
Dyson instability for 2D nonlinear OðNÞ sigma models

Y. Meurice*

Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
(Received 21 July 2009; published 21 September 2009)

For lattice models with compact field integration (nonlinear sigma models over compact manifolds and

gauge theories with compact groups) and satisfying some discrete symmetry, the change of sign of the

bare coupling g20 at zero results in a mere discontinuity in the average energy rather than the catastrophic

instability occurring in theories with integration over arbitrarily large fields. This indicates that the large

order of perturbative series and the nonperturbative contributions should have unexpected features. Using

the large-N limit of two-dimensional nonlinear OðNÞ sigma model, we discuss the complex singularities

of the average energy for complex ’t Hooft coupling �t ¼ g20N. A striking difference with the usual

situation is the absence of the cut along the negative real axis. We show that the zeros of the partition

function can only be inside a clover shape region of the complex �t plane. We calculate the density of

states and use the result to verify numerically the statement about the zeros. We propose dispersive

representations of the derivatives of the average energy for an approximate expression of the discontinuity.

The discontinuity is purely nonperturbative and contributions at small negative coupling in one dispersive

representation are essential to guarantee that the derivatives become exponentially small when �t ! 0þ.
We discuss the implications for gauge theories.
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I. INTRODUCTION

The lattice formulation of quantum chromodynamics
provides a nonperturbative ultraviolet regularization and
is a widely accepted model for strong interactions. For pure
gauge SUð2Þ and SUð3Þ with a Wilson action, the absence
of phase transition for any real and positive values of g20
suggests that it is possible to use a weak coupling expan-
sion in the bare coupling g20, which is valid a short distance,
to describe the large distance behavior of the theory.
However, possible limitations of the validity of the weak
coupling expansion have been raised by Dyson [1]. He
argued that, if in quantum electrodynamics e2 is changed
into �e2, the vacuum becomes unstable and that conse-
quently the radius of convergence of the expansion in
powers of e2 should be zero. In that article, Dyson says
that ‘‘the argument [. . .] is lacking in mathematical rigor
[. . .] it is intended [. . .] to serve as a basis for further
discussions’’. The idea was followed beneficially by
Bender and Wu [2,3] and many others [4] to show that
the large order behavior of perturbative series can be
estimated by semiclassical calculations at small negative
coupling.

The factorial growth of perturbative coefficients is due
to the large field contributions to the path integral [5,6]. In
lattice gauge theory with compact groups, there is a built-in
large field cutoff and the theory is well defined at negative
g20. For pure gauge theory with a SUð2NÞ gauge group and

lattices with even number of sites in each direction, there is
an exact discrete symmetry [7] that relates the partition
function at opposite values of g20. This symmetry implies

that the average plaquette jumps suddenly from 0 to 2 as g20
goes from very small positive values to very small negative
values. So, as g20 changes sign, there is a change in vacuum
rather than a loss of vacuum.
The idea that the Dyson argument needs to be revisited

for lattice models with compact gauge groups is also
supported by the analysis of the expansion of the average
plaquette in powers of g20. Existing series for SUð3Þ up to

order 10 [8] and 16 [9] suggest a power growth rather than
a factorial growth. These perturbative series are con-
structed by adding the tails of integration that are absent
because of the compactness of the group. In the case of a
single plaquette [10], adding the tail of integration leads to
a factorial growth. At finite volume, the studies of
Refs. [11,12] suggest that factorial behavior may show
up at an order proportional to the volume. The large order
behavior of the perturbative series is related to the zeros of
the partition function in the complex 1=g20 plane [13,14]

(Fisher’s zeros). This is clearly a difficult problem and it
would be useful to understand the connection for lattice
models that have the same features but where calculations
are easier.
In this article, we discuss Dyson instability for nonlinear

OðNÞ lattice sigma models in two dimensions. For N � 3,
these models are asymptotically free and have a mass gap.
The quantity that plays the role of the average plaquette is
the average energy density that will be denoted E. The
models are defined in Sec. II where we show that their
partition functions have the same property as SUð2NÞ
gauge theories under the transformation g20 ! �g20. In

the large-N limit, we can use a saddle point approximation.
This provides an equation mapping the mass gap into the
’t Hooft coupling �t ¼ g20N. This map will be an essential*yannick-meurice@uiowa.edu
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tool through the article. Fixing the mass gap allows us to
determine E and �t. Consequently, we will first study this
map in the complex plane. The complex singularities of
this map and its inverse are discussed in Secs. III and IV,
respectively. An important feature is the absence of the cut
along the real negative axis in the �t plane.

The average energy and the density of states are calcu-
lated in Sec. V for large N and compared with weak and
strong coupling expansions. In Sec. VI, we discuss Fisher’s
zeros. We show that they are related to the poles of the
average energy and that they can only appear in a clover
shape region of the complex �t plane which is the image of
the cut mass gap complex plane. We use the density of
states to numerically verify this statement. In Sec. VII,
dispersive methods are proposed to represent the deriva-
tives of the average energy in the limit where �t ! 0þ.
These representations are characterized by large contribu-
tions canceling each other.

The article mentions other questions that would beworth
addressing in more detail. One is the meaning of the finite
radius of convergence for the linear sigma models. This
seems to contradict Dyson’s argument and may be relevant
to understand the question of conformal fixed points sug-
gested by Polyakov [15]. The other is the volume depen-
dence of the nonperturbative part of the average energy and
of the locations of Fisher’s zeros. These questions are
important for numerical calculations in lattice gauge
theory.

II. THE MODEL

A. Basic definitions

In this article, we consider the OðNÞ nonlinear sigma
model on a square lattice. Most of the results presented in
this section can be formulated for arbitrary dimension D
not specified until the next section. We call V ¼ LD the
number of sites. The lattice sites are denoted x and the

scalar fields ~�x are N-dimensional unit vectors. The par-
tition function reads

Z ¼ C
Z Y

x

dN�x�ð ~�x: ~�x � 1Þe�ð1=g2
0
ÞE½f�g�; (1)

with

E½f�g� ¼ �X
x;e

ð ~�x: ~�xþe � 1Þ; (2)

with e running over the D positively oriented unit lattice
vectors. We introduce the ’t Hooft coupling:

�t � g20N; (3)

which is kept constant as N becomes large. Its inverse is
denoted

b � 1=�t: (4)

The volume integration at each site is finite and
equal to the hypersurface of a N � 1 dimensional

sphere 2�N=2=�ðN=2Þ. With the normalization C ¼
ð�ðN=2Þ=2�N=2ÞV , the partition function becomes 1 in
the limit b ¼ 0. This is the analog of having the Haar
measure normalized to 1 in lattice gauge theory.

B. Negative coupling duality

Unlike the linear sigma model, the partition function is

well defined at negative coupling. The ~�x are unit vectors,

and consequently, �1 � ~�x: ~�xþe � 1. This means that
the energy (or Euclidean action) E per link is bounded from
above and below. For a D-dimensional hypercubic lattice
with an even number of sites in each direction and periodic
boundary conditions, we have

Z½�g20� ¼ e2DLD=g2
0Z½g20�: (5)

This can be seen by changing variable ~� ! � ~� on sub-
lattices with lattice spacing twice larger and such that they
share exactly one site with each link of the original lattice.
A similar relation can be proven for SUð2NÞ pure gauge
theories on even lattices [7].
The argument extends to compact manifolds (for sigma

models) and to compact groups (for gauge theories) pro-
vided that it is possible to transform the integration variable
into minus itself without affecting the integration measure.
It should also be noted that if g20 � 0, Z½g20� ¼ 0 implies

Z½�g20� ¼ 0.
The average energy per unit of volume V and its deriva-

tives provide important information about possible phase
transitions. We denote it E � hEi=V. With our notations,

E ¼ �ð1=ðVNÞÞ@ lnZ=@b: (6)

The symmetry (5) implies the sum rule

E ð�g20Þ þ Eðg20Þ ¼ 2D: (7)

Knowing that when g20 ! 0þ, Eðg20Þ ! 0, the sum rule

implies that if g20 ! 0�, then Eðg20Þ ! 2D. In other words,

there is a discontinuity in the average energy when g20
changes sign.

C. The gap equation

In the large-N limit, it possible to calculate the partition
function in the saddle point approximation [16–18]. In the
case of the nonlinear sigma model, one enforces the con-

dition ~�x: ~�x ¼ 1 using a Lagrange multiplier. The inte-
gration over � can then be done exactly. Varying the zero
mode of the Lagrange multiplier, we obtain

b ¼ BðM2Þ; (8)

with
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B ðM2Þ � YD
j¼1

Z �

��

dkj
2�

1

2ðPD
j¼1ð1� cosðkjÞÞ þM2

: (9)

M2 is the saddle point value of the suitably rescaled
Lagrange multiplier and can be interpreted as the mass
gap or as the renormalized mass in cutoff units. At finite
volume, the integral is replaced by a sum over momenta
ni2�=L.

The saddle point equation is invariant under the simul-
taneous changes:

�t ! ��t M2 ! �M2 � 4D: (10)

This can be seen by changing variables kj ! kj þ � for all

j. Note that this change of variable sends the zero-
momentum mode into the fastest oscillating one (that
changes sign at every lattice site).

It is interesting to compare the gap equation (8) with its
counterpart for the linear sigma model. In the linear case,

the Lagrange multiplier is used to replace ~�x: ~�x by a
composite field. After suitable rescalings [17], this com-
posite field is denoted X and the gap equation becomes

X ¼ BðM2Þ M2 ¼ 2U0ðXÞ (11)

for a rescaled bare potential UðXÞ. In the case of a �4

theory, we can chooseUðXÞ ¼ ðm2
B=2ÞX þ ~�X2, wherem2

B

is the bare mass and ~� is kept constant when N becomes
large. X can then be eliminated yielding

ðM2 �m2
BÞ=4 ~� ¼ BðM2Þ: (12)

Note that despite the fact that the partition function is not

well defined at negative ~�, theD ¼ 2 gap equation has two

real solutions for M2 when ~�c < ~� < 0. At ~�c the two
solutions merge. They disappear in the complex plane

when ~� < ~�c.
The comparison between the linear and nonlinear sigma

models shows that there are important differences between
the two cases. In the linear case, the situation is very
similar to what is observed in other scalar models [4]
(dispersion relations with a cut extending to �1), but
the nonlinear case is quite different as we now proceed to
explain.

III. THE GAP EQUATION AT COMPLEX
COUPLING FOR D ¼ 2

In this section, we study the map BðM2Þ when M2 is
varied in a cut complex plane. The cut is between�8 and 0
on the real axis. D ¼ 2 is assumed through this section.
From the previous section, we know that

B ð�8�M2Þ ¼ �BðM2Þ BðM2�Þ ¼ BðM2Þ�;
(13)

and we only need to study one quadrant, for instance
ReM2 >�4 and ImM2 > 0.

A. Large M2 behavior

The basic observation is that for large jM2j, we have an
approximate one-to-one mapping since �t ’ M2. This is
fundamentally different from what happens for the linear

sigma model where ~� ’ ð1=4ÞðM2Þ2 and the inverse map-
ping requires a cut that can be taken along the negative
axis.
The approximation can be improved and we can calcu-

late the strong coupling expansion,

1=�t ¼ 1=M2 � 4=M4 þ 20=M6 . . . ; (14)

and its inverse

1=M2 ¼ 1=�t þ 4=ð�tÞ2 þ 12=ð�tÞ3 . . . : (15)

Numerical studies of the large order expansion in powers
of 1=M2 show a clear evidence for a singularity at 1=M2 ¼
�1=8.
As we reduce jM2j, the image of a Cartesian grid gets

distorted and gaps open near the origin. This illustrated in
Fig. 1. The approach of the cut is intricate and involves
logarithmic divergences in BðM2Þ that we now proceed to
study.

B. Logarithmic divergences of BðM2Þ
For D ¼ 2, logarithmic divergences appear in BðM2Þ

from region of integration where

6 4 2 0 2 4 6
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4

2

0

2

4

6

Re λ

Im
 λ

Image of M^2 grid

FIG. 1 (color online). Complex values of �t ¼ 1=BðM2Þ when
M2 varies over horizontal (with a spacing 1) and vertical lines
(with a spacing 0.5) centered about the cut in the complex M2

plane.
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2ð2� cosðk1Þ � cosðk2ÞÞ ’ A� k21 � k22: (16)

This only occurs when ki ¼ 0 or�. The four cases are A ¼
0 [for (0,0)], 4 [for ð0; �Þ or ð�; 0Þ], and 8 [for ð�;�Þ].
Logarithmic divergences appear when M2 approaches 0,
�4, and�8. In order to give a first idea, we have plotted in
Fig. 2 the real and imaginary part ofBðM2Þ whenM2 runs
over a line slightly above the cut. This figure suggests that
the real part has singularities at 0 and �8 and that the
imaginary part has singularities at �4.

The leading coefficients of the logarithmic singularities
can be estimated by using the continuum approximation
(16). For instance, if M2 ! 0þ on the real axis, we obtain
the familiar relation BðM2Þ ’ �ð1=4�Þ lnðM2Þ. For M2 ’
�4, we have two contributions and by applying the proper
Wick rotations, we obtain an imaginary expression that is
twice larger in absolute value than the real part forM2 ’ 0.

Further insight into the singularities can be obtained by
introducing the spectral decomposition:

B ðM2Þ ¼
Z 8

0
duGðuÞ 1

uþM2
; (17)

with

GðuÞ �
Z d2k

ð2�Þ2 �ðu� 2ð2� cosðk1Þ � cosðk2ÞÞÞ

¼ 1

2�2

Z 1

�1
dc

�ð1� ju=2� 2þ cjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðu=2� 2þ cÞ2p : (18)

The symmetry (10) implies that

Gð8� uÞ ¼ GðuÞ: (19)

Numerical values for GðuÞ are provided in Fig. 3. The
estimate of the singularity of the real part of BðM2Þ near
M2 ¼ 0 implies

Gð0Þ ¼ 1=4�; (20)

which is confirmed numerically in Fig. 3. From the residue
theorem, we find that the imaginary part has a discontinuity
along the cut. For M2 2 ½�8; 0�,

Im ðBðM2 � i�ÞÞ ¼ ��Gð�M2Þ: (21)

From the analysis of the logarithmic singularity of the
imaginary part of BðM2Þ near M2 ¼ �4, this implies
that for u ’ 4,

GðuÞ ’ �ð1=ð2�2ÞÞ lnðju� 4jÞ: (22)

This result was confirmed by an analysis of the numerical
values ofGðuÞ near u ¼ 4. Finally, using the fact that when
u reaches 4, two pairs of inverse square root singularities
coalesce into two poles, it is possible to justify that the real
part jumps suddenly from�1=4 to 1=4 asM2 increases and
crosses �4.
By construction, the integration path in Eq. (17) does not

wrap around the pole at u ¼ �M2. As in the case of the
logarithm, we can introduce

B kðM2Þ � BðM2Þ þ ik2�Gð�M2Þ; (23)

which corresponds to havng the contour of integration
wrapping k times around the pole.
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FIG. 2 (color online). Real (blue online) and imaginary (red
online) part ofBðM2Þ whenM2 varies over a horizontal line 0.01
above the cut in the complexM2 plane. The imaginary part has a
negative spike at �4.
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FIG. 3 (color online). GðuÞ (blue online) compared to 1=ð4�Þ
(red online).

Y. MEURICE PHYSICAL REVIEW D 80, 054020 (2009)

054020-4



C. B image of the cut M2 plane

We are now in position to determine the imageBðM2Þ of
the cutM2 plane. The region of large jM2j is mapped into a
neighborhood of the origin. As we approach the cut, the
image of lines of constant imaginary M2 are mapped into
hat-shaped curves shown in Fig. 4. In the limit of zero
imaginary part, the curves become approximate hyperbolas
with asymptotes on the boundary of a cross of width 0.5
centered at the origin. The asymptotes correspond to the
logarithmic singularities and can be read from Fig. 2. When
M2 has zero real part and a small positive imaginary part,
the imaginary part of BðM2Þ reaches �0:25 while the real
part becomes large and positive. The other asymptote of
the approximate hyperbola is reached by approaching �4
from above with a positive imaginary part, the real part of
BðM2Þ then reaches 0.25 while the imaginary part becomes
very negative. All the other cases can be obtained from the
symmetry (13).

D. �t image of the cut M2 plane

We can now drawmore precisely the empty region in the
middle of Fig. 1. Before constructing it, we state the final
result: the image of the cut complex M2 plane under the
1=BðM2Þ map is the complex plane minus a clover shape
centered at the origin and with lobes approximately bisect-
ing the real and imaginary axis. The clover shape is visible
in Fig. 5.

The boundary of the clover shape is the 1=z map of the
four limiting approximate hyperbolas discussed in the
previous subsection. First, we construct the image of the
asymptotes. Their images are circles of radius 2 centered at
�2 and �2i. Near the origin in the �t plane, the circles
provide a good approximation of the boundary. As we
move away from the origin, numerical values are neces-
sary. This is illustrated in Fig. 5.

IV. SINGULARITIES OF M2ð�tÞ
In Sec. III, we have constructed a one-to-one map be-

tween the cut M2 plane and the �t plane with a clover
removed. The clover can be filled by adding the imagesBk

indexed by an integer k as defined in Eq. (23). In this
section, we construct the inverse mapping and discuss its
singularities. We start with a simplified example where
everything can be done analytically and then discuss the
original problem.

A. A simplified example

We will start by constructing the inverse mapping for a
simplified mapping BsimplðM2Þ for which GðuÞ in the

decomposition (17) is constant and equal to 1=4�. This
implies

B simplðM2Þ ¼ ð1=4�Þ lnð1þ 8=M2Þ: (24)

This modification preserves the logarithmic singularities at
0 and�8 and the symmetry (10). This example is probably

0.5 0. 0.5

0.75

0.5

0.25

0.

0.25

0.5

0.75

0.25 0.25

Re B

Im
B

Im M^2 cst.

FIG. 4 (color online). Complex values taken by BðM2Þ when
M2 varies over the complex plane [here on horizontal lines in the
M2 plane with spacing 0.1 (black, blue online) and 0.5 (gray,
orange online)]. Asymptotic limits are �0:25 in both directions.
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4
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FIG. 5 (color online). Complex values taken by �t when M2

varies over lines above and below the cut with ImM2 ¼ �0:01
(black, blue online); the circles are the inverses of the asymptotic
lines in Fig. 4.
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closer to what we expect to find for 4D lattice gauge
theories. The image of the cut complex M2 plane (funda-
mental domain) is the horizontal strip bounded by the
horizontal lines with imaginary part �0:25. The inverse
map can be calculated explicitly:

M2
simplðbÞ ¼ 8=ðe4�b � 1Þ; (25)

and is invariant under b ! bþ ik=2, for any integer k. The
translated values obtained from the fundamental domain
could be obtained directly by having the path of integration
in Eq. (17) wrapping k times around �M2. The poles of
M2

simplðbÞ are located at b ¼ 0;�i=2;�i; . . . .

In the �t plane, the fundamental domain is the complex
plane with two circles removed. The boundary of the
k-translated domains are circles of radius 2=ð2jkj þ 1Þ
and centered at �i2=ð2jkj þ 1Þ. The poles are located at
�i2=k. A finite number of boundaries and poles are shown
in Fig. 6. For large jkj, the poles and boundaries accumu-
late at the origin. We believe that some qualitative features
of this picture are representative of what is encountered in
lattice gauge theory.

B. Qualitative features of M2ð�tÞ
We can now describe qualitatively what happens when

we restore the original features of GðuÞ. The fundamental
domain in the b complex plane becomes strongly distorted
when Reb is small as already shown in Fig. 4. The trans-
lated domains that were parallel strips in the simplified
example are obtained by adding ik2�Gð�M2Þ as specified

by Eq. (23). The reader can visualize the effect by combin-
ing Figs. 3 and 4.
We can now discuss qualitatively the deformation of

Fig. 6 that the logarithmic divergence of GðuÞ near u ¼ 4
imposes. In the b plane the strips are pulled at infinity when
Reb becomes small. In the �t plane, the circles are pushed
toward the origin along the imaginary axis forming con-
centric clover shape figures. Importantly, all the poles have
moved to the origin.

V. THE DENSITY OF STATES

A. Average energy

From the definition of the average energy [Eq. (6)], we
obtain that in the saddle point approximation

E ¼ ð1=2Þð�t �M2Þ: (26)

Note that 0 � E � 4 and the range is N independent.
When �t approaches 0 on the positive real axis, M2

approaches zero like 8e�4�=�. We call �ð1=2ÞM2 the non-
perturbative part of E. The perturbative expansion termi-
nates at first order. For large �t, the leading terms cancel
and can use the strong coupling expansion (15) to obtain

E ¼ 2� 2=�t . . . : (27)

B. Saddle point calculation of nðEÞ
We can use a spectral decomposition of the partition

function for all possible energies:

Z ¼
Z

dEnðEÞe�bNE; (28)

with nðEÞ, the density of state which can be defined as

nðEÞ ¼
Z Y

x

dN�x�ð ~�x: ~�x � 1Þ�ðE½f�g� � EÞ: (29)

nðEÞ is nonzero only if 0 � E � DV in D dimensions and
this implies that Z is an analytical function in the entire b
plane. Using

�ðE½f�g� � EÞ ¼ ð1=2�Þ
Z Kþi1

K�i1
d�e�ðE½f�g��EÞ (30)

and varying with respect to M2 (introduced as before) and
�, we obtain

� ¼ Bð1=�� 2EÞ M2 ¼ 1=�� 2E; (31)

with � and M2 understood as functions of E. In these
equations E is the independent variable and they are
equivalent to Eqs. (8) and (26) provided that we identify
� and b ¼ 1=�t. From these results, we obtain

nðEÞ / eVNfðE=VÞ; (32)

with the entropy density

-4

-2

 0

 2

 4

-4 -2  0  2  4
Re λ

Poles of M2 
simpl. (λ)

poles

-4

-2

 0

 2

 4

-4 -2  0  2  4

Im
 λ

FIG. 6 (color online). A finite number of poles and boundaries
of domains described in the text for �simplðM2Þ in the M2 plane.
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fðEÞ ¼ �ð1=2Þ logð�Þ � ð1=2ÞY2
j¼1

Z �

��

dkj
2�

	 ln

�
2

�X2
j¼1

ð1� cosðkjÞ
�
þM2

�
: (33)

The duality (5) implies

fðEÞ ¼ fð4� EÞ: (34)

Numerical values of fðEÞ are shown in Fig. 7. They were
calculated usingM2 as a parameter first used to fix � and E
from (31) and then fðEÞ from Eq. (33).

If we rewrite the partition function in terms of the
density of states, we obtain the usual thermodynamic
relation:

f0ðEÞ ¼ b: (35)

One can check that the saddle point equations imply� ¼ b
as expected.

The behavior of fðEÞ can be approximated near the
origin. Using E ’ ð1=2Þ�t and Eq. (35), we obtain

fðEÞ ’ ð1=2Þ lnðEÞ: (36)

The behavior of fðEÞ near its maximum at E ¼ 2 can be
approximated using Eqs. (27) and (35). The result is

fðEÞ ’ ð�1=4ÞðE � 2Þ2: (37)

These two approximations fit the numerical values quite
well in their region of validity as shown in Fig. 7.

As long as E takes values in the real interval [0,4],
Eq. (35) defines a one-to-one mapping between this inter-
val and the entire real axis. It is clear from Fig. 7 that in this
interval f00ðEÞ< 0 and consequently the derivative of the
mapping is never zero over the interval. This allows us to
integrate over the quadratic fluctuations about the mini-
mum. If an analytical continuation of fðEÞ can be con-
structed, it seems clear that poles and zeros of f00ðEÞ will
play an important role in the determination of the zeros of
the partition function which is the subject of the next
section.

VI. ZEROS OF THE PARTITION FUNCTION

There exists a simple relation between the poles of the
average energy and the zeros of the partition function. If b0
is a zero of Z of order q, then ðdZ=dbÞ=Z ’ q=ðb� b0Þ for
b ’ b0. If we now integrate over a closed contour C,

I
C
dbðdZ=dbÞ=Z ¼ i2�

X
q

nqðCÞ; (38)

where nqðCÞ is the number of zeros of order q inside C.

Using Eq. (26), we obtain that in the large N limit,

ð4�iÞ�1
I
C
dbðM2 � 1=bÞ ¼ X

q

nqðCÞ=ðVNÞ: (39)

In this expression, M2 is understood as a function of b by
inverting Eq. (8). The second term has a pole at b ¼ 0, but
it is compensated by a pole in M2. This is due to the fact
that b ’ 1=M2 for small jbj. We now consider possible
poles ofM2 for other values of b. We change the variable to
write

I
C
dbM2 ¼

I
C0
dM2ðdb=dM2ÞM2; (40)

where C0 is the contour corresponding to C in theM2 plane
and b is a short notation for BðM2Þ. At finite volume, it is
possible to writeBðM2Þ as a ratio of two polynomials. The
zeros of the denominator can only be in the cut (the real
interval ½�8; 0�). This property persists for arbitrarily large
volume. Consequently, if the contour C0 in the M2 plane
does not cross the cut, then there are no zeros of the
partition function inside the corresponding C in the b
plane. We conclude that in the large-N limit, there is no
Fisher’s zero in theBðM2Þ image of the cutM2 plane. This
image has been constructed in Sec. III and limited by four
approximate hyperbolas with asymptotes along a cross
shaped figure. In the �t plane, this region becomes the
complement of a clover shape figure (see Figs. 4 and 5).
The argument has been checked by numerical calcula-

tions using methods similar to those used in lattice gauge
theories [12,13]. We used spline interpolations from 400
numerical values of fðEÞ in Eq. (33) and NV ¼ 100. In
order to remove fast oscillations, we have subtracted the
average value of the energy at b ¼ 0:35 from E in the

0 1 2 3 4
1.

0.8

0.6

0.4

0.2

0.

E V

f
E

V
Entropy density

FIG. 7 (color online). fðEÞ, numerical (circle), first order
strong coupling (parabola, green online), and first order weak
coupling (red online).
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exponential. This does not affect the complex zeros. The
results are shown in Fig. 8 for a rectangle with 0.1 on each
side of b ¼ 0:35 and Imb � 0:4 (beyond that new methods
need to be developed to calculate the rapidly oscillating
integrals). The Fisher’s complex zeros are the three iso-
lated points at which the zeros of the imaginary part of Z
meet those of the real part. The image of a line slightly
below the cut (ImM2 ¼ �0:05) is also shown. As pre-
dicted there are no Fisher’s zeros below the image of this
line.

The construction points out a relationship between
Fisher’s zeros and the poles of db=dM2. This derivative
also appears in the � function

�ð�tÞ � �d�t=d� ¼ 2ð�tÞ2M2db=dM2; (41)

assuming M2 ¼ m2
R=�

2 with the renormalized mass m2
R

kept fixed and � the UV cutoff. In the approximation
where b ¼ �ð4�Þ�1 lnM2, we recover the well-known
continuum result �ð�tÞ ¼ �ð�tÞ2=ð2�Þ. Following the fi-
nite volume reasoning used above, we see that the poles are
exactly canceled by zeros of ð�tÞ2. The zeros of the beta
function can be interpreted as the singular points of the
�tðM2Þ map which have nontrivial locations at finite
volume.

VII. TOWARD A DISPERSIVE APPROACH

In quantum mechanics or linear scalar models with ��4

interactions, it is common [2–4] to use dispersion relations

to estimate the large order behavior of perturbative series.
Typically, one considers a quantity, that we will denote
Fð�Þ, which is analytical in the cut plane with a cut going
from �1 to 0. The coefficients Fk of the perturbative
series in powers of � are then expressed as

Fk ¼ ð1=�Þ
Z 0

�1
d� ImFð�Þ=�kþ1: (42)

For large k, the integral is dominated by small negative
values of � and one can use semiclassical methods to

estimate ImFð�Þ in this regime. Typically, ImFð�Þ 

��bea=� which leads to a factorial growth Fk 

ð�aÞ�k�ðbþ kÞ.
We are interested in finding a dispersive representation

of Eð�tÞ as expressed in the leading order equation (26). In
this approximation, the series terminates and what we
would expect to learn from dispersive methods is that
M2, which appears in the second term of E, is zero to all
orders in �, when �t ! 0þ.
In the rest of this section we will study dispersive

expressions for M2
simpl defined in Eq. (25). This simplified

expression of the mass gap does have a different behavior
when � approaches 0 along the imaginary axis but it
preserves the basic symmetry (10) and it probably has
more resemblance with the gauge models. This choice
also has the advantage that all the calculations can be
done in terms of elementary functions and that the correct-
ness and accuracy of dispersive expressions can be checked
easily. We define

R mð�Þ ¼ ði2�Þ�1
I

d�ð�� �Þ�m�1M2
simplð�Þ; (43)

where the contour of integration runs counterclockwise
along a circle of center � and radius smaller than �. In
the rest of this section, � is real and strictly positive. By
construction, m!Rmð�Þ is the mth derivative of M2

simpl

evaluated at �. If � is not exactly zero, we can obtain
analytical expressions, such as

R 1ð�Þ ¼ 8�=ðsinh2ð2�=�Þ�2Þ: (44)

The Rmð�Þ calculated that way are even functions of � for
m odd and larger than 1 and odd functions for m even and
larger than 2. However, since M2

simpl has a discontinuity at

0, �ð�Þ and derivatives should also be present if we wish to
obtain expressions valid over the whole real axis.
For 0< � � 4�, Rmð�Þ can be approximated by a sum

of terms of the form e�4�=���q, with q � 2m. These
individual terms peak at � ¼ 4�=q where their value
grows like q!. When m increases, there is an intermediate
region where many large terms cancel and it is difficult to
evaluate the function numerically. For instance, for m ¼
12, some numerical noise becomes visible for 0:3< �<
0:8 when 16 digit arithmetic is used.
For m � 2, the contribution of the circle at infinity

vanishes, and we can deform the contour in Eq. (43) into

0.25 0.35 0.45
0.

0.1

0.2

0.3

0.4

Re b

Im
b

NV 100

FIG. 8 (color online). Fisher’s zeros for NV ¼ 100: zeros of
ReZ (small dots, blue online), zeros of ImZ (larger dots, red
online). The solid line (blue online) is the image of a horizontal
line slightly below the cut in the M2 plane.

Y. MEURICE PHYSICAL REVIEW D 80, 054020 (2009)

054020-8



a clockwise contour encircling the poles on the imaginary
axis. Because of the absence of a cut or poles on the
negative real axis, the contribution of two line integrals
running on opposite directions along the negative axis
cancels. This is in contrast to what happens for quantum
mechanics and linear scalar models, where there is a dis-
continuity. Using the residue theorem, we obtain

R mð�Þ ¼ �ð8=�ÞX
k�0

km�1ð2i� �kÞ�m�1: (45)

This expression provides reasonably accurate expressions
with truncated sums when � is not too small. When �
becomes small, the sum can be divided into two parts,
one with jkj< 2=� and the other with the rest of the terms.
Each sum is of order ��m and the two large sums must
cancel to yield exponentially small results.

Another option is to start with the deformed contour
encircling the poles on the imaginary axis keeping it
slightly outside of the figure 8 which is visible on Fig. 6.
Changing the variable to M2, this contour is then mapped
into a contour encircling the cut from �8 to 0 [but not
containing M2

simplð�Þ]. With this contour, we have

R mð�Þ ¼ ð2�iÞ�1
I

dM2b0bm�1ð1� b�Þ�m�1; (46)

with b a short notation forBsimplðM2Þ given in Eq. (24) and
b0 its derivative. The contour can be constructed as a
‘‘barbell’’ figure with three parts that we call A, B, and
C: two lines running along the cut in opposite directions
(part A) and two circles going around �8 (part B) and 0
(part C) and stopping when they meet the horizontal lines.
We have monitored the contributions of the three parts for
m � 12 and values of � � 2 and compared them to reliable
numerical values of the derivatives ofM2

simpl. For small, but

not too small values of �, A and B provide same sign
contributions that dominate the integral. As � decreases,
the A and B contributions become large and of opposite
sign while C becomes negligible. As � keeps decreasing,
the absolute values of A and B keep increasing until the
accuracy of the integrals deteriorate. The situation is illus-
trated for m ¼ 5 in Table I. Again, we are facing the
challenge of having two large canceling quantities. We
have tried to improve this situation by modifying the radius
of the circles and the distance between the horizontal lines,
but the general features seem quite persistent.
The lesson that can be learned from the second repre-

sentation is that the contribution from small negative cou-
pling, which becomes the integral around a cut circle
around M2 ¼ �8 (part B) after the change of variable, is
essential to compensate the large contributions from the
cut.

VIII. CONCLUSIONS

In summary, for 2D nonlinear OðNÞ sigma models, the
exact discontinuity of the average energy appears to be a
purely nonperturbative phenomenon. At leading order in
the 1=N expansion the series terminates and no pathologi-
cal behavior at negative coupling can be inferred from it. It
would interesting to see if this feature persists for sublead-
ing corrections.
In the large-N and large volume limit, the Fisher’s zeros

can only appear inside a clover shape in the complex �t

plane. It is plausible that, as the volume increases, the zeros
become dense at the boundary of the clover shape and at
the boundary of an infinite set of concentric clover shapes.
If this is correct, the zeros closest to the real axis in the b
plane appear at infinite Reb and Imb ¼ �i=4. Numerical
studies at finite N and V should clarify the picture and

TABLE I. Values of the contributions A, B, and C described in the text in units of the total
value T ¼ R5ð�Þ.
� T ¼ R5ð�Þ A/T B/T C/T

2.0 �0:001 169 08 �0:166 729 0.536 511 0.630 219

1.9 �0:002 021 12 0.257 416 0.379 77 0.362 814

1.8 �0:002 964 29 0.441 387 0.320 456 0.238 158

1.7 �0:003 895 98 0.527 325 0.305 554 0.167 121

1.6 �0:004 650 05 0.552 561 0.325 353 0.122 087

1.5 �0:004 997 9 0.517 248 0.390 845 0.091 907 2

1.4 �0:004 678 68 0.379 432 0.548 854 0.071 713 7

1.3 �0:003 478 55 �0:051 518 4 0.990 67 0.060 848 4

1.2 �0:001 369 8 �2:535 23 3.457 79 0.077 4331

1.1 0.001 318 13 6.104 86 �5:079 36 �0:025 507 8
1.0 0.003 808 12 3.569 12 �2:569 53 0.000 410 349

0.9 0.005 075 21 3.932 13 �2:933 89 0.001 757 48

0.8 0.004 490 56 6.302 64 �5:303 73 0.001 086 4

0.7 0.002 575 63 16.7544 �15:7548 0.000 454 331

0.6 0.000 812 222 93.4553 �92:4554 0.000 131 085

0.5 0.000 098 702 4 1576.99 �1576:15 0.000 022 959 1
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could be used as a guide for the search of Fisher’s zeros in
gauge theories. It would also be interesting to consider the
caseD ¼ 3, where there is a rich phase diagram [17,19,20]
and where we expect the zeros to pinch the real axis in the
infinite volume limit.

A simplified form of the discontinuity was approached
with dispersive methods. An important feature observed
was that large contributions canceled. Again, finite volume
studies may clarify the mechanism. If we extend the rea-
soning used for one plaquette [11], nonperturbative effects
become important at an order k
 �V. Near this order, the
coefficients become different if we integrate a perturbative
expansion of the density of state from 0 toDV or from 0 to
1. This understanding is crucial if we want to modify the
weak coupling expansion in order to include nonperturba-
tive effects.

We have noticed that the zeros of the � function are
related to the singular points of the mapping bðM2Þ. At

finite volume, these singular points have a nonzero imagi-
nary part. This should be seen as an encouragement to
study complexified renormalization group flows as also
suggested by other works [15,21].
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