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We investigate the exclusive semileptonic Bc ! ðD;�c; B; BsÞ‘�‘, �b ! Bc‘�‘ (‘ ¼ e;�; �) decays

using the light-front quark model constrained by the variational principle for the QCD-motivated effective

Hamiltonian. The form factors fþðq2Þ and f�ðq2Þ are obtained from the analytic continuation method in

the qþ ¼ 0 frame. While the form factor fþðq2Þ is free from the zero mode, the form factor f�ðq2Þ is not
free from the zero mode in the qþ ¼ 0 frame. We quantify the zero-mode contributions to f�ðq2Þ for
various semileptonic Bc decays. Using our effective method to relate the non-wave-function vertex to the

light-front valence wave function, we incorporate the zero-mode contribution as a convolution of the zero-

mode operator with the initial and final state wave functions. Our results are then compared to the

available experimental data and the results from other theoretical approaches. Since the prediction on the

magnetic dipole B�
c ! Bc þ � decay turns out to be very sensitive to the mass difference between B�

c and

Bc mesons, the decay width �ðB�
c ! Bc�Þ may help in determining the mass of B�

c experimentally.

Furthermore, we compare the results from the harmonic oscillator potential and the linear potential and

identify the decay processes that are sensitive to the choice of confining potential. From the future

experimental data on these sensitive processes, one may obtain more realistic information on the potential

between the quark and antiquark in the heavy meson system.

DOI: 10.1103/PhysRevD.80.054016 PACS numbers: 13.20.He, 12.39.Ki

I. INTRODUCTION

The exclusive semileptonic decay processes of heavy
mesons generated great excitement not only in extracting
the most accurate values of Cabbibo-Kobayashi-Maskawa
(CKM) matrix elements but also in testing diverse theo-
retical approaches to describe the internal structure of
hadrons. The great virtue of semileptonic decay processes
is that the effects of the strong interaction can be separated
from the effects of the weak interaction into a set of
Lorentz-invariant form factors, i.e., the essential informa-
tion of the strongly interacting quark/gluon structure inside
hadrons. Thus, the theoretical problem associated with
analyzing semileptonic decay processes is essentially that
of calculating the weak form factors.

In particular, along with the experimental study planned
both at the Tevatron and at the Large Hadron Collider
(LHC), the study of the Bc meson has been very interesting
due to its outstanding feature; i.e., the Bc meson is the
lowest bound state of two heavy ðb; cÞ quarks with different
flavors. Because of the fact that the Bc meson carries the
flavor explicitly, not like the symmetric heavy quarkonium
ðb �b; c �cÞ states, there is no gluon or photon annihilation via
strong interaction or electromagnetic interaction. It can
decay only via weak interaction. Since both b and c quarks
forming the Bc meson are heavy, the Bc meson can decay
appreciably not only through the b ! q (q ¼ c; u) transi-
tion with the c quark being a spectator but also through the
c ! q (q ¼ s; d) transition with the b quark being a spec-
tator. The former transitions correspond to the semilep-
tonic decays to �c and D mesons, while the latter

transitions correspond to the decays to Bs and B mesons.
The latter transitions are governed typically by a much
larger CKM matrix element, e.g., jVcsj � 1 for Bc !
Bs‘�‘ (‘ ¼ e;�) vs jVcbj � 0:04 for Bc ! �c‘�‘ (‘ ¼
e;�; �). For this reason, although the phase space in c !
s; d transitions is much smaller than that in b ! c; u tran-
sitions, the c-quark decays provide �70% to the decay
width of Bc. The b-quark decays and weak annihilation add
about 20% and 10%, respectively [1]. This indicates that
both b-and c-quark decay processes contribute on a com-
parable footing to the Bc decay width.
There are many theoretical approaches to the calculation

of exclusive Bc semileptonic decay modes. Although we
may not be able to list them all, we may note here the
following works: QCD sum rules [1–4], the relativistic
quark model [5–7] based on an effective Lagrangian de-
scribing the coupling of hadrons to their constituent
quarks, the quasipotential approach to the relativistic quark
model [8–10], the instantaneous nonrelativistic approach
to the Bethe-Salpeter (BS) equation [11], the relativistic
quark model based on the BS equation [12,13], the QCD
relativistic potential model [14], the relativistic quark-
meson model [15], the nonrelativistic quark model [16],
the covariant light-front quark model [17], and the con-
stituent quark model [18–21] using the Bauer, Stech, and
Wirbel model [22] and the Isgur, Scora, Grinstein, and
Wise model [23].
The purpose of this paper is to extend our light-front

quark model (LFQM) [24–29] based on the QCD-
motivated effective LF Hamiltonian to calculate the had-
ronic form factors and decay widths for the exclusive
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semileptonic Bc ! P‘�‘ (P ¼ D;�c; B; Bs) and �b !
Bc‘�‘ decays and the magnetic dipole B�

c ! Bc� transi-
tion. In our previous LFQM analysis [24–29], we have
analyzed the meson mass spectra [24,25] and various ex-
clusive processes of the ground state pseudoscalar (P) and
vector (V) mesons such as the P ! P semileptonic heavy/
light meson decays [25,26], the rare B ! K‘þ‘� decays
[27], and the magnetic dipole transitions of the low-lying
heavy/light pseudoscalar/vector mesons [24,28,29]. In
those analyses, we found a good agreement with the ex-
perimental data. However, since we did not analyze the Bc

and B�
c mesons yet, we shall extend our LFQM to predict

the masses and the decay constants of Bc and B
�
c mesons as

well as the above-mentioned exclusive decays of Bc and B
�
c

mesons.
Our LFQM [24–29] analysis in this work has several

salient features: (i) We have implemented the variational
principle to the QCD-motivated effective LF Hamiltonian
to enable us to analyze the meson mass spectra and to find
optimized model parameters. The present investigation
further constrains the phenomenological parameters and
extends the applicability of our LFQM to the wider range
of hadronic phenomena. (ii) We have performed the ana-
lytical continuation from the spacelike region to the physi-
cal timelike region to obtain the weak form factor fþðq2Þ
for the exclusive semileptonic decays between the two
pseudoscalar mesons as well as to obtain the decay form
factors FVPðq2Þ for V ! P�� transitions. The Drell-Yan-
West (qþ ¼ q0 þ q3 ¼ 0) frame (i.e., q2 ¼ �q2

? < 0) is

useful because only the valence contributions are needed
unless the zero-mode contribution exists.

The form factor fþðq2Þ can be obtained just from the
valence contribution in the qþ ¼ 0 frame without encoun-
tering the zero-mode contribution [30]. However, the form
factor f�ðq2Þ receives the higher Fock state contribution
(i.e., the zero mode in the qþ ¼ 0 frame or the nonvalence
contribution in the qþ > 0 frame) within the framework of
LF quantization. Thus, it is necessary to include either the
zero-mode contribution (if working in the qþ ¼ 0 frame)
or the nonvalence contribution (if working in the qþ > 0
frame) to obtain the form factor f�ðq2Þ. In this work, we
utilize our effective method presented in Ref. [26] to ex-
press the zero-mode contribution as a convolution of the
zero-mode operator that we find in this work with the
initial and final state LF wave functions. In this way, we
calculate the form factor f�ðq2Þ in the qþ ¼ 0 frame with
the perpendicular components of the currents and discuss
the LF covariance of f�ðq2Þ in the valence region by
analyzing the covariant BS model and the LF covariant
analysis described by Jaus [31]. We also estimate the zero-
mode contributions to the f�ðq2Þ for various semileptonic
Bc decays in our LFQM.

The paper is organized as follows. In Sec. II, we discuss
the P ! P semileptonic decays using an exactly solvable
model based on the covariant BS model of (3þ 1)-

dimensional fermion field theory. We explicitly show the
equivalence between the results obtained by the manifestly
covariant method and the LF method in the qþ ¼ 0 frame.
The extraction of the zero-mode contribution to f�ðq2Þ in
the qþ ¼ 0 frame and the effective inclusion of the zero
mode in the valence region are discussed. In Sec. III, we
briefly describe the formulation of our LFQM and the
procedure of fixing the model parameters using the varia-
tional principle for the QCD-motivated effective Hamil-
tonian. The masses and decay constants of the B�

c and Bc

mesons are predicted and compared with the data as well as
other theoretical model predictions. The distribution am-
plitudes (DAs) for the heavy-flavored mesons such as D,
�c, B, Bs, Bc, and �b are also obtained in this section. In
Sec. IV, we calculate the weak form factors fþðq2Þ and
f�ðq2Þ in the qþ ¼ 0 frame using the plus and perpen-
dicular components of the currents, respectively. The zero-
mode contribution to the form factor f�ðq2Þ is also dis-
cussed. In Sec. V, the decay form factor FB�

cBc
ðq2Þ for the

B�
c ! Bc�

� transition and the decay width for B�
c ! Bc�

are presented. The coupling constant gB�
cBc

needed for the

calculation of the decay width for B�
c ! Bc� is determined

in the limit q2 ! 0, i.e., gB�
cBc

¼ FB�
cBc

(q2 ¼ 0). For the

numerical calculation of the semileptonic and radiative
decays, the form factors f�ðq2Þ for the semileptonic de-
cays and FB�

cBc
ðq2Þ for the B�

c ! Bc�
� transition are ana-

lytically continued to the timelike q2 > 0 region by
changing q2

? to �q2 in the form factor. In Sec. VI, our

numerical results [i.e., the form factors and decay rates for

Bc ! ðD;�c; B; BsÞ‘�‘, �b ! Bc‘�‘, and B�
c ! Bc�

ð�Þ
decays] are presented and compared with the experimental
data as well as other theoretical results. Summary and
discussion follow in Sec. VII.

II. P ! P SEMILEPTONIC DECAYS IN
COVARIANT BETHE-SALPETER MODEL

A. Manifestly covariant calculation

The amplitude A for a semileptonic decay of a meson
Q1 �q with the four-momentum P1 and the mass M1 into
another meson Q2 �q with the four-momentum P2 and the
mass M2 is given by

A ¼ GFffiffiffi
2

p VQ1
�Q2
L�H

�; (1)

whereGF is the Fermi constant, VQ1
�Q2
is the relevant CKM

mixing matrix element, L� is the lepton current

L� ¼ �u�‘
��ð1� �5Þv‘; (2)

and H� is the hadron current

H� ¼ hP2; �jðV� � A�ÞjP1i: (3)

Here � is the polarization of the daughter meson, and V�

and A� are the vector and axial vector currents, respec-
tively. If the final state is pseudoscalar, the hadron current
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can be decomposed as follows:

hP2jA�jP1i ¼ 0;

hP2jV�jP1i ¼ fþðq2ÞðP1 þ P2Þ� þ f�ðq2Þq�;
(4)

where q� ¼ ðP1 � P2Þ� is the four-momentum transfer to
the lepton pair (‘�‘) and m2

‘ � q2 � ðM1 �M2Þ2.
Sometimes it is useful to express the matrix element of
the vector current in terms of fþðq2Þ and f0ðq2Þ, which
correspond to the transition amplitudes with 1� and 0þ
spin-parity quantum numbers in the center of mass of the
lepton pair, respectively. They satisfy the following rela-
tion:

f0ðq2Þ ¼ fþðq2Þ þ q2

M2
1 �M2

2

f�ðq2Þ: (5)

Including the nonzero lepton mass, the differential decay
rate for the exclusive 0� ! 0�‘�‘ process is given by [32]

d�

dq2
¼ G2

F

24�3
jVQ1

�Q2
j2Kðq2Þ

�
1�m2

‘

q2

�
2

�
�
½Kðq2Þ�2

�
1þ m2

‘

2q2

�
jfþðq2Þj2

þM2
1

�
1�M2

2

M2
1

�
2 3

8

m2
‘

q2
jf0ðq2Þj2

�
; (6)

where Kðq2Þ is the kinematic factor given by

Kðq2Þ ¼ 1

2M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

1 þM2
2 � q2Þ2 � 4M2

1M
2
2

q
: (7)

The solvable model, based on the covariant BS model of
(3þ 1)-dimensional fermion field theory [33–35], enables
us to derive the transition form factors between two pseu-
doscalar mesons explicitly. The matrix element M� �
hP2jV�jP1i in this BS model is given by

M � ¼ ig1g2�
2
1�

2
2

Z d4k

ð2�Þ4
S�

N�1
N1N �qN2N�2

; (8)

where g1 and g2 are the normalization factors which can be
fixed by requiring both charge form factors of pseudoscalar
mesons to be unity at zero momentum transfer, respec-
tively. To regularize the covariant fermion triangle loop in
(3þ 1) dimensions, we replace the point gauge-boson
vertex ��ð1� �5Þ by a nonlocal (smeared) gauge-boson

vertex ð�1
2=N�1

Þ��ð1� �5Þð�2
2=N�2

Þ, where N�1
¼

p2
1 ��1

2 þ i� and N�2
¼ p2

2 ��2
2 þ i�, and thus the

factor ð�1�2Þ2 appears in the normalization factor. �1

and �2 play the role of momentum cutoffs similar to the
Pauli-Villars regularization [33,34]. The rest of the denom-
inators in Eq. (8), i.e., N1N �qN2, are coming from the

intermediate fermion propagators in the triangle-loop dia-
gram and are given by

N1 ¼ p2
1 �m1

2 þ i�; N �q ¼ k2 �m2
�q þ i�;

N2 ¼ p2
2 �m2

2 þ i�;
(9)

where m1, m �q, and m2 are the masses of the constituents

carrying the intermediate four-momenta p1 ¼ P1 � k, k,
and p2 ¼ P2 � k, respectively. Furthermore, the trace term
in Eq. (8), S�, is given by

S� ¼ Tr½�5ðp6 1þm1Þ��ðp6 2þm2Þ�5ð�k6 þm �qÞ�
¼ 4ðk 	P2� k2þm2m �qÞP�

1 þ 4ðk 	P1� k2þm1m �qÞ
�P�

2 þ 4ðk2�P1 	P2�m1m �q�m2m �qþm1m2Þk�:
(10)

We then decompose the product of five denominators given
in Eq. (8) as follows:

1

N�1
N1N �qN2N�2

¼ 1

ð�1
2 �m1

2Þð�2
2 �m2

2Þ
1

N �q

�
�

1

N�1

� 1

N1

��
1

N�2

� 1

N2

�
: (11)

Once we reduce the five propagators into a sum of terms
containing three propagators using Eq. (11), we use the
Feynman parametrization for the three propagators, e.g.,

1

N1N �qN2

¼
Z 1

0
dx

Z 1�x

0
dy

� 2

½N �q þ ðN1 � N �qÞxþ ðN2 � N �qÞy�3
: (12)

We then make a Wick rotation of Eq. (8) in D dimensions
to regularize the integral, since otherwise one loses the
logarithmically divergent terms in Eq. (8). Following the
above procedure, we finally obtain the Lorentz-invariant
form factors fþðq2Þ and f�ðq2Þ as follows:

fþðq2Þ ¼ N

8�2ð�1
2 �m1

2Þð�2
2 �m2

2Þ
Z 1

0
dx

Z 1�x

0
dy

�
½3ðxþ yÞ � 4� ln

�
C�1m2

Cm1�2

C�1�2
Cm1m2

�

þ ½ð1� x� yÞ2ðxM2
1 þ yM2

2Þ þ xyð2� x� yÞq2 þ ðxþ yÞðm1m2 �m1m �q �m2m �qÞ þm �qðm1 þm2Þ�C
�
;

f�ðq2Þ ¼ N

8�2ð�1
2 �m1

2Þð�2
2 �m2

2Þ
Z 1

0
dx

Z 1�x

0
dy

�
3ðx� yÞ ln

�
C�1m2

Cm1�2

C�1�2
Cm1m2

�
þ ½ðyM2

2 � xM2
1Þ þ ðx2 � y2ÞðxM2

1 þ yM2
2Þ � xyðx� yÞq2 þ ðx� yÞðm1m2 �m1m �q �m2m �qÞ

þm �qðm2 �m1Þ�C
�
;

(13)
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where N ¼ g1g2�
2
1�

2
2 and C ¼ ð1=C�1�2

� 1=C�1m2
� 1=Cm1�2

þ 1=Cm1m2
Þ with

C�1�2
¼ ð1� x� yÞðxM2

1 þ yM2
2Þ þ xyq2 � ðx�2

1 þ y�2
2Þ � ð1� x� yÞm2

�q;

C�1m2
¼ ð1� x� yÞðxM2

1 þ yM2
2Þ þ xyq2 � ðx�2

1 þ ym2
2Þ � ð1� x� yÞm2

�q;

Cm1�2
¼ ð1� x� yÞðxM2

1 þ yM2
2Þ þ xyq2 � ðxm2

1 þ y�2
2Þ � ð1� x� yÞm2

�q;

Cm1m2
¼ ð1� x� yÞðxM2

1 þ yM2
2Þ þ xyq2 � ðxm2

1 þ ym2
2Þ � ð1� x� yÞm2

�q:

(14)

Note that the logarithmic terms in fþðq2Þ and f�ðq2Þ are
obtained from the dimensional regularization with the
Wick rotation.

B. Light-front calculation

Performing the LF calculation of Eq. (8) in the qþ ¼ 0
frame in parallel with the manifestly covariant calculation,
we shall use the plus and perpendicular components of the
currents to obtain the form factors fþðq2Þ and f�ðq2Þ,
respectively. That is, in the qþ ¼ 0 frame, one obtains
the relations between the current matrix elements and the
weak form factors as follows:

fþðq2Þ ¼ Mþ

2Pþ
1

; f�ðq2Þ ¼ fþðq2Þ þM? 	 q?
q2
?

:

(15)

The LF calculation for the trace term in Eq. (10) can be
separated into the on-shell propagating part S

�
on and the

instantaneous part S
�
inst via

p6 þm ¼ ðp6 on þmÞ þ 1
2�

þðp� � p�
onÞ (16)

as

S� ¼ S
�
on þ S

�
inst; (17)

where

S�on ¼ 4½p�
1onðp2on 	 konÞ � k�onðp1on 	 p2onÞ

þ p�
2onðp1on 	 konÞ þm2m �qp

�
1on þm1m �qp

�
2on

þm1m2k
�
on� (18)

and

S
�
inst ¼ 2ðp�

1 � p�
1onÞ½p�

2onk
þ
on � pþ

2onk
�
on þ g�þðp2on 	 kon þm2m �qÞ�

þ 2ðp�
2 � p�

2onÞ½p�
1onk

þ
on � pþ

1onk
�
on þ g�þðp1on 	 kon þm1m �qÞ�

þ 2ðk� � k�onÞ½p�
1onp

þ
2on þ pþ

1onp
�
2on � g�þðp1on 	 p2on �m1m2Þ� þ 2g�þkþonðp�

1 � p�
1onÞðp�

2 � p�
2onÞ: (19)

Note that the subscript (on) denotes the on-mass-shell
(p2 ¼ m2) quark momentum, i.e., p� ¼ p�

on ¼
ðm2 þ p2

?Þ=pþ. The traces in Eqs. (18) and (19) are then
obtained as

Sþon ¼ 4Pþ
1

1� x
ðk? 	 k0

? þA1A2Þ; Sþinst ¼ 0; (20)

for the plus component of the currents and

S?on ¼ �2k?
xð1� xÞ ½2k? 	 k0

? þ ð1� xÞðq2
? þm2

1 þm2
2Þ

þ 2x2m2
�q þ 2xð1� xÞðm1m �q þm2m �q �m1m2Þ�

� 2q?
xð1� xÞ ðk

2
? þA2

1Þ;
S?inst ¼ �2Pþ

1 ½ðp�
1 � p�

1onÞk0
? þ ðp�

2 � p�
2onÞk?

þ xðk� � k�onÞð2k? þ q?Þ�;

(21)

for the perpendicular components of the currents, where
k0

? ¼ k? þ ð1� xÞq? and Ai ¼ ð1� xÞmi þ xm �q (i ¼
1; 2).

As one can see from Eqs. (20) and (21), the perpendicu-
lar components of the currents receive instantaneous con-
tributions, while the plus component of the currents does

not receive them. Especially, the absence of the instanta-
neous contributions to the plus current indicates that there
is no zero-mode contribution to the hadronic matrix ele-
ment of the plus current.

1. Valence contribution

In the valence region 0< kþ <Pþ
2 , the pole k� ¼

k�on ¼ ðk2
? þm2

�q � i�Þ=kþ (i.e., the spectator quark) is

located in the lower half of the complex k� plane. Thus,
the Cauchy integration formula for the k� integral in
Eq. (8) gives

M �
val ¼

N

16�3

Z 1

0

dx

ð1� xÞ
�

Z
d2k?�1ðx;k?Þ�2ðx;k0

?ÞS�val; (22)

where S
�
val ¼ S

�
on þ S

�
inst (k

� ¼ k�on) and

M2
0 ¼

k2
? þm2

�q

1� x
þ k2

? þm2
1

x
;

M02
0 ¼ k02

? þm2
�q

1� x
þ k02

? þm2
2

x
;

(23)
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and M2
�1

¼ M2
0ðm1 ! �1Þ, M02

�2
¼ M02

0 ðm2 ! �2Þ with

k0
? ¼ k? þ ð1� xÞq?. The LF vertex functions �1 and

�2 are given by

�1ðx;k?Þ ¼ 1

x2ðM2
1 �M2

0ÞðM2
1 �M2

�1
Þ ;

�2ðx;k0
?Þ ¼

1

x2ðM2
2 �M02

0 ÞðM2
2 �M02

�2
Þ :

(24)

From Eqs. (20) and (21), we obtain the valence contribu-
tion to Mþ

val and M?
val as follows:

Mþ
val ¼

NPþ
1

4�3

Z 1

0

dx

ð1� xÞ2
Z

d2k?�1ðx;k?Þ�2ðx;k0
?Þ

� ðk? 	k0
? þA1A2Þ;

M?
val ¼

N

16�3

Z 1

0

dx

ð1� xÞ
Z

d2k?�1ðx;k?Þ�2ðx;k0
?ÞS?val;

(25)

where

S?val ¼ �2k?½M2
1 þM2

2 þ q2
? � ðm1 �m �qÞ2

� ðm2 �m �qÞ2 þ ðm1 �m2Þ2�
� 2q?½ð1� xÞM2

1 þ xM2
0 � ðm1 �m �qÞ2�: (26)

From Eqs. (15) and (25), we get the LF valence contribu-
tions to fþðq2Þ and f�ðq2Þ as follows:

fvalþ ðq2Þ ¼ N

8�3

Z 1

0

dx

ð1� xÞ2
Z

d2k?�1ðx;k?Þ�2ðx;k0
?Þ

� ðk? 	 k0
? þA1A2Þ;

fval� ðq2Þ ¼ N

8�3

Z 1

0

dx

ð1� xÞ
Z

d2k?�1ðx;k?Þ�2ðx;k0
?Þ

�
�
�ð1� xÞM2

1 þ ðm2 �m �qÞA1

�m �qðm1 �m �qÞ þ k? 	 q?
q2

½M2
1 þM2

2

� 2ðm1 �m �qÞðm2 �m �qÞ�
�
: (27)

We note that the form factors in Eq. (27) obtained in the
spacelike region using the qþ ¼ 0 frame are analytically
continued to the timelike region by changing q2

? to�q2 in
the form factors.

2. Zero-mode contribution

In the nonvalence region Pþ
2 < kþ < Pþ

1 , the poles are
at p�

1 ¼ p�
1onðm1Þ ¼ ½m2

1 þ k2
? � i��=pþ

1 (from the struck

quark propagator) and p�
1 ¼ p�

1onð�1Þ ¼ ½�2
1 þ k2

? �
i��=pþ

1 (from the smeared quark-photon vertex), which
are located in the upper half of the complex k� plane. In
order to estimate the zero-mode contribution, we define

	 ¼ Pþ
2 =P

þ
1 ¼ 1� qþ=Pþ

1 ¼ 1� 
, and then the region
Pþ
2 < kþ < Pþ

1 corresponds to 	< 1� x < 1 or equiva-
lently 0< x< 
. That is, the zero-mode contribution
(qþ ! 0) to the hadronic matrix element is obtained
from the 
 ! 0 (i.e., x ! 0) limit for the integration of
the longitudinal momentum x. The fact that Sþon in Eq. (20)
is regular in the x ! 0 limit implies no zero-mode contri-
bution to fþðq2Þ. However, as one can see from Eq. (21),
both S?on and S?inst include the terms proportional to 1=x
(i.e., p�

1 ), which are singular as x ! 0. Those singular
terms in the perpendicular current may be the source of
the zero-mode contribution to the hadronic matrix element
in the nonvalence region.
When we do the Cauchy integration over k� to obtain

the LF time-ordered diagrams, we use Eq. (11) to avoid the
complexity of treating double p�

1 poles. As mentioned
above, the zero-mode contribution comes from the p�

i (i ¼
1; 2) factors in S?nv ¼ S?on þ S?inst. For instance, we define

the zero-mode contribution to the 1=ðN �qN�1
N�2

Þ term in

Eq. (11) having p�
1 ¼ p�

1onð�1Þ pole as

½M?
�1�2

�Z:M: ¼ iN lim

!0

Z
nv

d4k

ð2�Þ4
S?nvðp�

1 ¼ p�
1onð�1ÞÞ

N �qN�1
N�2

:

(28)

The zero-mode contributions to the other three
terms in Eq. (11) can be defined the same way as in
Eq. (28) to give the net zero-mode contribution M?

Z:M: ¼
½M?

�1�2
ðp�

1onð�1ÞÞ�Z:M: � ½M?
�1m2

ðp�
1onð�1ÞÞ�Z:M: �

½M?
m1�2

ðp�
1onðm1ÞÞ�Z:M: þ ½M?

m1m2
ðp�

1onðm1ÞÞ�Z:M:. Essen-

tially, the nonvanishing zero-mode contributions in
Eq. (28) are summarized as follows:

ðiÞ Z ¼ p�
1 ; p

�
2 ;�k� in S?nv:

lim

!0

Z
nv

d4k

ð2�Þ4
Z

N �qN�1
N�2

¼ i

16�3

Z 1

0
dz

Z
d2k?

�2
1?

�2
1?½z�2

2? þ ð1� zÞ�2
1?�

;

ðiiÞ Z ¼ p�
1on in S?nv:

lim

!0

Z
nv

d4k

ð2�Þ4
Z

N �qN�1
N�2

¼ i

16�3

Z 1

0
dz

Z
d2k?

m2
1?

�2
1?½z�2

2? þ ð1� zÞ�2
1?�

;

ðiiiÞ Z ¼ p�
2on in S?nv:

lim

!0

Z
nv

d4k

ð2�Þ4
Z

N �qN�1
N�2

¼ i

16�3

Z 1

0
dz

Z
d2k?

m2
2?z=ðz� 1Þ

�2
1?½z�2

2? þ ð1� zÞ�2
1?�

;

(29)
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where the variable change x ¼ 
z was made, m2
i? ¼

m2
i þ p2

i?, and �
2
i? ¼ �2

i þ p2
i?. We should note that Z ¼

p�
ionk

þ ! p�
ionP

þ
1 (i ¼ 1; 2) in S?nv and other terms such as

Z ¼ p�
1onp

þ
2 and p�

2onp
þ
1 go to zero in the 
 ! 0 limit.

Finally, we get the following nonvanishing zero-mode
contribution to the trace term S?nv in Eq. (28):

S?Z:M: ¼ lim
x!0

S?nv ¼ 2p�
1 ðp1? þ p2?Þ ¼ 2p�

1 ð2p1? � q?Þ;
(30)

which in fact is common to the other three terms in
Eq. (11). After a little manipulation, we finally get the
following nonvanishing zero-mode contribution to the
form factor f�ðq2Þ in Eq. (15):

fZ:M:� ðq2Þ ¼ i
N

ð�1
2 �m1

2Þð�2
2 �m2

2Þ
Z d4k

ð2�Þ4
S?Z:M: 	 q?

q2
?

�
1

N �qN�1
N�2

� 1

N �qN�1
N2

� 1

N �qN1N�2

þ 1

N �qN1N2

�

¼ N

8�2ð�1
2 �m1

2Þð�2
2 �m2

2Þ
Z 1

0
dzð1� 2zÞ ln

�
B�1m2

Bm1�2

B�1�2
Bm1m2

�
; (31)

where

B�1�2
¼ zð1� zÞq2

? þ ð1� zÞ�2
1 þ z�2

2; B�1m2
¼ zð1� zÞq2

? þ ð1� zÞ�2
1 þ zm2

2;

Bm1�2
¼ zð1� zÞq2

? þ ð1� zÞm2
1 þ z�2

2; Bm1m2
¼ zð1� zÞq2

? þ ð1� zÞm2
1 þ zm2

2:
(32)

Therefore, we get the LF covariant weak form factors
in the qþ ¼ 0 frame as fLFCovþ ðq2Þ ¼ fvalþ ðq2Þ and
fLFCov� ðq2Þ ¼ fval� ðq2Þ þ fZ:M:� ðq2Þ.

3. Effective inclusion of the zero mode in the valence
region

In this exactly solvable covariant BSmodel, we find that,
while the matrix element of the plus current is exactly the
on-mass shell physical amplitude, that of the perpendicular
current is the off-mass shell amplitude. As shown in our
previous work [26], we can relate the non-wave-function
vertex to the ordinary valence wave function in the qþ > 0
frame using the iteration of the irreducible kernel involved
in the bound state equation. In the qþ ! 0 frame, the
nonvalence contribution in the qþ > 0 frame corresponds
to the zero-mode contribution in the qþ ¼ 0 frame. Thus,
we can identify the zero-mode operator that is convoluted
with the initial and final state valence wave functions to
generate the zero-mode contribution. Our method can also
be realized effectively by the method presented by Jaus
[31] using the orientation of the light-front plane charac-
terized by the invariant equation ! 	 x ¼ 0 [36,37], where
! is an arbitrary lightlike four vector. The special case
! ¼ ð1; 0; 0;�1Þ corresponds to the light-front or null
plane ! 	 x ¼ xþ ¼ 0. While the exact on-shell ampli-
tudes (such as Mþ) should not depend on the orientation
of the light-front plane, the off-shell matrix elements (such
asM?) acquire a spurious! dependence. This problem is
closely associated with the violation of rotational invari-
ance in the computation of the matrix element of a one-
body current. In order to treat the complete Lorentz struc-
ture of a hadronic matrix element, the authors in [31,36]
have developed a method to identify and separate spurious

contributions and to determine the physical, i.e.,
!-independent contributions to the hadronic form factors.
Below, we summarize the result of the zero-mode contri-
bution obtained from the method by Jaus [31] and discuss
the equivalence with our result of zero-mode contribution.
By adopting the !-dependent light-front covariant ap-

proach as in [31,36], we derive the light-front covariant
form of the form factor f�ðq2Þ, which effectively includes
the zero-mode contribution in the valence region. In order
to do this, we first decompose the four vector p

�
1 in terms

of P ¼ ðP1 þ P2Þ, q, and ! with ! ¼ ð1; 0; 0;�1Þ as
follows [31]:

p
�
1 ¼ P�Að1Þ

1 þ q�Að1Þ
2 þ 1

! 	 P!�Cð1Þ
1 : (33)

The coefficients in Eq. (33) are given by

Að1Þ
1 ¼ ! 	 p1

! 	 P ¼ x

2
;

Að1Þ
2 ¼ 1

q2

�
p1 	 q� ðq 	 PÞ! 	 p1

! 	 P
�
¼ x

2
þ k? 	 q?

q2
;

Cð1Þ
1 ¼ p1 	 P� P2Að1Þ

1 � q 	 PAð1Þ
2 ¼ Z2 � N �q; (34)

where N �q ¼ k2 �m2
�q and

Z2 ¼ xðM2
1 �M2

0Þ þm2
1 �m2

�q þ ð1� 2xÞM2
1

� ½q2 þ q 	 P�k? 	 q?
q2

: (35)

Note that only the coefficient Cð1Þ
1 which is combined with

!� depends on p�
1 (i.e., zero mode). In this exactly solv-

able BS model, the zero-mode contribution from p�
1 is

exactly opposite to that from N �q, i.e.,
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I½p�
1 �Z:M: ¼ i

Z
Z:M:

d4k

ð2�Þ4
p�
1

N�1
N1N �qN2N�2

¼ N

16�2ð�1
2 �m1

2Þð�2
2 �m2

2Þ
�

Z 1

0
dz ln

�
B�1m2

Bm1�2

B�1�2
Bm1m2

�

¼ �I½N �q�Z:M:: (36)

Furthermore, the zero-mode contribution I½N �q�Z:M: from

N �q is exactly the same as the valence contribution I½Z2�val
from Z2, where I½Z2�val is given by

I½N �q�Z:M: ¼ I½Z2�val
¼ 1

16�3

Z 1

0

dx

1� x

�
Z

d2k?�1ðx;k?Þ�2ðx;k0
?ÞZ2: (37)

From the identities in Eqs. (36) and (37), the replace-
ment N �q ! Z2 (or equivalently p�

1 ! �Z2) in the spuri-

ous !-dependent (i.e., the zero-mode related) term Cð1Þ
1 in

Eq. (34) becomes covariant, i.e., free from any ! depen-
dence. Effectively, the zero-mode contribution from p�

1 in
the valence region can be given by Eq. (37). Using this, we
can effectively include the zero-mode contribution from
the second term p�

1 q? in Eq. (30) in the valence region. On
the other hand, since the first term p�

1 p1? in Eq. (30) has a
tensor structure, we need the tensor decomposition [31]

p�
1 p

�
1 ¼ g��Að2Þ

1 þ P�P�Að2Þ
2 þ ðP�q� þ q�P�ÞAð2Þ

3

þ q�q�Að2Þ
4 þ 1

! 	 P ðP�!� þ!�P�ÞBð2Þ
1

þ 1

! 	 P ðq�!� þ!�q�ÞCð2Þ
1

þ 1

ð! 	 PÞ2 !
�!�Cð2Þ

2 ; (38)

where

Að2Þ
1 ¼ �k2

? � ðk? 	 q?Þ2
q2

; Að2Þ
2 ¼ ½Að1Þ

1 �2;

Að2Þ
3 ¼ Að1Þ

1 Að1Þ
2 ; Að2Þ

4 ¼ ½Að1Þ
2 �2 � 1

q2
Að2Þ
1 ;

Bð2Þ
1 ¼ Að1Þ

1 Cð1Þ
1 � Að2Þ

1 ; Cð2Þ
1 ¼ Að1Þ

2 Cð1Þ
1 þ q 	 P

q2
Að2Þ
1 ;

Cð2Þ
2 ¼ ½Cð1Þ

1 �2 þ
�
P2 � ðq 	 PÞ2

q2

�
Að2Þ
1 : (39)

We note that the coefficients Að2Þ
i (i ¼ 1; . . . ; 4) are related

with �; � ¼ þ or ? components and Bð2Þ
1 with ð�; �Þ ¼

ðþ;�Þ. According to our power counting rules mentioned
above, those terms are zero-mode-free. On the other hand,

the coefficients Cð2Þ
1 and Cð2Þ

2 are related with ð�; �Þ ¼
ð�;?Þ and ð�;�Þ, respectively. That is, the C terms are

related with the zero-mode contributions. Specifically, Cð2Þ
1

and Cð2Þ
2 are related with the zero-mode contribution to the

perpendicular and minus components of the currents, re-
spectively. The zero-mode contribution from p�

1 p1? is

thus related with Cð2Þ
1 , and the effective inclusion of the

zero mode in the valence region can be achieved by setting

Cð2Þ
1 ¼ 0. This leads to

Að1Þ
2 N �q ! Að1Þ

2 Z2 þ q 	 P
q2

Að2Þ
1 or

p�
1 p1? ! �q?

�
Að1Þ
2 Z2 þ q 	 P

q2
Að2Þ
1

�
:

(40)

In summary, the zero-mode contribution from S?Z:M: given
by Eq. (30) can be expressed in terms of the zero-mode
operator convoluted with the initial and final state LF
vertex functions:

I½S?�Z:M: ¼ 1

16�3

Z 1

0

dx

ð1� xÞ
Z

d2k?�1ðx;k?Þ�2ðx;k0
?Þ

�
�
�4q?

�
Að1Þ
2 Z2 þ q 	 P

q2
Að2Þ
1

�
þ 2q?Z2

�
;

(41)

as expected from our effective method presented in our
previous work [26]. Consequently, the LF covariant form
of the form factor f�ðq2Þ is obtained as

fLFCov� ðq2Þ ¼ N

8�3

Z 1

0

dx

ð1� xÞ
Z

d2k?�1ðx;k?Þ�2ðx;k0
?Þ
�
�xð1� xÞM2

1 � k2
? �m1m �q þ ðm2 �m �qÞA1

þ 2
q 	 P
q2

�
k2
? þ 2

ðk? 	 q?Þ2
q2

�
þ 2

ðk? 	 q?Þ2
q2

þ k? 	 q?
q2

½M2
2 � ð1� xÞðq2 þ q 	 PÞ þ 2xM2

0

� ð1� 2xÞM2
1 � 2ðm1 �m �qÞðm1 þm2Þ�

�
; (42)
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where q 	 P ¼ M2
1 �M2

2.
In Fig. 1, we show our results of the normalized weak

form factors f�ðq2Þ=fþð0Þ for the semileptonic B ! �
decay obtained from the exactly solvable covariant BS
model of fermion field theory. The used model parameters
for B and � mesons are MB ¼ 5:28 GeV, M� ¼
0:14 GeV, mb ¼ 4:9 GeV, muðdÞ ¼ 0:43 GeV, �b ¼
10 GeV, and�uðdÞ ¼ 1:5 GeV. These parameters are fixed

from the normalization conditions of the � and B elastic
form factors at q2 ¼ 0 [34].

The solid line represents the form factors fþðq2Þ=fþð0Þ
obtained from the manifestly covariant result [Eq. (13)]
and from the full LF calculation fLFCovþ ðq2Þ ¼ fvalþ ðq2Þ
[Eq. (27)] in the qþ ¼ 0 frame. Since the two results are
in complete agreement with each other, we depict them by
the single solid line. The dashed line represents the form
factors �f�ðq2Þ=fþð0Þ obtained from the manifestly co-
variant result [Eq. (13)] and from the full LF calculation
fLFCov� ðq2Þ ¼ fval� ðq2Þ þ fZ:M:� ðq2Þ [Eq. (42)] in the qþ ¼ 0
frame. Here again, the two results are in complete agree-
ment with each other. The dotted line represents only the
valence contribution to �f�ðq2Þ=fþð0Þ. The difference
between the dashed and dotted lines amounts to the zero-
mode contribution to the form factor f�ðq2Þ.

Although our result for the fLFCov� ðq2Þ is essentially the
same as that obtained from Jaus [31], the distinguished
features of our approach in deriving the LF covariant form

factor may be summarized as follows: (i) We separate the
trace term into the on-shell propagating part S

�
on and the

instantaneous part S
�
inst which enable us to classify the on-

shell and off-shell matrix elements explicitly. From this,
one can easily find which matrix element depends on the
orientation of the light-front plane or equivalently receives
zero-mode contributions. (ii) Our power counting rule for
p�
1 is a very efficient method in identifying the zero-mode

terms such as p�
1 and p�

1 p1? that appear in the perpen-
dicular currents and p�

1 p
�
1 appearing in the minus current.

(iii) We explicitly show that the !-dependent (i.e., zero-

mode-related) coefficients Cð1Þ
1 , Cð2Þ

1 , and Cð2Þ
2 correspond

to p�
1 , p

�
1 p1?, and p�

1 p
�
1 terms, respectively. These fea-

tures in our approach should be distinguished from the
approach presented in Ref. [31].
While the manifestly covariant BS model of fermion

field theory model is good for the qualitative analysis of
semileptonic decays, it is still semirealistic. We thus dis-
cuss more phenomenological LFQM and the LF covariant
form factors within our LFQM in the following sections.

III. MODEL DESCRIPTION

The key idea in our LFQM [24,25] for mesons is to treat
the radial wave function as a trial function for the varia-
tional principle to the QCD-motivated effective
Hamiltonian saturating the Fock state expansion by the
constituent quark and antiquark. The QCD-motivated
Hamiltonian for a description of the ground state meson
mass spectra is given by

Hq �qj�JJz
nlmi ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ ~k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�q þ ~k2
q

þ Vq �q�j�JJz
nlmi

¼ ½H0 þ Vq �q�j�JJz
nlmi ¼ Mq �qj�JJz

nlmi; (43)

where ~k ¼ ðk?; kzÞ is the three-momentum of the constitu-

ent quark, Mq �q is the mass of the meson, and j�JJz
nlmi is the

meson wave function. In this work, we use two interaction
potentials Vq �q: (i) Coulomb plus harmonic oscillator (HO)

and (ii) Coulomb plus linear confining potentials. The
hyperfine interaction essential to distinguish pseudoscalar
(0�þ) and vector (1��) mesons is also included; viz.,

Vq �q ¼ V0 þ Vhyp

¼ aþV conf � 4	s

3r
þ 2

3

Sq 	 S �q

mqm �q

r2Vcoul; (44)

where V conf ¼ br ðr2Þ for the linear (HO) potential and
hSq 	 S �qi ¼ 1=4 ð�3=4Þ for the vector (pseudoscalar) me-

son. Using this Hamiltonian, we analyze the meson mass
spectra and various wave-function-related observables,
such as decay constants, electromagnetic form factors of
mesons in a spacelike region, and the weak form factors for
the exclusive semileptonic and rare decays of pseudoscalar
mesons in the timelike region [24–29].

0 5 10 15 20 25 30

q
2
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2
]
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f(

q2 )/
f +
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+
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( in q

+
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-

cov
=-[f

-

LF
]

full(=val+z.m.)
( in q

+
=0)

-[f
-

LF
]

val
 (in q

+
=0)

B --> π (in fermion field theory model)

FIG. 1. The normalized weak form factors f�ðq2Þ=fþð0Þ for
B ! � semileptonic decays obtained from the exactly solvable
covariant BS model of fermion field theory.
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The momentum-space light-front wave function of the
ground state pseudoscalar and vector mesons is given by

�
JJz
100ðxi;ki?; �iÞ ¼ RJJz

�1�2
ðxi;ki?Þ�ðxi;ki?Þ; (45)

where �ðxi;ki?Þ is the radial wave function and RJJz
�1�2

is

the spin-orbit wave function that is obtained by the
interaction-independent Melosh transformation from the
ordinary spin-orbit wave function assigned by the quantum
numbers JPC. The model wave function in Eq. (45) is
represented by the Lorentz-invariant internal variables
xi ¼ pþ

i =P
þ, ki? ¼ pi? � xiP?, and �i, where P� ¼

ðPþ; P�;P?Þ ¼ ðP0 þ P3; ðM2 þ P2
?Þ=Pþ;P?Þ is the mo-

mentum of the meson M, and p
�
i and �i are the momenta

and the helicities of constituent quarks, respectively.
The covariant forms of the spin-orbit wave functions for

pseudoscalar and vector mesons are given by

R00
�1�2

¼ � �u�1
ðp1Þ�5v�2

ðp2Þffiffiffi
2

p
~M0

;

R1Jz
�1�2

¼ � �u�1
ðp1Þ½6�ðJzÞ � �	ðp1�p2Þ

M0þm1þm2
�v�2

ðp2Þffiffiffi
2

p
~M0

;

(46)

where ~M0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 � ðm1 �m2Þ2
q

, M2
0 ¼

P
2
i¼1ðk2

i? þ
m2

i Þ=xi is the boost invariant meson mass square obtained
from the free energies of the constituents in mesons, and
��ðJzÞ is the polarization vector of the vector meson [38].
The spin-orbit wave functions satisfy the relationP

�1�2
RJJzy

�1�2
RJJz

�1�2
¼ 1 for both pseudoscalar and vector

mesons. For the radial wave function �, we use the same
Gaussian wave function for both pseudoscalar and vector
mesons:

�ðxi;ki?Þ ¼ 4�3=4


3=2

ffiffiffiffiffiffiffiffi
@kz
@x

s
expð� ~k2=2
2Þ; (47)

where 
 is the variational parameter. When the longitudi-
nal component kz is defined by kz ¼ ðx� 1=2ÞM0 þ
ðm2

2 �m2
1Þ=2M0, the Jacobian of the variable transforma-

tion fx;k?g ! ~k ¼ ðk?; kzÞ is given by

@kz
@x

¼ M0

4x1x2

�
1�

�
m2

1 �m2
2

M2
0

�
2
�
: (48)

Note that the free kinetic part of the Hamiltonian H0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ ~k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�q þ ~k2
q

is equal to the free mass operator

M0 in the light-front formalism.
The normalization factor in Eq. (47) is obtained from the

following normalization of the total wave function:

Z 1

0
dx

Z d2k?
16�3

j�JJz
100ðx;ki?Þj2 ¼ 1: (49)

We apply our variational principle to the QCD-motivated
effective Hamiltonian first to evaluate the expectation

value of the central Hamiltonian H0 þ V0, i.e., h�jðH0 þ
V0Þj�i with a trial function �ðxi;ki?Þ that depends on the
variational parameter 
. Once the model parameters are
fixed by minimizing the expectation value h�jðH0 þ
V0Þj�i, then the mass eigenvalue of each meson is obtained
as Mq �q ¼ h�jðH0 þ Vq �qÞj�i. Following the above proce-

dure, we find an analytic form of the mass eigenvalue given
by

Mq �q ¼ 1



ffiffiffiffi
�

p X
i¼q; �q

m2
i e

m2
i =2


2
K1

�
m2

i

2
2

�
þ a1þ b

2


ffiffiffi
�

p

3
2
2

0
@

1
A

� 	s

�
8


3
ffiffiffiffi
�

p þ 32
3hSq 	 S �qi
9mqm �q

ffiffiffiffi
�

p
�
1; (50)

where

1 ¼ 1
1

� �

and K1ðxÞ is the modified Bessel function of the second
kind. The upper and lower components of the column
vector in Eq. (50) represent the results for the linear and
HO potential models, respectively. By minimizing energies
with respect to 
 and searching for a fit to the observed
ground state meson spectra, our central potential V0 ob-
tained from our optimized potential parameters (a ¼
�0:72 GeV, b ¼ 0:18 GeV2, and 	s ¼ 0:31) [24] for the
Coulomb plus linear potential was found to be quite com-
parable with the quark potential model suggested by Scora
and Isgur [39], where they obtained a ¼ �0:81 GeV, b ¼
0:18 GeV2, and 	s ¼ 0:3–0:6 for the Coulomb plus linear
confining potential. A more detailed procedure for deter-
mining the model parameters of light- and heavy-quark
sectors can be found in our previous works [24,25]. In this
work, we obtain the new variational parameter 
cb for the
bottom-charm sector and predict the mass eigenvalues of
the low-lying Bc and B�

c states. Our new prediction of
MBc

¼ 6459 ½6351� MeV obtained from the linear [HO]

potential model is in agreement with the data, Mexp
Bc

¼
ð6276� 4Þ MeV [40] within 3% error. We also predict
the unmeasured mass of B�

c as MB�
c
¼ 6494 ½6496� MeV

for the linear [HO] potential model. Although it is gener-
ally believed that the linear potential is preferred between
the quark and antiquark in the heavy meson system, our
result of the spectrum computation indicates that the HO
potential is also viable and thus leads to the further inves-
tigation. We use both HO and linear potentials to compute
the decay processes presented below and identify the
physical observables sensitive to the choice of potential.
Our model parameters ðmq;
q �qÞ and the predictions of

the ground state meson mass spectra obtained from the
linear and HO potential models are summarized in Table I
and in Fig. 2, respectively, compared with the experimental
data [40]. Our prediction of the �b meson obtained from
the linear [HO] potential model M�b

¼ 9657 ½9295� MeV
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slightly overestimates [underestimates] the very recent
data from the BABAR experiment, M

exp
�b

¼
9388:9þ3:1

�2:3ðstatÞ � 2:7ðsystÞ MeV [41]. Overall, however,

our LFQM predictions of the ground state meson mass
spectra are in agreement with the data [40] within 6% error.

The decay constants of pseudoscalar and vector mesons
are defined by

h0j �q���5qjPi ¼ ifPP
�;

h0j �q��qjVðP; hÞi ¼ fVMV�
�ðhÞ:

(51)

In the above definitions for the decay constants, the
experimental values of the pion and rho meson decay
constants are f� 
 131 MeV from � ! �� and f 

220 MeV from  ! eþe�.

Using the plus component (� ¼ þ) of the currents, one
can easily calculate the decay constants. The explicit forms
of pseudoscalar and vector meson decay constants are
given by

fP ¼ 2
ffiffiffi
6

p Z dxd2k?
16�3

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2

?
q �ðx;k?Þ;

fV ¼ 2
ffiffiffi
6

p Z dxd2k?
16�3

�ðx;k?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2

?
q �

Aþ 2k2
?

M0

�
;

(52)

where A ¼ x2m1 þ x1m2 and M0 ¼ M0 þm1 þm2.
Here only the Lz ¼ Sz ¼ 0 component of the wave func-
tion contributes. We note that the vector meson decay
constant fV is extracted from the longitudinal (h ¼ 0)
polarization.
In Table II, we present our predictions for the decay

constants of fBc
and fB�

c
and compare with other model

calculations [5,8,42–45]. The decay constants for other
light and heavy mesons have been predicted in our pre-
vious works [24,28,38] and found to be in good agreement
with experimental data. While our predictions of the decay
constants for the light-light and heavy-light systems
[24,28,38] are not sensitive to the choice of potential
(linear or HO), the decay constants for heavy-heavy sys-
tems such as ðBc; B

�
cÞ and ð�b;�Þ in [28] are quite sensitive

to the choice of potential. Thus, the experimental measure-
ments for the decay constants of ðBc; B

�
cÞ and ð�b;�Þ

mesons may distinguish between the linear and HO poten-
tials within our LFQM.
The process-independent quark DA �PðVÞðxÞ for the

pseudoscalar (vector) meson is the probability amplitude
for finding the q �q pair in the meson with xq ¼ x and x �q ¼
1� x. It is directly related to our LF valence wave function
[38]:

�PðVÞ ¼
Z d2k?

16�3
�ðx;k?Þ: (53)

The k? integration in Eq. (53) is cut off by the ultraviolet

TABLE I. The constituent quark mass [GeV] and the Gaussian parameters 
 [GeV] for the linear and HO potentials obtained by the
variational principle. q ¼ u and d.

Model mq ms mc mb 
qq 
qs 
ss 
qc 
sc 
cc 
qb 
sb 
cb 
bb

Linear 0.22 0.45 1.8 5.2 0.3659 0.3886 0.4128 0.4679 0.5016 0.6509 0.5266 0.5712 0.8068 1.1452

HO 0.25 0.48 1.8 5.2 0.3194 0.3419 0.3681 0.4216 0.4686 0.6998 0.4960 0.5740 1.0350 1.8025

π(140)
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D
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η
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B
s
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K
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(5424)

(5349)

(5471)

(3225)(3257)

(2109)(2150)
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(850)(875)
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(5235)

(5378)

(5235)
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(2011)(2005)

(1836)(1821)
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(9657)

(9295)
η

b
(9389)

(HO) (Exp.) (Linear) (HO) (Exp.) (Linear)

B
c
(6276)

(6351) (6459) B*
c
(?) )4946()6946(

FIG. 2 (color online). Fit of the ground state meson masses
[MeV] with the parameters given in Table I. The ð;�Þ, ð�;�0Þ,
and ð!;�Þ masses are our input data. The masses of (!��)
and (�� �0) were used to determine the mixing angles of !�
� and �� �0 [24], respectively.

TABLE II. Bottom-charm meson decay constants (in units of
MeV) obtained from the linear [HO] parameters.

Linear [HO] [5] [8] [42] [43] [44] [45]

fBc
377 [508] 360 433 500 460� 60 517 410� 40

fB�
c

398 [551] 	 	 	 503 500 460� 60 517 	 	 	
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cutoff � implicit in the wave function. The dependence on
the scale � is then given by the QCD evolution equation
[46] and can be calculated perturbatively. However, the
DAs at a certain low scale can be obtained by the necessary
nonperturbative input from LFQM.Moreover, the presence
of the damping Gaussian factor in our LFQM allows us to
perform the integral up to infinity without loss of accuracy.
The quark DAs for pseudoscalar and vector mesons are
constrained by Z 1

0
�PðVÞðxÞdx ¼ fPðVÞ

2
ffiffiffi
6

p : (54)

We show in Fig. 3 the normalized quark DAs �ðxÞ ¼
ð2 ffiffiffi

6
p

=fPÞ�ðxÞ for D (dotted line), B (dashed line), Bs

(dotted-dashed line), and Bc (solid line) mesons obtained
from the linear (upper panel) and HO (lower panel) poten-
tial parameters, respectively. In Fig. 4, we also show the
normalized quark DAs for �c (thin lines) and �b (thick
lines) mesons obtained from the linear (solid lines) and HO
(dashed lines) potential parameters. While the two model
predictions for the heavy-light systems such as D, B, and
Bs are not much different from each other, the HO potential
model predictions for the heavy-heavy systems such as �c,

Bc, and �b give somewhat broader shapes than the linear
potential model predictions.

IV. SEMILEPTONIC DECAYS OF THE Bc MESON

The relevant quark momentum variables for Pðq1 �qÞ !
Pðq2 �q0Þ transitions in the qþ ¼ 0 frames are given by

pþ
1 ¼ x1P

þ
1 ; pþ

�q ¼ x2P
þ
1 ; p1? ¼ x1P1? � k?;

pþ
2 ¼ x1P

þ
1 ; pþ

�q0 ¼ x2P
þ
1 ; p2? ¼ x1P2? � k0

?;

p �q? ¼ x2P1? þ k?; p �q0? ¼ x2P2? þ k0
?;

(55)

where x1 ¼ x and x2 ¼ 1� x and the spectator quark
requires that pþ

�q ¼ pþ
�q0 and p �q? ¼ p �q0?. Taking a

Lorentz frame where P1? ¼ 0 and P2? ¼ �q? amounts
to k0

? ¼ k? þ ð1� xÞq?.
The hadronic matrix element of the plus currentMþ �

hP2jVþjP1i in Eq. (4) is then obtained by the convolution
formula of the initial and final state LF wave functions in
the valence region:

Mþ ¼
Z 1

0
dx

Z d2k?
16�3

�2ðx;k0
?Þ�1ðx;k?Þ

� X
�1;�2; ��

R00y
�2

��

�u�2
ðp2Þffiffiffiffiffiffiffi
pþ
2

q �þ u�1
ðp1Þffiffiffiffiffiffiffi
pþ
1

q R00
�1

��
: (56)
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FIG. 3. The normalized distribution amplitudes for D, B, Bs,
and Bc mesons obtained from the linear (upper panel) and HO
(lower panel) potential parameters.
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FIG. 4. The normalized distribution amplitudes for �c (thin
lines) and �b (thick lines) mesons obtained from the linear (solid
lines) and HO (dashed lines) potential parameters.
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Substituting the covariant form of the spin-orbit wave
function for pseudoscalar meson given by Eq. (46) into
Eq. (56) yields

Mþ ¼ �
Z 1

0
dx

Z d2k?
16�3

�2ðx;k0
?Þ�1ðx;k?Þ

2xPþ
1
~M0

~M0
0

� Tr½�5ðp6 2 þm2Þ�þðp6 1 þm1Þ�5ðp6 �q �m �qÞ�;
(57)

where

~M0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 � ðm1 �m2
�qÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
? þA2

1

xð1� xÞ

s
;

~M0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M02

0 � ðm2 �m2
�qÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02

? þA2
2

xð1� xÞ

s
;

(58)

and Ai ¼ ð1� xÞmi þ xm �q (i ¼ 1; 2). After some ma-

nipulation, the trace term in Eq. (57) is reduced to

Tr ½�5ðp6 2 þm2Þ�þðp6 1 þm1Þ�5ðp6 �q �mÞ�

¼ � 4Pþ
1

ð1� xÞ ðk? 	 k0
? þA1A2Þ: (59)

Finally, the form factor fþðq2Þ obtained from the valence
contribution in the qþ ¼ 0 frame is given by

fþðq2Þ ¼
Z 1

0
dx

Z d2k?
16�3

�1ðx;k?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ k2
?

q �2ðx;k0
?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þ k02

?
q

�ðA1A2 þ k? 	 k0
?Þ: (60)

We should note in the trace calculation of Eq. (59) that the
internal momenta of the valence quarks carried inside
mesons are all on-mass-shell (p2

i ¼ m2
i ). Nevertheless,

the LF valence contribution to the form factor fþðq2Þ is
shown to be equivalent to the covariant result as shown in
Sec. II.
Comparing the manifestly covariant form factor fþðq2Þ

in Eq. (27) and our LFQM result fþðq2Þ in Eq. (60), we
find the following relations for the LF vertex functions
between the two models:

ffiffiffiffiffiffiffi
2N

p �1ðx;k?Þ
1� x

¼ �1ðx;k?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ k2
?

q ;

ffiffiffiffiffiffiffi
2N

p �2ðx;k0
?Þ

1� x
¼ �2ðx;k0

?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 þ k02
?

q :

(61)

We should note that the zero-mode operator included in
Eq. (42) is independent from the choice of radial wave
function.
Applying the relation in Eq. (61) to Eqs. (27) and (42),

we get the following LF valence contribution fval� ðq2Þ and
the LF covariant solution ffull� ðq2Þ including both the va-
lence and the zero-mode contributions within our LFQM:

fval� ðq2Þ ¼
Z 1

0
ð1� xÞdx

Z d2k?
16�3

�1ðx;k?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ k2
?

q �2ðx;k0
?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þ k02

?
q �

�ð1� xÞM2
1 þ ðm2 �m �qÞA1 �m �qðm1 �m �qÞ

þ k? 	 q?
q2

½M2
1 þM2

2 � 2ðm1 �m �qÞðm2 �m �qÞ�
�
;

ffull� ðq2Þ ¼
Z 1

0
ð1� xÞdx

Z d2k?
16�3

�1ðx;k?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ k2
?

q �2ðx;k0
?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þ k02

?
q �

�xð1� xÞM2
1 � k2

? �m1m �q þ ðm2 �m �qÞA1

þ 2
q 	 P
q2

�
k2
? þ 2

ðk? 	 q?Þ2
q2

�
þ 2

ðk? 	 q?Þ2
q2

þ k? 	 q?
q2

½M2
2 � ð1� xÞðq2 þ q 	 PÞ þ 2xM2

0

� ð1� 2xÞM2
1 � 2ðm1 �m �qÞðm1 þm2Þ�

�
;

(62)

whereM1 andM2 are the physical masses of the initial and
final mesons, respectively.

V. RADIATIVE B�
c ! Bc� DECAY

In addition to semileptonic decays, the radiative decays
of vector mesons can be analyzed within our LFQM
[24,28]. In this work, we thus calculate the decay rate for
the B�

c ! Bc� transition.

In our LFQM calculation of the B�
c ! Bc� process, we

first analyze the virtual photon (��) decay process, calcu-
lating the momentum-dependent transition form factor
FB�

cBc
ðq2Þ. The lowest-order Feynman diagram for the V !

P�� process is shown in Fig. 5, where the decay from the
vector meson to pseudoscalar meson and virtual photon
state is mediated by a quark loop with flavors of constituent
mass m1 and m �q.
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The transition form factor FB�
cBc

ðq2Þ for VðP1Þ !
PðP2Þ þ ��ðqÞ is defined as [28]

hPðP2ÞjV�jVðP1; hÞi ¼ ie������ðP1; hÞqP1�FVPðq2Þ;
(63)

where the antisymmetric tensor ���� assures electromag-
netic gauge invariance, q ¼ P1 � P2 is the four-
momentum of the virtual photon, and ��ðP1; hÞ is the
polarization vector of the initial meson with the four-
momentum P1 and the helicity h. The kinematically al-
lowed q2 (momentum transfer squared) ranges from 0 to
q2max ¼ ðMV �MPÞ2. The decay form factor FB�

cBc
ðq2Þ can

also be obtained in the qþ ¼ 0 frame with the transverse
(h ¼ �1) polarization and the ‘‘þ’’ component of the
currents without encountering zero-mode contributions
[30] and then analytically continued from the spacelike
region where the form factor is given by FB�

cBc
ðq2

?Þ to the

timelike q2 > 0 region by changing q2
? to�q2 in the form

factor.
The hadronic matrix element of the plus currentMþ

VP �
hPðP2ÞjVþjVðP1; hÞi in Eq. (63) is then obtained by the
convolution formula of the initial and final state LF wave
functions in the valence region:

Mþ
VP ¼ X

j

eej
Z 1

0
dx

Z d2k?
16�3

�2ðx;k0
?Þ�1ðx;k?Þ

� X
�1;�2; ��

R00y
�2

��

�u�2
ðp2Þffiffiffiffiffiffiffi
pþ
2

q �þ u�1
ðp1Þffiffiffiffiffiffiffi
pþ
1

q R11
�1

��
; (64)

where eej is the electrical charge for jth quark flavor.

Substituting the covariant forms of the spin-orbit wave
functions for pseudoscalar and vector mesons given by
Eq. (46) into Eq. (64) and comparing it with the right-

hand side of Eq. (63), i.e., ePþ
1 FVPðq2ÞqR=

ffiffiffi
2

p
, where qR ¼

qx þ iqy, we could extract the one-loop integral

Iðm1; m �q; q
2Þ, given by

Iðm1;m �q;q
2Þ ¼

Z 1

0
dx

Z d2k?
8�3

�1ðx;k?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þk2
?

q �2ðx;k0
?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þk02

?
q

�ð1� xÞ

�
�
A1 þ 2

M0

�
k2
?þ ðk? 	q?Þ2

q2

��
; (65)

where M0 ¼ M0 þm1 þm �q. The decay form factor

FB�
cBc

ðq2Þ is then obtained as [28]

FB�
cBc

ðq2Þ ¼ e1Iðm1; m �q; q
2Þ þ e2Iðm �q; m1; q

2Þ: (66)

The coupling constant gB�
cBc� for the real photon (�) case

can then be determined in the limit q2 ! 0, i.e., gB�
cBc� ¼

FB�
cBc

(q2 ¼ 0). The decay width for V ! P� is given by

�ðB�
c ! Bc�Þ ¼ 	

3
g2B�

cBc�
k3�; (67)

where 	 is the fine-structure constant and k� ¼ ðM2
B�
c
�

M2
Bc
Þ=2MB�

c
is the kinematically allowed energy of the

outgoing photon.

VI. NUMERICAL RESULTS

In our numerical calculations of exclusive Bc decays, we
use two sets of model parameters ðm;
Þ for the linear and
HO confining potentials given in Table I obtained from the
calculation of the mass spectra. Although our predictions
of ground state heavy meson masses are overall in good
agreement with the experimental values, we use the ex-
perimental meson masses [40] in the computations of the
decay widths to reduce possible theoretical uncertainties.
We also use the central values of the CKMmatrix elements

jVubj ¼ 0:003 93; jVcbj ¼ 0:0412;

jVcdj ¼ 0:230; jVcsj ¼ 1:04;
(68)

quoted by the Particle Data Group [40].
In Figs. 6 and 7, we show the q2 dependence of the LF

covariant weak form factors fþðq2Þ (solid lines) and f0ðq2Þ
(dashed lines) in the whole kinematical ranges for the
CKM-suppressed (enhanced) semileptonic Bc ! Dð�cÞ
(Fig. 6) and Bc ! BðBsÞ (Fig. 7) decays obtained from
both linear (black lines) and HO (blue lines) potential
models. The circles represent the valence contributions
fval0 ðq2Þ to f0ðq2Þ. That is, the difference between f0ðq2Þ
and fval0 ðq2Þ represents the zero-mode contribution to

f0ðq2Þ.
The kinematical ranges for Bc ! Dð�cÞ decays induced

by b ! uðcÞ transitions with the c quark being a spectator
are considerably broader than those for Bc ! BðBsÞ decays
induced by c ! dðsÞ transitions with the b quark being a
spectator. The form factors fþðq2Þ and f0ðq2Þ at the zero-
recoil point (i.e., q2 ¼ q2max) correspond to the overlap
integral of the initial and final state meson wave functions.
The maximum-recoil point (i.e., q2 ¼ 0) corresponds to a

p
1

p
2

p
1

p
q

p’
q

p
q

P

q

q

P 2 PP 211

− − −

FIG. 5. The lowest-order Feynman diagram for V ! P�� pro-
cess.
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final state meson recoiling with the maximum three-

momentum j ~Pfj ¼ ðM2
Bc

�M2
fÞ=2MBc

in the rest frame

of the Bc meson. Especially for the Bc ! D decay, the

light �u quark in D meson will typically recoil with the
momentum comparable to or larger than the c quark mass
due to the large recoil effect for Bc ! D decay. In order for
the finalDmeson to be bound, there must be a correspond-
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ingly large momentum transfer to the spectator c quark.
Thus, the overlap between the initial and final meson wave
functions at the maximum-recoil point is limited and yields
a smaller value of fþð0Þ for Bc ! D decay than that for
other processes. We also note that one cannot apply the
heavy-quark symmetry to the system with the two heavy
quarks, due to the flavor symmetry breaking by the kinetic
energy terms as discussed in [47]. As for the zero-mode
contributions, we find that the zero-mode contributions to
f0ðq2Þ [or f�ðq2Þ] for the Bc ! D, Bc ! B, and Bc ! Bs

processes are relatively larger than that for the Bc ! �c

process. For the Bc ! �c transition, the zero-mode con-
tributions to f0ðq2Þ obtained from both linear and HO
potential models are almost suppressed in the whole kine-
matical range, and moreover the values of f0ðq2maxÞ almost
converge to a single value regardless of the choice of
potential.

Although there already exist various model predictions
on the above Bc semileptonic decays, the prediction of the
semileptonic �b ! Bc decay is not reported yet as far as
we know. We thus show in Fig. 8 the q2 dependence of the
weak form factors fþðq2Þ and f0ðq2Þ for the semileptonic
�b ! Bc decay obtained from both linear and HO poten-
tial models. The same line codes presented in Fig. 6 are
used in Fig. 8. While the linear and HO potential models
give similar decay constants for heavy-light mesons
ðD;B; BsÞ and the �c meson [28], they predict quite differ-

ent values of Bc and �b, e.g., f�b
¼ 507 and 897 MeV for

the linear and HO potential models [28], respectively. This
results in sizable differences between the two models for
the predictions of fþðq2Þ and f0ðq2Þ in the �b ! Bc decay.
Since the linear potential model prediction of the quark DA
for �b is narrower than the HO model prediction (see
Fig. 4), the overlap between the initial and final meson
wave functions at the maximum-recoil point (i.e., q2 ¼ 0)
produces smaller values of fþð¼ f0Þ for the linear poten-
tial model than for the HO potential model. The experi-
mental measurement of this process may also distinguish
between the linear and HO potential models within our
LFQM. The zero-mode contribution to f�ðq2Þ [or f0ðq2Þ]
is again quite suppressed in the whole kinematical range as
in the case of the Bc ! �c process.
In Figs. 9–11, we show the differential decay widths

d�=dq2 for the Bc ! Dð�cÞ‘�‘ (Fig. 9), Bc ! BðBsÞ‘�‘

(Fig. 10), and �b ! Bc‘�‘ (Fig. 11) processes obtained
from the linear and HO potential parameters. The line
codes are described in each figure. We should note that
the minimum q2 value of the form factor depends on the
actual final lepton, and it is given (neglecting neutrino
masses) by the lepton mass as q2min ¼ m2

‘. Although the

differences between the linear and HO model predictions
are not very large for the Bc ! ðB; BsÞ processes, they are
quite different for other processes, especially for the �b !
Bc process. Since the constituent masses of b and c quarks
are common to both linear and HO potential models, the
difference of the decay rates for the �b ! Bc process
seems to come from the different choice of the variational

 parameters. We note, however, that the difference of the
decay rates between the two models is significantly re-
duced for the heavy � lepton case.
In Table III, we summarize our results for the weak form

factors fþ and f0 at q
2 ¼ 0 and q2max and the decay widths

�‘ of the semileptonic Bc ! ðD;�c; B; BsÞ‘�‘ and �b !
Bc‘�‘ (‘ ¼ e;�; �) decays in comparison with other theo-
retical model predictions [5,9,10,13–17,48]. The subscript
for the decay width �‘ represents the result for P ! P‘�‘

decay where the final lepton is ‘ ¼ e, �, or �. For the
decays induced by b ! uðcÞ transitions such as Bc ! D,
�c, and �b ! Bc decays, we take �e ’ �� with the mass-

less lepton limit since the muon mass effect is negligible
for these transitions with large kinematic ranges. For the
decays induced by c ! dðsÞ transitions such as Bc !
BðBsÞ decays, �� is about 5% smaller than �e in our model

predictions. For the Bc ! D decay, our predictions of the
form factor fþ at the maximum-recoil point are rather
smaller than other quark model predictions. The upcoming
experimental study planned at the Tevatron and at the LHC
may distinguish these different model predictions. For the
Bc ! �c, B, and Bs semileptonic decays, our predictions
are quite comparable with those of the quasipotential ap-
proach to the relativistic quark model [9,10], the relativistic
quark-meson model [15], and the nonrelativistic quark
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FIG. 8 (color online). The weak form factors fþðq2Þ and
f0ðq2Þ for �b ! Bc semileptonic decay obtained from the linear
and HO potential parameters. The same line codes are used as in
Fig. 6.
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model [16]. It may be noted, however, that the predictions
of the quark model based on an effective Lagrangian
describing the coupling of hadrons to their constituent
quarks [5] as well as the covariant LFQM [17] are quite
different from other model predictions including ours.

Finally, in order to analyze the total rate for the radiative
B�
c ! Bc þ � decay, the masses of the Bc and B�

c mesons
must be specified. Although we predicted the above two
meson masses in Fig. 2, we use the central value of the
experimental data Mexp

Bc
¼ 6:276 GeV [40] to reduce the

possible theoretical uncertainties. For the unmeasured B�
c
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meson mass, we take some range of the B�
c meson mass,

i.e., 10 MeV � �mð¼ MB�
c
�MBc

Þ � 220 MeV. The

upper value of �m (i.e., MB�
c
¼ 6496 MeV) is chosen to

correspond to our predictions,MB�
c
¼ 6494 and 6492MeV,

obtained from the linear and HO potential models,
respectively.
In Fig. 12, we show the momentum-dependent form

factor FB�
cBc

ðq2Þ (upper panel) for the radiative B�
c !

Bc�
� decay and the dependence of �ðB�

c ! Bc�Þ on �m
(lower panel) obtained from the linear (solid line) and HO
(dashed line) potential parameters. For the transition form
factor FB�

cBc
ðq2Þ, we have performed the analytic continu-

ation of FB�
cBc

ðq2Þ from the spacelike region (q2 < 0) to

the physical timelike 0 � q2 � q2max region, where q
2
max ¼

ðMB�
c
�MBc

Þ2 represents the zero-recoil point of the Bc

meson. The coupling constant gB�
cBc

is obtained at the q2 ¼
0 point that corresponds to the Bc meson recoiling with the
maximum three-momentum in the rest frame of the B�

c

meson. In our model calculation, the coupling constant
itself is independent of the physical masses of the mesons,
and our prediction is gB�

cBc
¼ 0:273 ½0:257� GeV�1 for the

linear [HO] potential model. Our predictions are quite
comparable with the result from the QCD sum rule ap-
proach [49], gSRB�

cBc
¼ 0:270� 0:095 GeV�1. As one can

see from the lower panel of Fig. 12, the dependence of
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TABLE III. Form factors fþ and f0 evaluated at q2 ¼ 0 and q2max and decay widths �‘ (in 10�15 GeV) for Bc ! ðD;�c; B; BsÞ‘�‘

and �b ! Bc‘�‘ (‘ ¼ e;�; �) transitions.

Mode Linear [HO] [9,10] [5] [15] [16] [48] [14] [17]

Bc ! D fþð0Þð0Þ 0.086 [0.079] 0.14 0.69 0.1446 	 	 	 0.089 	 	 	 0.16

fþðq2maxÞ 1.129 [0.789] 1.20 2.20 1.017 	 	 	 	 	 	 0.59 1.10

f0ðq2maxÞ 0.673 [0.554] 0.64 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.59

�eð�Þ 0.021 [0.014] 0.019 0.26 0.020 	 	 	 	 	 	 0.005(0.03) 0.043

�� 0.019 [0.012] 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Bc ! �c fþð0Þð0Þ 0.482 [0.546] 0.47 0.76 0.5359 0.49 0.622 	 	 	 0.61

fþðq2maxÞ 1.084 [1.035] 1.07 1.07 1.034 1.00 	 	 	 0.94 1.10

f0ðq2maxÞ 0.876 [0.872] 0.92 	 	 	 	 	 	 0.91 	 	 	 	 	 	 0.86

�eð�Þ 6.93 [7.95] 5.9 14.0 6.8 6.95 8.6 2.1(6.9) 9.81

�� 2.31 [2.46] 	 	 	 3.52 	 	 	 2.46 3:3� 0:9 	 	 	 	 	 	
Bc ! B fþð0Þð0Þ 0.464 [0.428] 0.39 0.58 0.4504 0.39 0.362 	 	 	 0.63

fþðq2maxÞ 0.729 [0.647] 0.96 0.96 0.6816 0.70 	 	 	 0.66 0.97

f0ðq2maxÞ 0.572 [0.570] 0.80 	 	 	 	 	 	 0.71 	 	 	 	 	 	 0.81

�e 0.84 [0.69] 0.6 2.1 0.638 0.65 	 	 	 0.9(1.0) 1.63

�� 0.80 [0.67] 	 	 	 	 	 	 	 	 	 0.63 	 	 	 	 	 	 	 	 	
Bc ! Bs fþð0Þð0Þ 0.570 [0.574] 0.50 0.61 0.5917 0.58 0.564 	 	 	 0.73

fþðq2maxÞ 0.802 [0.771] 0.99 0.92 0.8075 0.86 	 	 	 0.66 1.03

f0ðq2maxÞ 0.685 [0.716] 0.86 	 	 	 	 	 	 0.86 	 	 	 	 	 	 0.87

�e 15.45 [15.20] 12 29 12.35 15.1 15 11.1(12.9) 23.45

�� 14.61 [14.40] 	 	 	 	 	 	 	 	 	 14.5 	 	 	 	 	 	 	 	 	
�b ! Bc fþð0Þð0Þ 0.341 [0.523] 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

fþðq2maxÞ 0.976 [0.918] 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
f0ðq2maxÞ 0.811 [0.839] 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
�eð�Þ 4.64 [7.94] 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
�� 1.57 [2.11] 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

SEMILEPTONIC AND RADIATIVE DECAYS OF THE . . . PHYSICAL REVIEW D 80, 054016 (2009)

054016-17



�ðB�
c ! Bc�Þ on �m is quite sensitive to the mass of the

B�
c meson; e.g., our linear [HO] potential model predicts

�ðB�
c ! Bc�Þ ¼ 22:4 ½19:9�–1836 ½1631� eV for �m ¼

50–220 MeV. This sensitivity for the B�
c radiative decay

may help in determining the mass of B�
c experimentally and

pinning down the best phenomenological model. Other
magnetic dipole decays V ! P� of various heavy-flavored
mesons such as ðD;D�; Ds; D

�
s ; �c; J=c Þ and ðB; B�; Bs;

B�
s ; �b;�Þ using our LFQM can be found in [28].

VII. SUMMARYAND DISCUSSION

In this work, we investigated the exclusive semileptonic
Bc ! ðD;�c; B; BsÞ‘�‘, �b ! Bc‘�‘ (‘ ¼ e;�; �) decays
and the magnetic dipole B�

c ! Bc� decay using our LFQM
constrained by the variational principle for the QCD-
motivated effective Hamiltonian with the linear (or HO)
plus Coulomb interaction. Especially, we obtained the new
variational parameter 
cb for the bottom-charm sector and
predicted the mass eigenvalues of the low-lying Bc and B�

c

states. Our new prediction of MBc
¼ 6459 ½6351� MeV

obtained from the linear [HO] potential model is in agree-
ment with the data, M

exp
Bc

¼ ð6276� 4Þ MeV [40], within

3% error. We also predicted the unmeasured mass of B�
c as

MB�
c
¼ 6494 ½6496� MeV for the linear [HO] potential

model. Our model parameters obtained from the varia-
tional principle uniquely determine the physical quantities
related to the above processes. This approach can establish
the broader applicability of our LFQM to the wider range
of hadronic phenomena. For instance, our LFQM has been
tested extensively in the spacelike processes [24,50] as
well as in the timelike exclusive processes such as semi-
leptonic [25,26,32] and rare [27] decays of pseudoscalar
mesons and the magnetic dipole V ! P�� decays [28,29].
The weak form factors f�ðq2Þ for the semileptonic

decays between two pseudoscalar mesons and the decay
form factor FB�

cBc
ðq2Þ for the B�

c ! Bc� decay are obtained

in the qþ ¼ 0 frame (q2 ¼ �q2
? < 0) and then analyti-

cally continued to the timelike region by changing q2
? to

�q2 in the form factor. The covariance (i.e., frame inde-
pendence) of our model has been checked by performing
the LF calculation in the qþ ¼ 0 frame in parallel with the
manifestly covariant calculation using the exactly solvable
covariant fermion field theory model in (3þ 1) dimen-
sions. We found the zero-mode contribution to the form
factor f�ðq2Þ and identified the zero-mode operator that is
convoluted with the initial and final state LF wave
functions. We calculated the decay constants of ðBc; B

�
cÞ

mesons and the decay rates for the exclusive Bc !
ðD;�c; B; BsÞ‘�‘ and �b ! Bc‘�‘ decays and compared
with other theoretical approaches. Particularly, the decay
constants for ðBc; B

�
cÞ mesons and the decay rate for the

�b ! Bc process are quite sensitive to the choice of po-
tential within our LFQM. From the future experimental
data on these sensitive processes, one may obtain more
realistic information on the potential between the quark
and antiquark in the heavy meson system.
For the radiative B�

c ! Bc� decay, we find that the
decay width �ðB�

c ! Bc�Þ is very sensitive to the value
of �m ¼ MB�

c
�MBc

. This sensitivity for the B�
c radiative
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decay may help in determining the mass of B�
c experimen-

tally. Since the form factor FB�
cBc

ðq2Þ for the radiative

B�
c ! Bc� decay presented in this work is analogous to

the vector current form factor gðq2Þ in the weak decay of
the ground state vector meson to the ground state pseudo-
scalar meson, the ability of our model in describing the
radiative decay would therefore be relevant to the applica-
bility of our model also for the weak decay. Consideration
on such exclusive weak decays in our LFQM is underway.
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