
rated following the suggestion in Ref. [57], where a
covariant model without the disturbing free propagation
of the q �q pair was proposed and applied to the em decays
of the vector mesons.
The previous figures have illustrated ‘‘integral’’ proper-

ties of the pion GPDs, like the em form factor and the
generalized ones, or the parton distribution, i.e.

0 1 2 3 4

-t  (GeV/c)
2

0

0.2

0.4

0.6

0.8

1

A
I=

0 (2
,0

)(t
) 

/A
I=

0 (2
,0

)(0
)

0 1 2 3 4

-t  (GeV/c)
2

0

0.2

0.4

0.6

0.8

1

A
I=

0

(2
,2

)(t
) 

 / 
 A

I=
0

(2
,2

)(0
)

FIG. 8. Left panel: The ratio AI¼0
2;0 ðtÞ=AI¼0

2;0 ð0Þ, involving the generalized form factor AI¼0
2;0 ðtÞ that appears in the second moment of the

isovector GPD HI¼0 [cf. Eqs. (17) and (22)] as a function of t. Solid line: Sum form for the pion Bethe-Salpeter amplitude [Eq. (37)]
and m� ¼ 0. Dashed line: The same as the solid line, but with m� ¼ 140 MeV. Dotted-dashed line: Product form for the pion Bethe-
Salpeter amplitude [Eq. (38)] and m� ¼ 0. Dotted line: The same as the dashed-dotted line, but with m� ¼ 140 MeV. Thick long-
dashed line: LFHD model (cf. Sec. VB) with a Gaussian pion wave function and the proper Melosh rotations. Shaded area: Results
from lattice QCD [55] (see text). Right panel: The same as the left panel, but for AI¼0

2;2 ðtÞ=AI¼0
2;2 ð0Þ.
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FIG. 7. Transverse-momentum-dependent function f1ðx; jk?j2Þ=Gðjk?jÞ, with Gðjk?jÞ ¼ 1=ð1þ jk?j2=m2

Þ4. Left panel: Sum form

of the Bethe-Salpeter amplitude [see Eq. (37)]. Right panel: The same as in the left panel, but for the product form of the Bethe-
Salpeter amplitude [see Eq. (38)]. The normalization is given by

R
1
0 dx

R
dk?f1ðx; jk?j2Þ ¼ 1, and kperp means jk?j.

T. FREDERICO et al. PHYSICAL REVIEW D 80, 054021 (2009)

054021-14



HI¼1ðx; 0; 0Þ. In the following figures, the isoscalar and
isovector GPDs are shown in the plane ðx; tÞ with �1 �
x � 1 and �10 ðGeV=cÞ2 � t � 0 but with fixed values
for �, as dictated by the two phenomenological models,
namely, j�j ¼ 1 for the Mandelstam-inspired model
(Sec. V) and � ¼ 0 for the LFHD model (Sec. VB), re-
spectively. The covariant model (Sec. IV), in its two ver-
sions for the momentum dependence [Eqs. (37) and (38)],
will be compared to the results for the two phenomeno-
logical models that, in some sense, represent two extrema,

in the Fock language: The first model is basically related to
the nonvalence (ERBL) region, and the second one is
related to the valence (DGLAP) domain. In order to cover
the whole range of � for the given interval of t [i.e.
�10 ðGeV=cÞ2 � t � 0], the covariant model has been
evaluated by assuming m� ¼ 0, as already pointed out.
Finally, let us stress that the GPDs are divided by Fmon, as
in the case of the em form factor, for avoiding a log plot
and for emphasizing as many details as possible. In Fig. 9,
the results of the covariant symmetric model are shown for
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FIG. 9. Upper left panel: Isoscalar no-helicity flip GPD from the covariant symmetric model of Sec. IV with the sum form for the
Bethe-Salpeter amplitude [Eq. (37)] at j�j ¼ 1. The value of � is fixed by using m� ¼ 0 [cf. Eq. (35)], for the sake of comparison with
the microscopic model of Sec. V, whose results are shown in Fig. 10. On the z axis, the ratio with respect to Fmon ¼ 1=ð1þ jtj=m2


Þ is
presented. Upper right panel: The same as in the upper left panel, but for the isovector GPD. Lower panels: The same as in upper
panels, but for the product form for the Bethe-Salpeter amplitude [see Eq. (38)].

TABLE I. Gravitational form factors at t ¼ 0 [cf. Eq. (22) with j ¼ 0], obtained (i) within the covariant model of Sec. IV and both
the sum and the product form for the BS amplitude [Eqs. (37) and (38)] and (ii) from the lattice data of Ref. [55].

Sum Sum Product Product Latt. no evol. Latt. with MS evol.

m� ¼ 0 m� ¼ mphys m� ¼ 0 m� ¼ mphys m� ¼ mphys m� ¼ mphys

AI¼0
2;0 ð0Þ 0.4828 0.4833 0.4707 0.4710 0.365 0.261

AI¼0
2;2 ð0Þ �0:0307 �0:0272 �0:0357 �0:0327 �0:092 �0:066
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FIG. 10. Left panel: Isoscalar no-helicity flip GPD from the Mandelstam-inspired model of Sec. V at j�j ¼ 1 (see text). Right
panel: the same as in the left panel, but for the isovector GPD.

t (
G

eV
/c

)2

x

Hπ
I=0(x,ξ=0,t)/Fmon(t)

t (
G

eV
/c

)2

x

Hπ
I=1(x,ξ=0,t)/Fmon(t)

t (
G

eV
/c

)2

x

Hπ
I=0(x,ξ=0,t)/Fmon(t)

t (
G

eV
/c

)2

x

Hπ
I=1(x,ξ=0,t)/Fmon(t)

FIG. 11. Upper left panel: Isoscalar no-helicity flip GPD from the covariant symmetric model of Sec. IV, with the sum form for the
Bethe-Salpeter amplitude [Eq. (37)] at � ¼ 0, andm� ¼ 0. Upper right panel: The same as in the left panel, but for the isovector GPD.
Lower panels: The same as in the upper panels, but for the product form for the Bethe-Salpeter amplitude [Eq. (38)].
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j�j ¼ 1, in order to be compared with the calculations
performed by using the Mandelstam-inspired model, pre-
sented in Fig. 10. We remind the reader that the phenome-
nological model has a photon-quark vertex dressed by a
microscopical VMD, as discussed in Sec. V.

In Fig. 11, the no-helicity flip GPDs of the covariant
symmetric model are shown for � ¼ 0, allowing a com-
parison with the calculations performed by using the
LFHD model, presented in Fig. 12. For � ¼ 0, where
only the valence component is acting and jxj ¼ xq, a nice

feature stemming from the figures of both isoscalar and
isovector GPDs is shared by all of the presented models: In
the limit of large jtj the collinearity clearly emerges, as
shown by the migration of the maximum (minimum) value
from jxj ’ 1=2 for t ¼ 0 toward jxj � 1 for jtj ! 1. Such
a behavior can be easily understood in the LFHD model,
since nonvanishing contributions to GPD [cf. Eq. (65)] can
be obtained if �0

? in Eq. (59) does not depend too much

from �?, namely, x� 1 (notice that for x exactly 1, the
free mass blows up and the wave functions become vanish-
ing, as well as GPDs). Correspondingly, for j�j ¼ 1, where
only the nonvalence component is acting, the relevance of
the x region around �1 can be explained by the pair-
production mechanism. For simplicity, let us consider large
values of jtj that amount to large values of�þ ¼ �z (recall
that in the Breit frame �0 ¼ 0). Then, using �þ ¼ kþq þ
kþ�q ¼ kzq þ kz �q � 2kzq � 0 (given our choice for the sign

of �þ) and the fact that each quark in the pair is almost on
its mass shell, we can approximate 2kþ ¼ kþq � kþ�q �
2Eq ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ j ~kqj2

q
. Thus, one can see that, when � ¼

�1, x becomes close to 1 for �z 
 m, since x ¼
kþ=Pþ ¼ 2kþ=�þ � Eq=kzq ! 1. The case x ¼ �1 can

be obtained for �þ � 0.
Finally, in Fig. 13, the isovector GPD, evaluated within

the covariant model adopting the product form of Eq. (38)
and m� ¼ 0, is shown for the case x ¼ j�j and 0 � t �

�10 ðGeV=cÞ2. This kinematical region, where the tran-
sition from DGLAP to ERBL regimes occurs, should be
relevant for the experimental studies of the single spin
asymmetry (see, e.g., the discussion in [4,58]). Let us
notice that in our covariant analytic model the GPD is
continuous at x ¼ j�j.
From the 3D plots, one can see that the covariant model,

in the version with the product form for the momentum-
dependent part of the BS amplitude, is able to reproduce
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FIG. 12. Left panel: Isoscalar no-helicity flip GPD from the LFHDmodel of Sec. VB at � ¼ 0 (see text). Right panel: The same as in
the left panel, but for the isovector GPD.
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FIG. 13. Isovector no-helicity flip GPD from the covariant
symmetric model of Sec. IV, with the product form for the
Bethe-Salpeter amplitude [Eq. (38)] at j�j ¼ x, and m� ¼ 0.
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quite satisfactorily the GPDs evaluated within the two
phenomenological models, the Mandelstam-inspired and
the LFHD ones, and therefore one could argue that it
contains the main ingredients for a realistic description
of the constituents inside the pion. In view of this, it
appears challenging to test the covariant model (or its
refinements [59] based on the Nakanishi representation;
see, e.g., [37], for recent applications to a bosonic system)
of the BS amplitude, in comparison with experimental
data, whose analysis requires the knowledge of the pion
GPDs.

VII. CONCLUSION

In this paper, we have investigated the no-helicity flip
generalized parton distributions of the pion by using three
models, based on a description of the pion where constitu-
ent quarks with masses between 200 and 250 MeV are
considered. In particular, we have evaluated the isoscalar
and isovector GPDs adopting a covariant, analytic model
and two light-front phenomenological models. It is impor-
tant to notice that the first model, based on 4D Ansätze for
the Bethe-Salpeter amplitudes, allows us to explore the
whole kinematical domain of the three variables x, �, and
t upon which the GPDs depend, while the others two are,
presently, constrained to a given value of �. The second
model, the Mandelstam-inspired model of Sec. V, is a
natural extension of the approach proposed in Ref. [22]
for a successful investigation of the em form factor of the
pion in both the space- and timelike regions. The main
features of the model are (i) a microscopical vector-meson
model dressing for the quark-photon vertex and (ii) proper
Ansätze for the 3D LF projection of the BS amplitudes of
both pion and vector mesons, taken as the eigenfunctions
of a LF square mass operator [43]. As in Ref. [22], the
assumption m� ¼ 0 is added, and this simplification al-
lows calculations of the GPDs only for the value j�j ¼ 1
[cf. Eq. (35)]; namely, the nonvalence region covers the
whole range 1 � x � �1.

On the contrary, the LFHD model of Sec. VB is based
on a Poincaré covariant description of the pion, with a
proper treatment of the spin wave functions, due to the
presence of the Melosh rotations. The momentum part of
the pion wave function is given by a Gaussian function that
contains the dynamical input of the model through two
adjusted parameters. A bare quark-photon vertex is as-
sumed. It is worth noting that the model yields a descrip-
tion of the GPDs for � ¼ 0; i.e. the valence region can be
investigated.

The covariant symmetric model of Sec. IV, based on a
Mandelstam formula for matrix elements of the operators
yielding the isoscalar and isovector GPDs, allows us to
have close expressions for the physical quantities, since
analytic forms for the momentum-dependent part of the
Bethe-Salpeter amplitude are adopted and a bare quark-
photon vertex is assumed as well. Such a covariant model

can be applied for any value of x, �, and t and therefore can
be used for interpolating between the two phenomenologi-
cal models. A peculiar feature is given by the presence of
instantaneous terms, in both the valence and the nonva-
lence regions, since we fully take into account the analytic
structure of the BS amplitude.
The comparison with the em form factor (Fig. 3) sug-

gests that the covariant model with a sum form of the BS
amplitude has a nonrealistic increasing behavior with re-
spect to Fmon, for large jtj, which leads to a divergent
density at short distances, while the version with a product
form together with the LFHD model decreases more rap-
idly than Fmon. Finally, the Mandelstam-inspired model
and the lattice results (red curve in Fig. 3), arbitrarily
extended from t ¼ �4 ðGeV=cÞ2 to t ¼ �10 ðGeV=cÞ2,
given the analytic form proposed in Ref. [51] for extrap-
olating the lattice data to the physicalm�, show a moderate
decreasing with respect to Fmon, for large jtj. Such a
comparison for the em form factor and the analysis of
the parton distribution in Fig. 6 point to the relevance of
the behavior of the pion valence function (or better the
momentum part of the BS amplitude) for large transverse
momentum. In particular, the product form, that has a
behavior at large transverse momentum jk?j compatible
with the one suggested by the one-gluon-exchange domi-
nance (see, e.g., [37]), seems to give a consistent descrip-
tion of both the tail of the em form factor and the end-point
falloff of the parton distribution. With respect to this find-
ing, more details can be gained from the investigation of
the chiral-even transverse-momentum-dependent distribu-
tion, as shown in Fig. 7.
Another important step in the characterization of the

covariant model is given by the comparison of the gener-
alized form factors with the lattice results. For the present,
the comparison is restricted to the gravitational form fac-
tors AI¼0

2;0 ðtÞ and AI¼0
2;2 ðtÞ that appear in the second moment

of the isovector GPDHI¼0 [cf. Eqs. (17) and (22)]. Indeed,
for AI¼0

2;0 ðtÞ we have presented results from both our cova-

riant model and the LFHD approach, while for AI¼0
2;2 ðtÞ only

the covariant calculations are available (let us remind the
reader that calculations with � � 0 are necessary for dis-
entangling both form factors). Unfortunately, since lattice
data have been obtained in a t interval not too wide and are
affected by large uncertainties, one cannot yet draw strin-
gent conclusions from the comparison shown in Fig. 8.
However, the encouraging agreement between model cal-
culations and lattice data for both ratios AI¼0

0;2 ðtÞ=AI¼0
0;2 ð0Þ

and AI¼0
2;2 ðtÞ=AI¼0

2;2 ð0Þ suggests to extend our analysis also to
the spin-flip GPDs, since lattice results are available for the
lowest moments [56], in order to explore the onset of the
dominance of a one-gluon-exchange mechanism for a light
hadron.
To complete our analysis, we have studied the GPDs in

the ðx; tÞ plane for fixed values of �, i.e. j�j ¼ 0; 1; x. These
values are representative of different, interesting cases. The
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first one, � ¼ 0, involves contributions to GPDs only in the
valence region, while the second one involves contribu-
tions only from the nonvalence one. Finally, the case j�j ¼
x illustrates the transition from the DGLAP region to the
ERBL one. The covariant model can explore the whole 3D
space of the variables ðx; �; tÞ, and it is compared with the
LFHD model for � ¼ 0 and with the Mandelstam-inspired
model for j�j ¼ 1, while for j�j ¼ x it shows a smooth
transition from the DGLAP region to the ERBL one, given
the continuity of the model. It should be pointed out that
the covariant model with the product form for the Bethe-
Salpeter amplitude exhibits an overall agreement with the
Mandelstam-inspired model, for j�j ¼ 1, and with the
LFHD model, for � ¼ 0. Therefore, from these findings
one could conjecture that the general shape, illustrated by
the previous covariant model and the phenomenological
ones, is a typical feature of the pion GPDs, dictated from
both kinematical arguments (cf. the discussion at the end of
Sec. VI) and the dynamical input reflected by the proper
falloff of the momentum distribution (cf. the one-gluon-
exchange dominance at short distances).

Further analyses, to make more and more realistic the
models presented in this paper, are in progress.
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APPENDIX A: KINEMATICS

Following the notations of Fig. 1, where �þ � 0, one
obtains from Eq. (1) that 0 � �.
In the valence region, for a quark, one has (i) in the

initial state, pþ � kþ � �þ=2 � 0, i.e. Pþ � kþ �
�þ=2 (notice that necessarily the spectator constituent is
an antiquark, since 0 � kþ � Pþ) and then 1 � x � ��;
(ii) in the final state, p0þ � kþ þ �þ=2 � 0, i.e. Pþ �
kþ � ��þ=2, and then 1 � x � �. Therefore in the va-
lence region, one gets the interval 1 � x � ��, and given
our choice for � one has 1 � x � j�j.
For an antiquark in the initial pion, the four-momentum

is kþ �=2, while the spectator quark has four-momentum
kþ P. In the final pion, the antiquark four-momentum is
k��=2. The antiquark plus components are negative both
in the initial and in the final pion. Therefore
(i) pþ � �ðkþ þ�þ=2Þ � 0 that leads to � � x � �1
and (ii) p0þ � �ðkþ � �þ=2Þ � 0, i.e.�� � x � �1. In
summary, for an antiquark in the valence region, one finds
�j�j � x � �1.
In the nonvalence region, one has to deal with a q �q

production, i.e. 0> kþ ��þ=2 and kþ þ �þ=2> 0 (see
Fig. 2), and those constraints translate into � < x <��.
The q �q annihilation is prevented by the choice of a positive
�þ. In order to have general extrema, holding for both
positive and negative �þ, one can write j�j> x >�j�j.

APPENDIX B: INTEGRATION ON k�

In this appendix, the no-helicity flip GPD for the sym-
metric covariant models (see Sec. IV) are calculated using
Eq. (40) and the momentum-dependent part of the BS
amplitude, given by Eq. (37) or (38).
The evaluation of the trace in Eq. (41) can be simplified

according to the decomposition of the Dirac propagator
shown in Eq. (42) and by recalling that ½�þ�2 ¼ 0. By
introducing the variable � ¼ P� k, one has

Tr½Oþð��Þ� ¼ Trfð�6 þmÞðp6 0 � �6 þmÞ�þðp6 � �6 þmÞg

¼ Tr½Oþð��
onÞ� þ ð�� � ��

onÞ
2

Trf�þ½ðp6 0 � �6 Þon þm��þ½ðp6 � �6 Þon þm�g
¼ �4f�þ½ðp0 � �Þon � ðp� �Þon �m2� � ðp0þ � �þÞ½�on � ðp� �Þon �m2�

� ðpþ � �þÞ½ðp0 � �Þon � �on �m2�g þ 4ð�� � ��
onÞðp0þ � �þÞðpþ � �þÞ; (B1)

where

Tr ½Oþð��
onÞ� ¼ Trfð�6 on þmÞ½ðp6 0 � �6 Þon þm��þ½ðp6 � �6 Þon þm�g: (B2)

After performing the scalar products, one gets

Tr ½Oþð��Þ� ¼ 4p0þpþ��
on � �þj�?j2 þ 2�þ�? ��? þ 4ð�� � ��

onÞðp0þ � �þÞðpþ � �þÞ: (B3)

Given the simple expression adopted for the momentum dependence of the BS amplitude [see Eqs. (37) and (38)], the
analytic integration on k� can be easily performed in Eq. (40).

By using the LF variables (i.e. d4� ! d�þd��d�?=2), one obtains
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Huðx; �; tÞ ¼ �{NcR
Z d�þd��d�?

4ð2�Þ4 	½Pþð1� xÞ � �þ� Tr½Oþð��Þ�
�þðpþ � �þÞðp0þ � �þÞ

1

ð�� � ��
on þ i �

�þÞ

� 1

½p� � �� � ðp� �Þ�on þ i �
ðpþ��þÞ�

1

½p0� � �� � ðp0 � �Þ�on þ i �
ðp0þ��þÞ�

�ð�; p0Þ�ð�; pÞ; (B4)

where

��
on ¼ m2 þ j�?j2

�þ ; ðp� �Þ�on ¼ m2 þ jp? � �?j2
ðpþ � �þÞ ; ðp0 � �Þ�on ¼

m2 þ jp0
? � �?j2

ðp0þ � �þÞ : (B5)

In the integration over the minus component ��, one faces with the following six poles (coming from the BS amplitudes
and the Dirac propagators):

��
1ð2Þ ¼ ��

onðRÞ � i
�

�þ ; ��
3ð4Þ ¼ p� � ðp� �Þ�onðRÞ þ i

�

ðpþ � �þÞ ; ��
5ð6Þ ¼ p0� � ðp0 � �Þ�onðRÞ þ i

�

ðp0þ � �þÞ ;
(B6)

where ��
R , ðp� �Þ�R , and ðp0 � �Þ�R can be obtained from the corresponding quantities in Eq. (B5) by substituting m !

mR. Notice that �
�
2 can appear both as a single and as a double pole.

It is easily seen that the analytic integral (B4) is not vanishing only if p0þ � �þ � 0. Furthermore we can recognize two
subintervals: (i) pþ � �þ � 0, or the valence region, and (ii) p0þ � �þ � pþ, the nonvalence region. Let us stress that
Eq. (B4) is vanishing for x <�j�j, since in this case �þ ¼ Pþð1� xÞ> Pþð1þ j�jÞ ¼ p0þ.

In the valence region, only the poles ��
1 and ��

2 belong to the lower semiplane. In the nonvalence region, only ��
5 and

��
6 belong to the upper semiplane.

To obtain the no-helicity flip GPD in the valence region, let us integrate over �� closing the contour in the lower
semiplane. The contribution from ��

1 reads as follows:

Hu
ðvÞonðx; �; tÞ ¼ � NcR

4ð2�Þ3
Z

d�?
Z pþ

0
d�þ 	½Pþð1� xÞ � �þ�

�þðpþ � �þÞðp0þ � �þÞ Tr½O
þð��

onÞ�
�ð�; pÞj��

on

½p� � ��
on � ðp� �Þ�on�

� �ð�; p0Þj��
on

½p0� � ��
on � ðp0 � �Þ�on� ; (B7)

where for the sum form [Eq. (37)] one has

�ð�; pÞj�on
¼ C1

�
1

ðpþ � �þÞ½p� � ��
on � ðp� �Þ�R �

þ 1

�þð��
on � ��

R Þ
�

(B8)

and for the product form [Eq. (38)] one has

�ð�; pÞj�on
¼ C2

1

ðpþ � �þÞ½p� � ��
on � ðp� �Þ�R �

1

�þð��
on � ��

R Þ
: (B9)

For the sum form, the pole ��
R generates a contribution as a single pole and a contribution as a double pole.

The single-pole contribution is given by

Hu
ðvÞ1ðx; �; tÞ ¼ � NcR

4ð2�Þ3 C
2
1

Z
d�?

Z pþ

0
d�þ 	½Pþð1� xÞ � �þ�

ð�þÞ2ðpþ � �þÞðp0þ � �þÞ Tr½O
þð��

R Þ�
1

ð��
R � ��

onÞ
� 1

½p� � ��
R � ðp� �Þ�onÞ�½p0� � ��

R � ðp0 � �Þ�on�
�

1

ðpþ � �þÞ½p� � ��
R � ðp� �Þ�R �

þ 1

ðp0þ � �þÞ½p0� � ��
R � ðp0 � �Þ�R �

�
; (B10)

and the double-pole contribution is given by

T. FREDERICO et al. PHYSICAL REVIEW D 80, 054021 (2009)

054021-20



Hu
ðvÞ2ðx; �; tÞ ¼ � NcR

4ð2�Þ3 C
2
1

Z
d�?

Z pþ

0
d�þ 	½Pþð1� xÞ � �þ�

ð�þÞ3ðpþ � �þÞðp0þ � �þÞ
d

d��

�
Tr½Oþð��Þ�
ð�� � ��

onÞ
� 1

½p� � �� � ðp� �Þ�onÞ�½p0� � �� � ðp0 � �Þ�on�
�����������

R

: (B11)

For the product form, the pole ��
R generates only a double-pole contribution, given by

Hu
ðvÞ20 ðx;�;tÞ¼� NcR

4ð2�Þ3C
2
2

Z
d�?

Z pþ

0
d�þ 	½Pþð1�xÞ��þ�

ð�þÞ3ðpþ��þÞ2ðp0þ��þÞ2
d

d��

�
Tr½Oþð��Þ�
ð�����

onÞ
� 1

½p�����ðp��Þ�onÞ�½p0�����ðp0 ��Þ�on�
1

½p�����ðp��Þ�R Þ�½p0�����ðp0 ��Þ�R �
�����������

R

:

(B12)

The contribution in the nonvalence region can be evaluated by considering the poles ��
5 and ��

6 . In particular, the
contribution from ��

5 has the same form for both choices of the BS amplitudes, i.e.

Hu
ðnvÞ5ðx; �; tÞ ¼ � NcR

4ð2�Þ3
Z

d�?
Z p0þ

pþ
d�þ 	½Pþð1� xÞ � �þ�

�þðpþ � �þÞðp0þ � �þÞ

� Tr½Oþðp0� � ðp0 � �Þ�onÞ��ð�; p0Þjp0��ðp0��Þ�on�ð�; pÞjp0��ðp0��Þ�on
½p0� � ðp0 � �Þ�on � ��

on�½p� � p0� þ ðp0 � �Þ�on � ðp� �Þ�on� ; (B13)

while the contributions from ��
6 , reads differently for the sum form, viz.,

Hu
ðnvÞ6ðx; �; tÞ ¼ � NcR

4ð2�Þ3 C1

Z
d�?

Z p0þ

pþ
d�þ 	½Pþð1� xÞ � �þ�

�þðpþ � �þÞðp0þ � �þÞ2
1

½p0 � �Þ�R � ðp0 � �Þ�on�

� Tr½Oþðp0� � ðp0 � �Þ�R Þ�
½ðp0� � ðp0 � �Þ�R � ��

on�
�ð�; pÞjp0��ðp0��Þ�R

½p� � p0� þ ðp0 � �Þ�R � ðp� �Þ�on� (B14)

and for the product form, viz.,

Hu
ðnvÞ60 ðx; �; tÞ ¼ � NcR

4ð2�Þ3 C2

Z
d�?

Z p0þ

pþ
d�þ 	½Pþð1� xÞ � �þ�

ð�þÞ2ðpþ � �þÞðp0þ � �þÞ2 Tr½Oþðp0� � ðp0 � �Þ�R Þ�

� 1

½ðp0� � ðp0 � �Þ�R � ��
on�½ðp0 � �Þ�R � ðp0 � �Þ�on�

1

½p� � p0� þ ðp0 � �Þ�R � ðp� �Þ�on�

� �ð�; pÞjp0��ðp0��Þ�R
½ðp0� � ðp0 � �Þ�R � ��

R �
: (B15)

In summary, for the sum form one has

Huðx; �; tÞ ¼ �ðx� j�jÞ�ð1� xÞ½Hu
ðvÞonðx; �; tÞ

þHu
ðvÞ1ðx; �; tÞ þHu

ðvÞ2ðx; �; tÞ�
þ �ðj�j � xÞ�ðj�j þ xÞ½Hu

ðnvÞ5ðx; �; tÞ
þHu

ðnvÞ6ðx; �; tÞ�; (B16)

with Hu
ðnvÞ6 given by Eq. (B14), while for the product form

one gets

Huðx; �; tÞ ¼ �ðx� j�jÞ�ð1� xÞ½Hu
ðvÞonðx; �; tÞ

þHu
ðvÞ20 ðx; �; tÞ� þ �ðj�j � xÞ�ðj�j þ xÞ

� ½Hu
ðnvÞ5ðx; �; tÞ þHu

ðnvÞ60 ðx; �; tÞ�; (B17)

with Hu
ðnvÞ60 given by Eq. (B15).

APPENDIX C: ELECTROMAGNETIC FORM
FACTOR

The pion electromagnetic form factor is defined by

F�ðtÞ ¼ 1

2Pþ h�þðp0ÞjJð0Þ � nj�þðpÞi

¼
Z 1

�1
dxHI¼1ðx;�; tÞ

¼ 1

2

Z 1

�1
dx

Z dz�

2�
eixP

þz�

� h�þðp0Þj �c q

�
�1

2
z

�
� � n�3c q

�
1

2
z

�
j�þðpÞij~z¼0;

(C1)

where the range of x has been extended from ½�1; 1� to
½�1;1�, since HI¼1ðx; �; tÞ is vanishing outside the sup-
port ½�1; 1�, given the presence of the delta function in
Eq. (40) and the kinematical relations in Eq. (1) (see, e.g.,
[1,4]).
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69 (2005).
[13] C.-R. Ji, Y. Mishchenko, and A. Radyushkin, Phys. Rev. D

73, 114013 (2006).
[14] W. Broniowski, E. R. Arriola, and K. Golec-Biernat, Phys.

Rev. D 77, 034023 (2008); W. Broniowski and E. R.
Arriola, arXiv:0901.3336.

[15] W. Broniowski and E. R. Arriola, Phys. Rev. D 78, 094011
(2008).

[16] A. Van Dyck, T. Van Cauteren, J. Ryckebusch, and B. C.
Metsch, Phys. Lett. B 662, 413 (2008).

[17] B. D. Keister and W.N. Polyzou, Adv. Nucl. Phys. 20, 225
(1991).

[18] S. J. Brodsky, H. C. Pauli, and S. S. Pinsky, Phys. Rep.
301, 299 (1998).

[19] J. Carbonell, B. Desplanques, V. A. Karmanov, and J. F.
Mathiot, Phys. Rep. 300, 215 (1998).

[20] S. Mandelstam, Proc. R. Soc. A 233, 248 (1955).
[21] J. P. B. C. de Melo, T. Frederico, E. Pace, and G. Salmè,
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