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Starting from the classic work of Feynman on the � point of liquid helium, we show that his idea of

universal action per particle at the Bose-Einstein condensation (BEC) transition point is much more robust

that it was known before. Using a simple ‘‘moving string model’’ for supercurrent and calculating the

action, both semiclassically and numerically, we show that the critical action is the same for non-

interacting and strongly interacting systems such as liquid 4He. Inversely, one can obtain an accurate

dependence of critical temperature on density: one important consequence is that high density (solid) He

cannot be a BEC state of He atoms, with upper density accurately matching the observations. We then

use this model for the deconfinement phase transition of QCD-like gauge theories, treated as BEC of

(color-)magnetic monopoles. We start with a Feynman-like approach without interaction, estimating the

monopole mass at Tc. Then we include the monopole’s Coulomb repulsion, and formulate a relation

between the mass, density and coupling which should be fulfilled at the deconfinement point. We end up

proposing various ways to test on the lattice whether it is indeed the BEC point for monopoles.

DOI: 10.1103/PhysRevD.80.054013 PACS numbers: 12.38.Aw

I. INTRODUCTION

The goals of this paper are twofold. The first goal is
rather general: to get better qualitative understanding of the
parameters controlling the transition between the ‘‘nor-
mal’’ matter and its Bose-condensed versions, for strongly
interacting bosons which may be in the form of a liquid
(fluid-superfluid transition well known for 4He) or solid
(solid-supersolid transition yet to be found). Although
there are high quality Monte Carlo numerical results for
4He and many other systems, we think the universal con-
densation criterion is still very much needed, as performing
numerical simulations is not trivial in each new setting.

As it will be explained in detail below, we will follow the
50-year-old Feynman theory of Bose condensation [1,2], in
which he introduced the notion of the critical value for the
jump amplitude yc or the critical action yc ¼ expð�ScÞ.
When Feynman realized that his simple treatment (evalu-
ation of only the kinetic energy part of the action) needed
correction, he simply introduced an ‘‘effective mass’’
thinking that some extra matter is incorporated into ex-
change motion. We think instead that other particles (ex-
cept the ones in the exchanged polygon) have very little
chance to move. Instead, the jump amplitude should be
correctly evaluated, with the interaction term included. We
thus revive Feynman’s idea, using a simple model of
particle motion –the ‘‘moving string model’’—which can
be studied either semiclassically or numerically of the
smallest-action paths which particles should follow during
their exchanges.

Our second goal is very far from atomic systems: it is
related to the deconfinement phase transition in QCD and
related gauge theories. ‘‘Dual superconductivity’’ or Bose-
Einstein condensation (BEC) of certain magnetic objects in

the vacuum of these theories were proposed to be respon-
sible for confinement by t ’Hooft and Mandelstam [3]. A
number of authors [4,5] have used effective dual models to
describe the structure of the QCD confining strings (elec-
tric flux tubes), as dual to the Abrikosov flux tubes in
superconductors. These ideas have been extensively
studied in lattice gauge theory calculations, in which a
flux tube is induced by two static charges and monopoles
are found in the maximal Abelian gauge; see [6,7]. Quite
good correspondence between these numerical data and the
effective dual models has been found.
As Feynman did in the 1950s, we would however ap-

proach the problem from the normal phase above the
deconfinement phase transition called ‘‘quark gluon
plasma’’ (QGP). At very high T one can view QGP as a
plasma made of ‘‘electric’’ quasiparticles, quarks and glu-
ons. However at lower T it becomes a ‘‘dual plasma’’
containing not only electrically charged quasiparticles
but also magnetically charged objects—monopoles and
dyons. Apart from lattice studies, in which those have
been observed in certain gauges above deconfinement
(see e.g. the discussion in [8]), there were attempts to
understand the magnetic sector of the plasma phase in a
framework of ‘‘monopole gas’’ models, e.g. [9,10].
A much more specific dynamical model has been pro-

posed by Liao and Shuryak [11], who used a strongly
coupled classical plasma description for the ensemble of
monopoles and calculated such transport properties as
viscosity and diffusion constant. Furthermore, it was
pointed in this work that the magnetic coupling should
run opposite to the electric one. As a result, a decrease of
the temperature toward the critical value Tc should lead to
a gradual shift from electric to magnetic dominance, with a
significant increase of the density of (color-magnetic)
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monopoles near Tc. Recent lattice studies, in particular,
Ref. [12], have discovered many important details about
such monopoles. They indeed found rather high densities
of them close to Tc, as well as clustering behavior similar
to BEC. They also measured equal-time density correlators
of like and unlike monopoles (Fig. 5 of [12]) which clearly
show the peaks characteristic for strongly coupled ionic
liquids. The estimated magnetic Coulomb coupling does
indeed show running opposite to electric coupling pre-
dicted in [11]: see discussion in a review [13].

With the QCD deconfinement transition interpreted as
BEC of monopoles, one should be able to apply Feynman’s
universal action idea to constrain the properties of these
monopoles (mass, density and coupling constant). This is
done in the second part of the paper.

II. REVIVING FEYNMAN’S THEORY OF THE
HELIUM � POINT, 55 YEARS LATER

A. Feynman’s theory

Feynman’s starting point is the thermal partition func-
tion in the form

Z ¼ e�ðF=TÞ ¼ 1

N

X
P

Z �
m�T
2�@

�
3N=2

� exp

�
�m�T

@
2

X
i

ðRi � PRiÞ2
�

� �ðR1 . . .RNÞd3R1 . . . d
3RN; (1)

where m� is the effective mass of a He atom, the sum is
done over permutation P of the particle coordinates, the
function � includes effects of the interparticle interactions
and the exponent contains additional action due to kinetic
energy. His main idea is that the function � can be inferred
from general properties of the liquid, its quasiordered local
structure with peaked distribution over interparticle dis-
tances at some nearest-neighbor value d (in the case of a
cubic lattice d is the lattice spacing). Then the relative
magnitude of a term with a permutation of n atoms would
be proportional to the nth power of the ‘‘jump amplitude’’
which is approximated as

yF ¼ exp

�
�m�Td2

2@2

�
(2)

with some combinatorial prefactors, describing a number
corresponding to noncrossing polygons in the 3d lattice,
such as that shown in Fig. 1. The divergence of this sum at
the parameter approaching some critical value yF ! yc
should indicate the presence of an ‘‘infinite cluster,’’ the
signature of Bose condensation. The condition for this,
Feynman argues, is yc � 1=s, where s is the growth factor
in the number of polygons when n is increased by one unit.
Feynman mentioned that he expected yc ¼ 1=4� 1=3.

The combinatoric problem to find the correct critical
value of the Feynman parameter was studied in detail by

Kikuchi et al. [14]. They found a critical action Sc � 1:9.
We can consider the distance d of a ‘‘jump’’ fixed to the
position of the nearest-neighbor maximum in the static

correlation function gðrÞ for liquid He, which is d �
3:5 �A. If this value is used and the critical action is taken
to be the one obtained by Kikuchi, in order to recover the
correct position of the � point Tc ¼ 2:17, the helium mass
is changed to an effective valuem� ¼ 1:64mHe. Otherwise,
using the physical helium mass we obtain Tc ¼ 3:57which
is, of course, 64% bigger than the real critical temperature.
In the 1980s Elser [15] determined numerically that the
critical action should be smaller than the values obtained in
[14], Sc � 1:44. Using this new parameter the predicted
critical temperature reduces to Tc ¼ 2:72, closer to the
physical temperature.
In the Feynman picture all the effects of the potential are

absorbed into an effective mass m� that appears in the
kinetic part of the partition function. In this paper we try
to study the He � point, starting from the idea of Feynman,
but including the effects due to the potential at a mean field
level. In our calculations we have considered the Aziz
potential HFDHE2 [16]. We will show that in this context
an estimate for the helium critical temperature can be
obtained within an error of 5% if we assume that the
critical action will be the same as the free case, which, as
we will show, can be estimated to Sc ¼ 1:655 for a cubic
lattice.
Following Feynman we put the helium atoms filling a

cubic lattice and consider two different states for the
system: the first where the atoms are static on the lattice
sites, and the second where the atoms on a line of the lattice
are moving coherently in a given direction, for example,
along x; see Fig. 2. If we consider an infinite system, we
can consider that this line is a side of a polygon with an
infinite number of atoms. Another difference with
Feynman’s work is that in our case the atoms lying on
the moving line are not restricted to move on the lattice
link: what they must do is to jump from one site to the
following on the same line, but in between they move
following the three-dimensional equation of motion im-
posed by the geometry of the selected configuration.
The appearance of such a kind of particle cluster, as

proposed by Feynman, is connected to the transition into

FIG. 1 (color online). Example of a polygon due to particle
exchange.
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the superfluid phase. Confirmation of this hypothesis
comes also from path integral Monte Carlo (PIMC) calcu-
lations, which, today, represent the only way to determine
without any approximation the helium critical temperature.
In this framework, the transition point is fixed exactly from
the appearance of atoms involved in an exchange which
winds around the simulation box.

The idea of Feynman was to consider the ratio between
the partition function of the system where permutations are
possible with respect to the ‘‘Boltzmann’’ case where
particles do not permute. In our case we are interested to
understand the properties of the particular system where
there is exactly one line involved in permutation with
respect to the Boltzmann system.

Systems at finite temperature can be studied using path
integral techniques in the Euclidean space, where t ! �i�.

In general the partition function for bosonic interacting
particles in Euclidean space can be written as

Zðx1; . . . xN;�Þ ¼ 1

N

X
P

Z
Dx1ð�Þ . . .DxNð�Þ

� e�
R

�

0
SE½x1;::;xN ;��d�; (3)

where � ¼ 1
kBT

and the Euclidean action is

SE½x1; ::; xN; �� ¼
XN
i¼1

�
m

2
_x21ð�Þ þ

XN
j¼1

Vðxi; xjÞ
2

�
; (4)

and only two-body interactions are taken into account.
Now we consider the case where K particles

ðxk; . . . xkþKÞ on a line move coherently, that is, xkþjð�Þ ¼
xkð�Þ þ jd. This hypothesis implies that we have chosen
the particular permutation where xi�k;...;kþKð�Þ ¼ xi,
xkð�Þ ¼ xkþ1ð0Þ; . . . ; xKð�Þ ¼ xkð0Þ. Moreover we impose
that the position of all other particles is constant.

B. The moving string model

Having selected this particular configuration, we can
evaluate the potential acting on a particle lying on the
line, due to all the other particles.

In Fig. 3 we can see the projection on the x� y plane of
the resulting mean field potential and one of the possible
paths followed by the atoms on the moving line.
In particular, we consider only the x coordinate and

study the dependence from the density of the mean field
potential. In Fig. 4 we can see how to change the behavior
of the potential considering the atoms disposed on a cubic
lattice and changing the density. In Fig. 5 we do the same
for an hcp crystal. We can see that there is a range of
density in both cases where the origin is no longer a
minimum, which means that the lattice considered is not
the correct one to study the system. Therefore we need to
pay attention to which configuration we choose depending
on the density.
Another fact related to the Aziz potential is represented

in Fig. 6, where we see that the amplitude of the sinusoidal
potential does not increase continuously when the density
grows. We can think that such a behavior will be connected
with a wrong description of the atoms’ distribution in this
range of densities.

FIG. 3 (color online). Projection on the x� y plane of the
potential for a particle on the moving line.
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FIG. 4 (color online). Density dependence of the potential
when we consider the atoms on a cubic lattice.
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FIG. 2 (color online). z ¼ 0 of the three-dimensional lattice:
the red continuous arrows identify the moving atoms. The
dashed arrows represents the diagonal trajectory of monopoles
discussed in Sec. III.
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This is indeed peculiar to the Aziz potential where we
have both attractive and repulsive terms. If, for example,
we consider a simple negative power potential, such a
behavior not only disappears but we can find a simple
relation between the amplitude V0 and the density.

Define the negative power (NP) potential

VNP ¼ �p

rp
(5)

with �p > 0. The scattering length can be defined for this

potential when p > 3 and is given by

a ¼
�
2m�p=@

2

ðp� 2Þ2
�
1=ðp�2Þ �½ðp� 3Þ=ðp� 2Þ�

�½ðp� 1Þ=ðp� 2Þ� ; (6)

where �½x� is the Gamma function. We consider p ¼
1; 4; 6; 9; 12 and choose to keep fixed the value a ¼ 1 for
all the potentials, changing accordingly �p. For p ¼ 1 we

arbitrarily fixed�1 ¼ �4. For this potential we compute V0

for different density, taking care that for such a NP poten-

tial the atom disposition must be a bcc crystal. The result
are presented in Fig. 7: the data can be fitted with extraor-
dinary accuracy using the function

V0ðnÞ ¼ anp=3: (7)

We can try to use the same function also to fit the
sinusoidal amplitude obtained by the Aziz potential; in

this case we can use V0ðnÞ ¼ an6=3, where p ¼ 6 is the
dominating term for large distances that appear in the Aziz
potential. The result is in Fig. 8, we can see that the fit is
quite good until, as expected, we enter in the yellow band
described before.
Nevertheless we decided to use this simple scaling rela-

tion for our calculations.
Because of the particular configuration we have chosen,

the partition function for the Bose system can be rewritten
as

Z ðx1; . . . xN;�Þ ¼ 1

N

�Z
Dxkð�Þe�

R
�

0
ððm=2Þ _x2

k
ð�ÞþC0ðxÞÞd�

�ðN�KÞ �
�Z

Dxnð�Þe�
R

�

0
ððm=2Þ _x2nð�ÞþV0ðxÞÞd�

�
K
; (8)

where C0ðxÞ is the potential acting on the particle at rest
and which is exactly the potential that also appears in the
Boltzmann partition function.

For this reason the ratio between the Bose (Z) and the
Boltzmann (ZB) partition functions reduces to

Z
ZB

¼
�R

Dxkð�Þe�
R

�

0
ððm=2Þ _x2

k
ð�ÞþV0ðxÞÞd�R

Dxkð�Þe�
R

�

0
ððm=2Þ _x2

k
ð�ÞþC0ðxÞÞd�

�
K
; (9)

and the Feynman parameter is given by

yF ¼
R
Dxkð�Þe�

R
�

0
ððm=2Þ _x2

k
ð�ÞþV0ðxÞÞd�R

Dxkð�Þe�
R

�

0
ððm=2Þ _x2

k
ð�ÞþC0ðxÞÞd�

: (10)

C. The semiclassical calculation

The simplest case is that of noninteracting particles, for
which the optimal path (‘‘Feynman’s instanton’’) is just the
straight line starting at the initial position of a particle and
ending at the previous position of its neighbor (as indicated
by lines with arrows in Fig. 2). Since velocity is constant,
the extra action per particle needed for its jump is nothing
but just the kinetic energy times the Matsubara time � ¼
@=T available for the interchange, with an obvious velocity
on the segment being d=�

Sideal ¼ m

2

�
d

�

�
2
� (11)

per particle, for each of the diagrams. Let us see what is this
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FIG. 5 (color online). Density dependence of the potential
when we consider the atoms on a hcp lattice.
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FIG. 6 (color online). Density dependence of the amplitude of
the sinusoidal potential.
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action at the BEC line, for the ideal gas. Using

Tc ¼ 3:31@2n2=3=m (12)

and relating the distance of the jump to the density by d ¼
�n�1=3, with some coefficient � ¼ Oð1Þ one finds that the
critical action for the Feynman instanton is

SBEC=@ ¼ 3:31�2

2
¼ �21:655: (13)

The precise value depends on the numerical constant �,
which in turn depends how exactly particles are correlated
in space. It is unclear what should it be for ideal gas, but for
strongly coupled systems we are mostly interested in it is
uniquely determined by the type of local crystal structure
developing; e.g. it is exactly � ¼ 1 for cubic crystal. We
will use below this value, although there is some uncer-
tainty here for weakly coupled systems.

When density is too low or T is too high, so that S >
SBEC, the sum over the polygons is exponentially conver-
gent and thus the gas remains in normal phase.

Now we switch on the potential and impose our atoms to
be displaced on a cubic lattice. As a first analytic approach
to the problem we look for the semiclassical tunneling
path—known as the periodic instanton, or caloron. It cor-
responds to a solution of the classical equation of motion in
Euclidean time, now including the potential. For all cases
we are interested in, this periodic potential on various
lattices and forces happens to be well described by its first
harmonics, the sinusoidal potential:

VðxÞ ¼ V0sin
2ðx�=dÞ (14)

which interpolates between the minima of V

xclð0Þ ¼ 0; xclð�Þ ¼ d:

Introducing conserved Euclidean energy EE

EE ¼ m

2
_x2 � VðxÞ ! _x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m
ðVðxÞ þ EEÞ

s
(15)

after separation of variables we have the solution

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m ðEE þ VðxÞÞ

q ¼ d� (16)

which can be easily integrated

ffiffiffiffi
m

2

r Z xclð�Þ

xclð0Þ
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EE þ VðxÞp ¼
ffiffiffiffi
m

2

r
d
F½x�=d;�V0=EE�

�
ffiffiffiffiffiffi
EE

p
��������

xclð�Þ

xclð0Þ

¼ �� �0; (17)

where F is the elliptic integral of the first kind. Imposing
xclð�0 ¼ 0Þ ¼ 0 we have

xclð�Þ ¼ d

�
JA

� ffiffiffiffiffiffiffiffiffi
2EE

m

s
�

d
�;� V0

EE

�
(18)

with JA the Jacobi amplitude for elliptic functions. The
particular solution for EE ¼ 0 is called the instanton, and it
corresponds to the zero temperature (or � ! 1) limit. In
our setting it is not interesting since we only approach the
critical point from above and thus T > Tc.
For arbitrary temperature the duration of the Matsubara

time � is prescribed: thus from Eq. (17) we obtain the
equation to fix the energy. One can also read it immediately
as the critical temperature as a function of the parameter of
our system (d, V0 and EE)

Tc½d; V0; EE� ¼
� ffiffiffiffiffiffiffiffiffi

m

2EE

s
d

�
F½�;�V0=EE�

��1

¼
� ffiffiffiffiffiffiffiffiffi

m

2EE

s
d

�
2K½�V0=EE�

��1
(19)

provided the energy is substituted from the Feynman con-
dition, which says that the Euclidean action
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FIG. 8 (color online). Density dependence of the Aziz poten-
tial fitted by the function V0ðnÞ ¼ an6=3.
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FIG. 7 (color online). Density dependence of the NP potential
for five different values of p. The point can be successfully fitted
by the function V0ðnÞ ¼ anp=3.
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SE½d; V0; EE� ¼
Z �

0
d�

�
m

2
_x2cl þ VðxÞ

�

¼ d

�

ffiffiffiffiffiffiffiffiffiffi
mEE

2

s
2

�
2E

�
� V0

EE

�
� K

�
� V0

EE

��
(20)

is equal to the Feynman critical value.
In the instanton limit EE ¼ 0 we have for the action

S0 ¼ 2d
ffiffiffiffiffiffiffiffiffiffiffiffi
2mV0

p
�

; (21)

and the corresponding trajectory is given by

xð�Þ ¼ 2

�
darccot

�
exp

�
�

ffiffiffiffi
m

2

r
�V0

d
�

��
: (22)

In Fig. 9 we can see the difference between the instanton
trajectory and the simple straight line corresponding to the
case of a free Bose gas.

More detailed comparison between real He and caloron/
instanton approximation is shown in Fig. 10(b). While it is

qualitatively correct, it is not quite accurate. This is by no
means surprising: it should be accurate provided the criti-
cal action for BEC would happen to be much larger than 1,
while unfortunately it is only 1.65 or so. Therefore the
semiclassical result should be used for qualitative compari-
son only.
One of those is that as the matter is further compressed

by extra pressure, its density and the amplitude of the
potential V0ðnÞ grow. Respectively the action required for
tunneling grows [see Fig. 10(a)], and when the action gets
too large S0 > Sc, Feynman’s condition could not be ful-
filled. Therefore, a sufficiently compressed 4He cannot
support a supercurrent of the 4He atoms.
(For clarity: we do not make any statements here about

possible ‘‘supersolid’’ behavior of the solid 4He induced by
supercurrent of some defects/dislocations imposed on it.
All we are saying is that the 4He atoms themselves do not
create such a supercurrent: this statement is however not
new and it has been verified in dedicated numerical Monte
Carlo studies. The only new element in our statement is
that it follows from Feynman’s universal action.)
One may improve the semiclassical expressions for the

tunneling action in one- or two-loop quantum corrections.
For example, with the one-loop accuracy the Feynman
parameter can be written as

yF ¼ e�ðd=�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmEE=2Þ

p
2ð2E½�ðV0=EEÞ��K½�ðV0=EEÞ�Þ

ðdetF̂½xcl�Þ1=2
: (23)

Expressions for two loops are a bit more involved; see
Ref. [17]. However we have not calculated it analytically,
using a numerical path integral instead.

D. The 1D quantum path integral

As we have already emphasized above, since the action
is not large, one cannot expect the semiclassical theory to

0

Bose gas

Caloron

FIG. 9 (color online). Instanton trajectory we have in the
presence of a potential barrier, compared to the free Bose gas
case.
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FIG. 10 (color online). (a) The action for the tunneling (caloron) solution as a function of the density. When the action is larger than
the critical value S ¼ 1:655 (dashed line) the system cannot be a Bose-Einstein condensed phase. (b) The critical temperature obtained
from the caloron/instanton solution (dashed line) and from the 1D PIMC simulation (points). The red star shows the physical location
of the lambda point.
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be really accurate. Fortunately quantum fluctuation around
the classical trajectory can be taken into account by nu-
merical evaluation of the right-hand side of (10) that can be
simply performed using PIMC code. Note that compared to
PIMC simulation of many-body these calculations are very
cheap in terms of computational power because we con-
sider a one-dimensional system with only one particle.

In order to find the critical temperature as a function of
the density we do the ansatz that the value of the Feynman
parameter of our system is more or less the same as for the
free Bose gas. Because we know that for the free Bose gas
SF ¼ � logðyFÞ ¼ 1:655 independent from the density, we
simply computed S for a different temperature at fixed
density and when SðT; nÞ ¼ 1:655 we simply called that
the critical temperature. In Fig. 11 we plotted the results
obtained in the case of the cubic lattice. We can see the
good agreement between our calculation and the physical

critical point. Also when we use the formula V0ðnÞ ¼
an6=3 for the prediction of the amplitude, our prediction
is only 4% larger than the physical value.

It is also interesting to notice that the physical point is
the point where the critical temperature is larger; in this
sense it looks natural that condensation happens in nature
exactly at that point.

Now we plot the ratio Tc=T0 [Fig. 10(b), black points],
where T0 is the critical temperature for the free Bose gas. In
the limit of vanishing density we recover Einstein’s critical
temperature as it should be. In the region of small density
there is a universal theory using small parameter a3n, with
a being the scattering length. As shown e.g. in Ref. [18],
there is a nontrivial increase of Tc by several percent there,
in agreement with numerical studies. Our model is obvi-
ously too crude to reproduce it.

We are mostly interested in the opposite limit of high
density: here the considered ratio decreases until a certain
point. For larger density we simply cannot have condensa-

tion in the sense that we cannot find any temperature where
SðTÞ ¼ 1:655. This can be seen more clearly by looking at

Fig. 12. Starting from around n ’ 0:033 �A�3 we cannot
find any critical temperature different from zero. As a
consequence we have a jump from a minimum of Tc ’
1:7 K to Tc ¼ 0 around that density.
Looking at the 4He phase diagram (Fig. 13) it is also

interesting to notice that the � line starts at P ¼ 0, T ¼
2:17 and ends at some pressure with T ¼ 1:76 very close to
our estimate for the minimal critical temperature.
Obviously the density where we observe this behavior is
completely different; nevertheless it is interesting to notice
that the two minimal critical temperatures coincide. It
seems to suggest that it is not possible to have a supersolid
phase of helium because, as soon as we enter in the non-
liquid phase, the critical temperature jumps from Tc ¼
1:76 to zero.

0.020 0.025 0.030

1.8

2.0

2.2

2.4

n

T
c

FIG. 11 (color online). Density dependence of the critical
temperature. Black points are obtained using the exponential
dependence of V0ðnÞ. The red star is the physical result for 4He.
The blue square is obtained using the V0 as obtained directly
from the Aziz potential.
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FIG. 12 (color online). Action as a function of the temperature
for different densities.

FIG. 13 (color online). 4He phase diagram.
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III. CONFINEMENTAS BOSE-EINSTEIN
CONDENSATION OF MONOPOLES

First of all, let us explain why we think the Feynman
criterion based on particle paths and clusters is especially
well suited for this task. One reason is that lattice simula-
tions are able to follow monopole’s paths, and thus identify
‘‘single’’ ones, with individually periodic paths, as well as
those belonging to k clusters. Therefore, one can see
divergence of the cluster expansion at Tc directly, without
any calculations.

The second reason is that the excited matter we discuss
has no nonzero quantum numbers; it is just an ‘‘excited
vacuum’’ produced in high energy collisions. Thus there is
not any nonzero conserved charge to which the correspond-
ing chemical potential can be coupled. Neutrality leads to
an equal number of electrically charged quarks and anti-
quarks, as well as an equal number of monopoles and
antimonopoles. Thus unfortunately one cannot introduce
a chemical potential and use the usual reasoning related to
its crossing the lowest level.

Yet, since the density and mass of such monopoles
depend on T, only when the Feynman criterion is satisfied
may their BEC happen. In this section we estimate what
mass and coupling constant the monopole should have in
order to condense. We do so in two steps, first for non-
interacting monopoles, including relativistic action, and
then for interacting ones using nonrelativistic formulas
derived above. Again following Feynman, we approach
the problem from the high-T phase—the QGP—in which
monopoles are not Bose-condensed, calculate the action
needed for a jump to the site of the identical neighbor, and
compare it to the universal value Sc.

We will only consider pure gauge theories (no quarks)
and ignore gluon quasiparticles. The standard units used in
this field are based on @ ¼ c ¼ 1, and thus only one unit
(length in fm or energy in GeV, so fm�GeV ¼ 0:1973)
needs to be defined. It is standard in lattice works to
calculate the string tension � at zero T and fix its value
to be the same as in real QCD, namely,

ffiffiffiffi
�

p ¼ 0:42 GeV,
which we will follow. The critical temperature for pure
SU(3) gauge theory is in such units about 270 MeV.

A. Free monopoles

The work [12] [pure gauge SU(2) theory] has provided
measurements for monopole (plus antimonopole) density n
at T ¼ ð1–12ÞTc. In this theory, the Higgs mechanism
leaves only one massless U(1), and thus there is only one
kind of monopole. For orientation, near Tc they find
n=T3 � 0:3. This distance between identical monopoles is

a ¼ ðn=2Þ�1=3 ¼ 1=ð0:53 � 0:27 GeVÞ � 1:4 fm (24)

(where 2 is because we only need the density of one
charge).

We now estimate the action of the monopole which
jumps to the position of another identical monopole at

distance a away, during Euclidean time duration equal to
the critical Matsubara time � ¼ @=Tc ¼ 1=ð0:27 GeVÞ ¼
0:73 fm. In the Feynman approximation—when only the
kinetic part of the action is included—the (Euclidean)
velocity on the optimal path is constant v ¼ a=�.
Putting numbers reveals two complications: (i) v > 1 and
(ii) relativistic monopoles require a relativistic form for
Euclidean action. Since we speak about tunneling, having
imaginary action and velocity above that of light is in fact
appropriate: no negative roots appear. The Euclidean ac-
tion at the BEC Tc point should be

SE ¼ m
Z

ds ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2=�2

q
¼ Sc: (25)

Putting numbers into the square root one finds

m ¼ Tc � Sc=
ffiffiffi
5

p � 200 MeV: (26)

This small value of the mass is highly nontrivial. At
large T monopoles are viewed as heavy semiclassical
objects, and also in the vacuum T ¼ 0 those objects should
be massive enough to get comparable to glueball masses,
or an order of magnitude heavier. According to the ‘‘mag-
netic scenario’’ [11] monopoles get light enough and play a
significant dynamical role only close to Tc. Still, this small
mass—which seems an inevitable consequence of
Feynman’s universal criterion—is shockingly light.
From existing lattice data on the mass, estimated from

the paths themselves by D’Elia [19], one finds a rapid
decrease of the monopole mass as T ! Tc to a similar
ballpark, but the accuracy of the data is not yet sufficient to
tell its numerical value at Tc yet. Before this comparison is
made, we should move on into a much more involved
estimate for a strongly interacting monopole plasma.

B. Strongly interacting monopoles

Color monopoles interact via Coulomb-like magnetic
forces related to their charges. We remind the reader that
the Higgs mechanism is assumed to be due to certain
distribution (with a nonzero mean) of the so-called
Polyakov loop P ¼ ð1=NcÞTrP expðiR d�A0Þ, described

by a certain effective potential. Although the zeroth com-
ponent of the gauge field A0 does not have a global nonzero
vacuum expectation value, and thus the color group is not
broken, locally it has a certain value. It is in respect to such
a local field that the Abelian subgroups which remain
unbroken are defined, as well as color charges of the
monopoles. For the SU(2) color group there is only one
diagonal generator �3, and the corresponding gluon is left
massless. So there is only one U(1) charge and thus we can
use the language of electrodynamics, simply calling mono-
poles to be positive and negative charges. [For physical
SU(3) color there are two unbroken Abelian fields, pro-
portional to �3, �8 Gell-Mann matrices, with two families
of monopoles.] One more comment is that in general forces
include also Higgs exchange, which in principle can also
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be long range if Higgs is massless. However the data about
monopole correlations [12] seem to show only pure
Coulomb-like forces.

Such charges obviously prefer an alternating cubic lat-
tice. Furthermore, classical molecular dynamics which
reproduces their static correlation functions observed on
the lattice (see discussion and references in [13]) comple-
ment the Coulomb potential by the repulsive core, to
ensure classical stability of the lattice. The potential is
thus written as

VijðrÞ ¼ g2m
4�

�ð�ÞQiþQj

r
þ 1

brb

�
; (27)

where charges Qi;Qj ¼ �1 and additional dimensionless

parameter b is the ‘‘core power.’’ It is usually selected to be
large, to produce small corrections except close to the
origin: we use the conventional b ¼ 9. The forces are
balanced at distance 1, which defines the normalization.

Near Tc the condensate is still a small fraction of all
particles, in spite of divergent (or highly peaked) specific
heat: thus we may think that only particles of one kind (e.g.
only positive ones) are moving along the line. This prompts
us to take one diagonal of the cubic lattice (rather than a

line parallel to axes) to be jumping the distance
ffiffiffi
2

p
, while

keeping all other positive and all negative ones stationary.
The potential corresponding to such forces was calculated
and plotted in Fig. 14 (points). As usual, it is well repre-
sented by the sinusoidal potential

V ¼ g2m
4�d

�
Cþ V0sin

2

�
�xffiffiffi
2

p
d

��
(28)

and therefore one can use the results obtained for 4He in
Sec. II (note that because of the diagonal supercurrent we

have substituted d ! ffiffiffi
2

p
d into it). In particular, wewill use

caloron amplitude (20).
The main equation is that the jump Euclidean action is

equal to the Feynman critical value, which for a caloron

reads

Sc ¼ 1:655 ¼ SE½
ffiffiffi
2

p
d; V0; EE�

¼
ffiffiffi
2

p
d

�

ffiffiffiffiffiffiffiffiffiffi
mEE

2

s
2

�
2E

�
� V0

EE

�
� K

�
� V0

EE

��
: (29)

In Sec. II above we extracted the energy value from it, and
then inserting it into the expression for the caloron period
we found the BEC critical temperature itself. Now, con-
sidering the Tc of QCD known, we can do the inverse:
extract energy from the period and put it into (29). After
this is done, it becomes one nontrivial condition connect-
ing the values of the monopole mass, coupling and density
together. Unfortunately, it is hard to write it down in a
simple form.
This formula was derived starting from a nonrelativistic

Lagrangian, while we have shown that in this regime
monopoles move relativistically. In order to give an esti-
mate of the relativistic correction we can compare the
monopole mass predicted using Eq. (25) with the mass
obtained from the analogous nonrelativistic formula.

Fixing Tc ¼ 0:27 GeV and the jumping distance
ffiffiffi
2

p
d ¼ffiffiffi

2
p

n�1=3 we can extract the monopole mass as a function of
the Feynman action. The result is presented in Fig. 15,
where we can see that the relativistic correction is very
small, on the order of 5%, and therefore we can hope that,
also introducing the potential, using the nonrelativistic
formula the error in the prediction of the mass remains
small.
In order to include the potential we need an estimate of

the coupling constant gm. This estimate has been provided
studying lattice correlation function in [12,20] to be such
that plasma parameter

� ¼ g2m
4�dTc

� ð1–2Þ: (30)

0.0 0.5 1.0 1.5 2.0 2.5
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2

FIG. 14 (color online). The effective potential for a diagonal
moving line of charges (points) is compared to a fitted sinusoidal
potential (curve).
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FIG. 15 (color online). Relativistic correction to the prediction
of the monopole mass at T ¼ Tc without the inclusion of effects
connected with the interparticle Coulomb potential.
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In Fig. 16 you can see the dependence of the monopole
mass from the Feynman parameter for three different
choices of �: � ¼ 0:5; 1:0; 2:0. Remember that for �� 1
the plasma is a liquid (only for � 	 1 we have a gas and
for �� 100 a solid), and therefore inside the range con-
sidered the state of the system does not change; never-
theless we can see that such a small variation in the plasma
parameter is sufficient to produce a large variation in the
monopole mass going from 50 MeV for � ¼ 2 until
180 MeV for � ¼ 0:5. On the other hand the dependence
on the choice of the Feynman parameter is very small.

In conclusion of this section we could say that in order to
study the temperature dependence of the monopole mass it
seems to be crucial to fix accurately the strength of the
interparticle potential.

C. Discussion

Liquid 4He at the lambda point shows a characteristic
infinitely high peak in its specific heat, famously attributed
by Feynman to divergence in the sum over the contribution
of the k polygons.

The pure gauge theory deconfinement is second order
for the SU(2) group; it is the first order transition for
SUðNc > 2Þ and so far is designated to be a crossover
one in QCD, with dynamical quarks. This means that

added quarks somehow tame the peak in the specific
heat, to still large but finite height. (It may still be a
finite-volume effect.) It is perhaps fair to say that at the
moment nobody has a clue why it is so; at least we are not
aware of any definite ideas.
The real-world QCD has fundamental quarks, and for

those another transition—chiral symmetry restoration—
coincides with or is very close to deconfinement.
However for different quarks, with adjoint (roughly twice
larger) color charge, those are separated and deconfine-
ment is the first order transition.
In this paper we assumed that deconfinement is the BEC

of monopoles, and it is crucially important to test on the
lattice whether it is indeed true or not. This means in
general to look for a monopole condensate at T < Tc. We
would suggest to follow Feynman and test his predictions:
(i) at Tc the probability of polygons of any k becomes
comparable; and (ii) the extra action for jumps reaches the
same critical value as for all other BECs. We know from
simulations for 4He that those were indeed true in this case:
why should monopoles be any different?
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Note added.—When this paper was completed, we

learned about one more interesting application of strongly
coupled charged plasma possibly undergoing Bose-
Einstein condensation: helium dwarf stars; see [21].
Note added in proof.—Our main result is the prediction

of an unexpectedly light monopole mass m � 200 MeV at
Tc, an order of magnitude below the glueball scale at T ¼
0. We have been informed since submitting the manuscript
that Chernodub and Ilgenfritz [22] reported a mass of
exactly 200 MeV at Tc, in the fit to T dependence of the
asymmetry of the so-called A2 condensate.
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