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We have studied the �ð1020Þf0ð980Þ S-wave scattering at energies around threshold employing chiral

Lagrangians coupled to vector mesons through minimal coupling. The interaction kernel is obtained by

considering the f0ð980Þ as a K �K bound state. The Yð2175Þ resonance is generated in this approach by the

self-interactions between the �ð1020Þ and the f0ð980Þ resonances. We are able to describe the eþe� !
�ð1020Þf0ð980Þ recent scattering data to test experimentally our scattering amplitudes, concluding that

the Yð2175Þ resonance has a large �ð1020Þf0ð980Þ meson-meson component.
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I. INTRODUCTION

In recent years, the existence of a new resonance with
quantum numbers JPC ¼ 1�� and mass around 2.15 GeV
has been revealed by several experiments. In the following
we use the notation Yð2175Þ for this state, although it is
also referred as Xð2175Þ or �00 in the literature. The
Yð2175Þ was first observed in the reaction eþe� !
�ð1020Þf0ð980Þ by the BABAR Collaboration [1,2]. Its
mass and width were determined to be MY ¼ 2:175�
0:010� 0:015 GeV and �Y ¼ 0:058� 0:016�
0:020 GeV [1]. It was then observed in eþe� !
�ð1020Þ� by the same collaboration [3], though with
much less statistical significance, and in J=� !
��ð1020Þf0ð980Þ by BES [4] with MY ¼ 2:186�
0:010ðstatÞ � 0:006ðsystÞ GeV and �Y ¼ 0:065�
0:023ðstatÞ � 0:017ðsystÞ GeV. The Belle Collaboration
[5] has also identified the Yð2175Þ in the most precise
study so far of the reactions eþe� ! �ð1020Þ�þ�� and
eþe� ! �ð1020Þf0ð980Þ. The resulting resonance pa-
rameters are MY ¼ 2:13þ0:07

�0:12 GeV and �Y ¼
0:17þ0:11

�0:09 GeV. The large errors reflect, among other

sources of systematic error, the uncertainties in the deter-
mination of the nonresonant background and the possible
existence of additional resonances in the vicinity of the
Yð2175Þ. In Ref. [2] an extensive study of the reaction
eþe� ! KþK�f0ð980Þ, with the f0ð980Þ reconstructed
from the �þ�� or �0�0 signals, is also given. It shows
an even more prominent Yð2175Þ signal than the
�ð1020Þf0ð980Þ data. The resulting masses then spread
in the range 2.12–2.21 GeV and the width between
0.045–0.13 GeV, taking into account both central values
and the one sigma deviation from them.

These experimental findings have renewed the theoreti-
cal interest in the region of the Yð2175Þ. It has been
suggested that this resonance could be a tetraquark state
[6–8]. A QCD sum rule calculation taking into account the
correlator ðs�sÞðs�sÞ between the meson-meson currents is
performed in Ref. [6] obtaining MY ¼ 2:21� 0:09 GeV.
Both standard and finite energy QCD sum rules are con-
sidered in Ref. [7] with meson-meson and diquark-

antidiquark ðssÞð�s �sÞ currents. The mass value obtained is
2:3� 0:4 GeV. Quark models have also been used to
address the nature and properties of this resonance.
Reference [9] studies the decay modes of the lightest
hybrid s�sg resonance, whose mass was predicted to be in
the range 2.1–2.2 GeV [10,11], consistently with that of the
Yð2175Þ. Its width is estimated to be around 100–150 MeV
[9]. The identification of the Yð2175Þ as the quarkonium
(s�s) states 23D1 and 33S1,

1 whose masses have also been
predicted to be close to that of the Yð2175Þ [12], has been
considered in Ref. [13]. The 33S1 assignment is disfavored
due to its expected large width, � ’ 0:38 GeV [14], while
the width of a 23D1 state is estimated in the range 0.15–
0.21 GeV [13]. It is argued that the clearly different decay
patterns could be used to distinguish between the 23D1 �ss
and the hybrid s�sg descriptions [9,13]. Instead, Ref. [8]
concludes that the diquark-antidiquark picture for the

Yð2175Þ would be characterized by a prominent � �� decay
mode. A Faddeev-type calculation for the �ð1020ÞK �K
system is presented in Ref. [15] where the interactions
between pseudoscalar-pseudoscalar and vector-
pseudoscalar mesons are taken from unitarized chiral per-
turbation theory (Refs. [16,17], respectively). Final state
interactions corrections to the elementary production pro-
cess for eþe� ! �ð1020ÞK �K, that is taken from Ref. [18],
are then implemented. Remarkably, a peak in the
�ð1020ÞK �K strong amplitude is obtained at the mass of
the Yð2175Þ [15], though the width, around 20 MeV, is too
small. This study indicates that the Yð2175Þ might have
large components corresponding to a resonant�ð1020ÞK �K
state.
In the investigation reported here we have studied the

S-wave scattering amplitude of the �ð1020Þf0ð980Þ sys-
tem around its threshold. This is feasible because both the
�ð1020Þ and the f0ð980Þ are rather narrow resonances. We
investigate this process from the theoretical point of view
by first deriving the interaction kernel for �ð1020Þf0ð980Þ

1The spectroscopic notation n2Sþ1LJ corresponds to the nth
state with spin S, orbital momentum L and total angular mo-
mentum J.
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and then the scattering amplitude. In this way, by construc-
tion, one can distinguish the�ð1020Þf0ð980Þ 1�� dynami-
cally generated bound states or resonances from others
preexisting states or due to genuine three body effects in
�ð1020ÞK �K scattering. The needed formalism is elabo-
rated and discussed in Sec. II. We discuss the appearance of
a �ð1020Þf0ð980Þ resonance with mass and width compat-
ible with those reported for the Yð2175Þ [1,2,5] in Sec. III.
We also reproduce the data on eþe� ! �ð1020Þf0ð980Þ
from the same set of references. Conclusions are given in
Sec. IV. In Appendix Awe discuss the suppression of some
of the diagrams that contribute to the �ð1020Þf0ð980Þ
potential.

II. �ð1020Þf0ð980Þ SCATTERING
We first work out the scattering of the �ð1020Þ with a

K �K state of isospin (I) zero, denoted as jK �Ki0. Then, we
take advantage of the fact that the f0ð980Þ scalar meson is
successfully described as a jK �Ki0 bound state [16,19,20].
Therefore, the �ð1020Þf0ð980Þ scattering can be deter-
mined from the �ð1020ÞK �K one by extracting the residue
at the f0ð980Þ double pole position that arises from the
initial and final jK �Ki0 states.

We obtain the different vertices required to determine
the �K �K scattering from the lowest order SU(3) chiral
Lagrangian [21]

L 2 ¼ f2

4
TrðD�U

yD�Uþ �yUþ �UyÞ; (2.1)

with f the pion weak decay constant in the chiral limit, that
we approximate to f� ¼ 92:4 MeV. The octet of the light-
est pseudoscalar fields are included in U as

U ¼ exp

�
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2
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�
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(2.2)

The covariant derivative D�U is given by

D�U ¼ @�U� ir�Uþ iU‘�; (2.3)

with r� and ‘� external right and left fields related to the

vector and axial-vector fields by

r� ¼ v� þ a�; ‘� ¼ v� � a�; (2.4)

respectively. In the following we identify the external
vector fields v� with the lightest octet of vector reso-

nances, and the vertices are then determined assuming
minimal coupling. This is a generalization of the way in
which vector mesons are introduced in vector meson domi-

nance [22–24]. Here we are only interested in the vector
fields,

r� ¼ gv�; ‘� ¼ gv�; (2.5)

with g as a universal coupling constant. We assume ideal

mixing, in terms of which � ¼ �
ffiffi
2
3

q
!8 þ 1ffiffi

3
p !1 and ! ¼

1ffiffi
3

p !8 þ
ffiffi
2
3

q
!1, with !8 and !1 the I ¼ 0 octet and singlet

vector states, in that order. Whence,
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�0ffiffi
2

p þ 1ffiffi
2
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�� � �0ffiffi
2

p þ 1ffiffi
2

p ! K�0

K�� �K�0 �

0
BB@

1
CCA: (2.6)

As a result, the following Lagrangians involving vector
and pseudoscalar mesons arise:

LV2�2 ¼g2Trðv�v
��2�v��v��Þ;

LV2�4 ¼� g2

6f2
Trðv�v

��4�4v��
3v��þ3v��

2v��2Þ;

LV�2 ¼�igTrðv��@���v�@
���Þ;

L�4 ¼� 1

6f2
Tr

�
@��@���2�@���@���

�1

2
M�4

�
; (2.7)

where M ¼ diagðm2
�;m

2
�; 2m

2
K �m2

�Þ and m� and mK the
pion and kaon masses. In addition there are vertices of
three and four vectors fields which originate from

L free ¼ �1
4 TrðF��F

��Þ; (2.8)

with the strength tensor

F�� ¼ @�v� � @�v� � ig½v�; v��: (2.9)

The resulting Lagrangians involving three and four vector
mesons are

L V3 ¼ igTrð@�v�½v�; v��Þ;
LV4 ¼ 1

2g
2 Trðv�v�½v�; v��Þ: (2.10)

The diagrams that contribute to �K �K ! �K �K from the
Lagrangians of Eqs. (2.7) and (2.10) are depicted in Fig. 1.
Both S- and D-waves contribute to the �ð1020Þf0ð980Þ
scattering in the 1�� channel but since we are interested in
the threshold region around 2 GeV, the D-wave terms can
be neglected. They are suppressed by powers of jpj2n,
where jpj is the three-momentum in the center of mass
(CM) of the �ð1020Þf0ð980Þ pair and n ¼ 1, 2 is the total
number of possible D-wave �ð1020Þf0ð980Þ states count-
ing both the initial and final scattering states. It is also
worth stressing that since the f0ð980Þ is so close to the K �K
threshold, the three-momentum q of the kaons in the rest
frame of the f0ð980Þ is small compared to the kaon masses.
In this way, a suppression by powers of jqj and jpj can be
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used to simplify the calculation of the �K �K scattering. On
the contrary, the appearance of almost on shell intermedi-
ate mesons enhances some diagrams with respect to the
rest. Joining both conditions we find that the set of ampli-
tudes represented by the diagram 2 of Fig. 1 are dominant
because the contributing vertices do not involve any small
three-momentum and the intermediate kaon is almost on
shell. In addition, these diagrams involve an extra large
numerical factor because the four-kaon vertex is around
M2

f0
=f2 ’ 102, with Mf0 the f0ð980Þ mass. This factor is

much larger than the one of a ��KK vertex, which scales
as g2. Such a vertex appears twice in diagram 3 and once in
2. In spite of the fact that the � propagator in diagram 3 is
close to its mass shell when one kaon is going in and the
other out in each of the vertices, the resulting amplitude is
suppressed by more than 1 order of magnitude with respect
to the one from diagram 2 because ðM2

f0
=f2Þ=g2 is large,

and also because it involves less enhanced configurations
than the diagram 2.2 Following similar steps, we show in
Appendix A that the rest of diagrams in Fig. 1 are sup-
pressed compared with the second one.

Let us proceed with the evaluation of the contribution
from diagram 2 of Fig. 1 to the �ðp1ÞKþðk1ÞK�ðk2Þ !
�ðp0

1ÞKþðk01ÞK�ðk02Þ scattering represented by the dia-
grams in Fig. 2. We consider first the Kþðk1ÞK�ðk2Þ !
Kþðk01ÞK�ðk02Þ amplitude that corresponds to the vertex on
the top of Fig. 2(a), with k the momentum of the inter-
mediate kaon. Using L�4 it can be cast as

TðaÞ
KþK�!KþK� ¼ � ua � 2m2

K

f2
�m2

K � k2

3f2
; (2.11)

with ua ¼ ðk01 � k2Þ2. Here the off shell part, which is

proportional to the inverse of the kaon propagator, has
been explicitly separated; it leads to a contact term in the
full amplitude of diagram a. Proceeding analogously with
the other three diagrams in Fig. 2 and summing all the
contributions it results in

Tcc ¼ � 8g2	 � 	0
3f2

� 2g2	 � 	0
f2

ðua � 2m2
KÞ½DðQþ k1Þ

þDðQ� k02Þ� �
2g2	 � 	0

f2
ðub � 2m2

KÞ

� ½DðQþ k2Þ þDðQ� k01Þ�; (2.12)

where 	 (	0) is the polarization four-vector of the initial
(final) � meson, ub ¼ ðk02 � k1Þ2 and Q ¼ p� p0. The
kaon propagator is given by

DðkÞ ¼ 1

m2
K � k2 � i"

; (2.13)

with " ! 0þ. The subscript cc in Tcc indicates that all the
kaons are charged. The amplitudes for the
�ðp1ÞK0ðk1Þ �K0ðk2Þ ! �ðp0

1ÞKþðk01ÞK�ðk02Þ and
�ðp1ÞK0ðk1Þ �K0ðk2Þ ! �ðp0

1ÞK0ðk01Þ �K0ðk02Þ reaction chan-
nels correspond to diagrams analogous to those in Fig. 2.
Denoting them as Tnc and Tnn, respectively, it reads

Tnc ¼ 1
2Tcc; Tnn ¼ Tcc: (2.14)

Here we have assumed an exact isospin symmetry and used
the same values for the masses of charged and neutral
kaons. Note then that the scattering amplitude for
�ðp1ÞKþðk1ÞK�ðk2Þ ! �ðp0

1ÞK0ðk01Þ �K0ðk02Þ, Tcn, can be
obtained from Tnc by crossing symmetry and indeed Tcn ¼
Tnc since the u variables are not altered in the
transformation.
To construct the I ¼ 0 amplitude we take into account

that jK �Ki0 is

4 5 6

8 9 11 127

14 16 1715

1 2 3

13

10

FIG. 1. Feynman diagrams showing �K �K scattering that result from the Lagrangians of Eqs. (2.7) and (2.10). The dashed lines
denote kaons and the solid ones vector mesons (� or �0).

2An explicit calculation shows that the suppression factor is
the inverse of 6M2

f0
=g2f2 ’ 30 for jgj ’ 5.
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jKðq1Þ �Kðq2Þi0 ¼ � 1ffiffiffi
2

p jKþðq1ÞK�ðq2Þ þ K0ðq1Þ �K0ðq2Þi:
(2.15)

The minus sign appears because we identify jK�i ¼
�jI ¼ 1=2; I3 ¼ �1=2i to be consistent with the conven-
tion adopted in the chiral Lagrangians, Eq. (2.2).
Therefore, the resulting �ð1020ÞjK �Ki0 ! �ð1020ÞjK �Ki0
scattering amplitude from diagram 2 of Fig. 1, Tð2Þ

I¼0, is

Tð2Þ
I¼0 ¼ 1

2fTcc þ Tnn þ Tcn þ Tncg ¼ 3
2Tcc: (2.16)

The contact term in Eq. (2.12) cannot be separated from
the one arising from diagram 1 of Fig. 1 in a model
independent way, so we consider this smaller contribution
as well. From L2V�4 in Eq. (2.7) one has

L �2ðK �KÞ2 ¼ � 2g2

3f2
���

�ðKþK� þ K0 �K0Þ2: (2.17)

The resulting contact term, when projected into the I ¼ 0
channel, taking into account Eq. (2.16), gives

Tð1Þ
I¼0 ¼ � 8g2

f2
	 � 	0: (2.18)

Therefore, the resulting �jK �Ki0 ! �jK �Ki0 scattering
amplitude from the first two diagrams in Fig. 1 is

TI¼0 ¼ 6g2

f2
	 � 	0f�2þ k2 � k01½DðQþ k1Þ þDðQ� k02Þ�

þ k1 � k02½DðQþ k2Þ þDðQ� k01Þ�g: (2.19)

A. Extracting the f0ð980Þ poles
The K �K pairs rescatter giving rise to the diagram shown

on the left-hand side of Fig. 3. The resulting infinite chain
of diagrams contains the poles of the initial and final
f0ð980Þ resonances, as depicted on the right side of the
figure. The residue at the f0ð980Þ double pole is the
f0ð980Þ�ð1020Þ potential V�f0 . Close to threshold, the

two kaons, initial or final, interact predominantly in
S-wave. The K �K I ¼ 0 S-wave amplitude from L�4 ,
Eq. (2.7), is [16]

Vfull
K �K

ðsK �KÞ ¼
3sK �K

4f2
� 1

4f2
X
i

ðr2i �m2
KÞ; (2.20)

where sK �K stands for the invariant mass of the two kaons.
The sum runs over all the four-kaon states involved in the
vertex whose four-momenta are denoted by ri. The last
term is the off shell part of the amplitude.We use Eq. (2.20)
in the four-pseudoscalar vertices of the diagrams in Fig. 4,
where k ¼ k1 þ k2 and k0 ¼ k01 þ k02 are the total four-
momenta of the initial and final jK �Ki0 states, respectively.
At the f0ð980Þ double pole k2 ¼ k02 ¼ M2

f0
. A Kþ or K0

runs in the loop of the diagrams in Fig. 4. Taking into
account that the KþK� ! jK �Ki0 and K0 �K0 ! jK �Ki0 ver-
tices are equal to � ffiffiffiffiffiffiffiffi

1=2
p

Vfull
K �K

one gets the same result for

the four amplitudes represented in Fig. 4.
The off shell parts, comprised in the last term of

Eq. (2.20), are equal to the inverse of kaon propagators.
In the loops of Fig. 4 they cancel with the kaon propagators
giving rise to amplitudes that do not correspond anymore
to the dominant triangular kaon-loop but to other topolo-
gies so that we disregard them. Therefore, we obtain for the
sum of the diagrams in Fig. 4

...
... +

f0 (980)

f0 (980)

f0 (980)

f0 (980)

FIG. 3. The two f0ð980Þ poles originate because of the K �K interactions. The kaons and antikaons are indicated by the dashed lines.
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K

+
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+
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+

K
−

K
−

K
−

K
−

K
+K

+

K
−

K
−

K
−

K
+

K
−

K
+

a b c d

FIG. 2. All possible arrangements of kaons in the �ðp1ÞKþðk1ÞK�ðk2Þ ! �ðp0
1ÞKþðk01ÞK�ðk02Þ scattering from the second diagram

of Fig. 1 are shown.
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M ¼ 4	 � 	0g2VK �Kðk2ÞVK �Kðk02Þi
Z d4‘

ð2�Þ4
1

½‘2 �m2
K þ i"�½ð‘þ kÞ2 �m2

K þ i"�½ð‘þ k0Þ2 �m2
K þ i"�

¼ � 	 � 	0g2
4�2

VK �Kðk2ÞVK �Kðk02Þ
Z 1

0

Z 1

0
dz1dz2


ð1� z1 � z2Þ
k2z1ð1� z1Þ þ k02z2ð1� z2Þ � 2k � k0z1z2 �m2

K þ i"
; (2.21)

where VK �K is the on shell part of Eq. (2.20) given by its first
term. Next, we perform the following change of integration
variables:

x ¼ 1
2ðz1 þ z2Þ; y ¼ z1 � z2: (2.22)

After performing the integration on y we have

M ¼ 	 � 	0g2VK �Kðk2ÞVK �Kðk02Þ
1

�2Q2

�
Z 1=2

0
dx

logð1� 2x=cÞ � logð1þ 2x=cÞ
c

;

(2.23)

with

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 16k2

Q2
ð1� Q2

4k2
Þ½ðx� x0Þ2 þ a2�

s
;

x0 ¼ 1

4ð1� Q2

4k2
Þ
;

a2 ¼ 1

16ð1� Q2

4k2
Þ2
�
4m2

K

k2

�
1� Q2

4k2

�
� 1

�
:

(2.24)

Inside the integral we take k2 ¼ k02, which is correct at the
f0ð980Þ double pole. Next, we have to project into the
S-wave state of the �ð1020Þf0ð980Þ system, which
amounts to integrating over cos� 2 ½�1; 1�, with � the
relative angle between p and p0 in the CM frame. In terms
of this angle Q2 ¼ �2p2ð1� cos�Þ. The leading nonrela-
tivistic contribution for 	ðp; sÞ � 	ð�p0; s0Þ ¼ ��ss0 þ
Oðv2Þ, with v ¼ p=W and W denotes the total CM energy
of the �ð1020Þf0ð980Þ pair. Since v is small we just keep
the first term and replace 	 � 	0 ! �1 in Eq. (2.23) and in
the tree-level contact term of Eq. (2.19) that we add to the
former, obtaining the S-wave amplitude

M S
I¼0 ¼

12g2

f2
� VK �Kðs1ÞVK �Kðs01Þ

g2

2�2

Z þ1

�1

d cos�

Q2

�
Z 1=2

0
dx

logð1� 2x=cÞ � logð1þ 2x=cÞ
c

:

(2.25)

One should bear in mind that some of the discarded con-
tributions to the triangle loops from the off shell parts of
(2.20) lead to contact terms that would just renormalize the
first term of the previous equation.
The next step is to resum the rescattering chain for each

of the ðK �KÞ0 pairs, as represented in the left diagram of
Fig. 3. This can be done by multiplying MS by the factor
[25]

1

Dðk2ÞDðk02Þ ; (2.26)

with

Dðk2Þ ¼ 1þ VK �Kðk2ÞG2ðk2Þ: (2.27)

The function G2 represents the unitary loop of two kaons.
In Ref. [16] it was established that the f0ð980Þ is predomi-
nantly a jK �Ki0 S-wave bound state that slightly modifies
its mass and acquires a narrow width due to the coupling to
pions. Then, in order to reproduce the f0ð980Þ pole prop-
erties due to its coupling to kaons, one can consider single
channel kaon scattering and write [16]

TK �Kðk2Þ ¼
VK �Kðk2Þ

1þ VK �Kðk2ÞG2ðk2Þ
¼ VK �Kðk2Þ

Dðk2Þ : (2.28)

This equation can be interpreted as the evolution of a
jK �Ki0 pair produced by the potential VK �K that undergoes
rescattering as determined by the factor ½ð1þ
VK �Kðk2ÞG2ðk2Þ��1 ¼ 1� VK �KG2 þ VK �KG2VK �KG2 þ . . . .
For our present problem on the�ð1020Þf0ð980Þ scattering,
two jK �Ki0 pairs rescatter by initial and final state inter-
actions. Analogously, from Eq. (2.25) one has

MS ¼ MS

Dðk2ÞDðk02Þ
¼

�
12g2=f2

VK �Kðk2ÞVK �Kðk02Þ
� g2

2�2

Z þ1

�1

d cos�

Q2

�
Z 1=2

0
dx

logð1� 2x=cÞ � logð1þ 2x=cÞ
c

�
� TK �Kðk2ÞTK �Kðk02Þ: (2.29)

It is worth stressing here that this equation can be inter-
FIG. 4. Triangular kaon-loop graphs with a Kþ or a K0 run-
ning in the loop. All the diagrams give the same result.
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preted as a purely phenomenological one corresponding to
the topology of the diagrams 1 and 2 of Fig. 1. It is
parametrized in terms of the K �K I ¼ 0 S-wave amplitude
TK �K. The first term corresponds to a general contact inter-
action at threshold.3

The scattering amplitude TK �Kðk2Þ has a pole below the
K �K threshold due to the f0ð980Þ bound state, which im-
plies that

lim
k2!M2

f0

ðM2
f0
� k2ÞTK �Kðk2Þ ¼ �2

K �K
: (2.30)

Then, at k2, k02 ! M2
f0
,

V�f0 ¼
1

�2
K �K

lim
k2;k02!M2

f0

ðk2 �M2
f0
Þðk02 �M2

f0
ÞMS

¼
�

12g2

f2VK �KðM2
f0
Þ2 �

g2

2�2

Z þ1

�1

d cos�

Q2

�
Z 1=2

0
dx

logð1� 2x=cÞ � logð1þ 2x=cÞ
c

�
�2
K �K

:

(2.31)

The coupling of the f0ð980Þ to jK �Ki0, �K �K, has the value
�K �K ’ 4 GeV [26,27]. The 1=�2

K �K
factor appears because

MS contains two extra couplings f0ð980Þ ! jK �Ki0 that
should be removed when isolating the f0ð980Þ resonances.

Finally, the �ð1020Þf0ð980Þ S-wave scattering ampli-
tude is obtained by an expression analogous to Eq. (2.28),

T�f0 ¼
V�f0

1þ V�f0G�f0

: (2.32)

For a general derivation of this equation based on the N/D
method see Refs. [26,28]. Here, G�f0 is the unitary loop

function of a �ð1020Þ and a f0ð980Þ resonances and is
given by [26,29]

G�f0ðsÞ ¼
1

ð4�Þ2
�
a1 þ log

M2
f0

�2
�M2

� �M2
f0
þ s

2s
log

M2
f0

M2
�

þ jpjffiffiffi
s

p ½logðs� �þ 2
ffiffiffi
s

p jpjÞ

þ logðsþ �þ 2
ffiffiffi
s

p jpjÞ
� logð�sþ�þ 2

ffiffiffi
s

p jpjÞ
� logð�s��þ 2

ffiffiffi
s

p jpjÞ�
�
; (2.33)

with� ¼ M2
� �M2

f0
. While the renormalization scale� is

fixed to value of the � meson mass, � ¼ 770 MeV, the
subtraction constant a1 has to be fitted to data [26].

III. �ð1020Þf0ð980Þ RESONANT STATES

The potential V�f0 , Eq. (2.31), depends on g2 mainly

through the vertex at the bottom of the diagrams of Fig. 2
that corresponds to �ð1020ÞK scattering. In the present
problem on the �ð1020Þf0ð980Þ scattering around its
threshold we are also close to the �ð1020ÞK threshold
itself. On the other hand, the K1ð1400Þ resonance is only
100 MeV below it. Therefore, it is quite reasonable to
expect that the �ð1020ÞK scattering is dominated by this
resonance which implies that g2 < 0 because, for a bare
pole,

g2 � �2
K1�K

M2
K1

� ðM� þmKÞ2
< 0: (3.1)

In this way, g2 is interpreted as a parameter that mimics the
�ð1020ÞK scattering amplitude in the energy region of the
�ð1020Þf0ð980Þ scattering close to threshold. On the other
hand, we restrict g2 to be real so that V�f0 is also real above

the �ð1020Þf0ð980Þ threshold and the resulting S-wave
T�f0 amplitude, Eq. (2.32), fulfills unitarity.4 With g2 <

0, V�f0 is positive (attractive) around the �ð1020Þf0ð980Þ
threshold. In this situation jT�f0 j2 has resonant peaks with
mass and width compatible with those measured for the
Yð2175Þ [2,4,5]. The Yð2175Þ mass and width values ex-
tracted by BABAR [2] and BES [4] are compatible between
each other. In the following we take their average

MY ¼ 2:180� 0:008 GeV;

�Y ¼ 0:060� 0:014 GeV
(3.2)

as reference values. In Fig. 5 we show jT�f0 j2 for

ð ffiffiffiffiffiffiffiffiffiffi�g2
p

; a1Þ ¼ ð5;�7:1Þ, (6, �5:2), and (7, �4:1) with
Mf0 ¼ 0:98 GeV in all the curves. The peak is located at

2.18 GeV as in Eq. (3.2) and the width increases withffiffiffiffiffiffiffiffiffiffi�g2
p

, taking the values of 48, 72, and 100 MeV forffiffiffiffiffiffiffiffiffiffi�g2
p ¼ 5, 6, and 7, in that order. Although the width
increases, the size at the peak remains constant because
the former is proportional to g2 so that the ratio g2=�Y ,
which fixes the amplitude at the maximum, is roughly
independent of the value of g2 used for a fixed peak
position.
To sharpen our conclusions we now compare directly

with the eþe� ! �f0ð980Þ data [1,2,5]. The
�ð1020Þf0ð980Þ strong scattering amplitude, Eq. (2.32),
is employed to correct by final state interactions a given
production process for eþe� ! �f0ð980Þ. This is
achieved [25] by multiplying the production amplitude by

1

1þG�f0V�f0

; (3.3)
3In our fits to data (see next section) we have allowed two

different values of g2, one for the contact term and another for
the kaon pole terms in Eq. (2.29). However, we have not found
any significant difference in our conclusions so that we skip any
further comment on this issue.

4We have checked that our fits to data are stable if we allow g2

to become complex.
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in the same manner as already done in Eq. (2.26) for the
K �K rescattering. We take as the nonresonant production
cross section NRðsÞ the one fitted in Fig. 6(b) of Ref. [5].
Therefore, after final state interactions,

NRðsÞ ! RðsÞ ¼ NRðsÞ
j1þ V�f0G�f0 j2

: (3.4)

In order to take into account the mass distribution of the
f0ð980Þ resonance, the previous result is convoluted with
the f0ð980Þ mass distribution PðWf0Þ

hRðsÞi ¼ N NRðsÞ
Z

dWf0

PðWf0Þ
j1þ V�f0G�f0ðs;Wf0Þj2

;

(3.5)

For practical purposes we take PðMf0Þ as a Lorentzian

distribution centered at Mf0 ¼ 0:98 or 0.99 GeV with a

width �f0 ¼ 50 MeV [30],

PðWf0Þ ¼
1

2�

�f0

ðWf0 �Mf0Þ2 þ
�2
f0

4

: (3.6)

The normalization constant N is included in Eq. (3.5) to
account for the fact that the NRðsÞ of Ref. [5] is extracted
assuming a specific shape and strength for the resonant
signal.

We have performed fits using the data points around the
Yð2175Þ peak, for ffiffiffi

s
p 2 ½2; 2:6� GeV, taking into account

the bin size. The best-fit parameters for Mf0 ¼ 0:98 and

0.99 GeV are given in Table I. The results of these fits are
the solid and dot-dashed lines in Fig. 6, where the points
used to draw the curves are separated in energy according
to the bin size of the experimental points of Refs. [2,5] for
the data set from the �ð1020Þ�þ�� final state. The rest of
the points (diamonds) are obtained from the �ð1020Þ�0�0

final state [2]. Notice that the data from Ref. [5] are slightly
more precise than those from Refs. [1,2]. The fitted pa-
rameters do not depend on the precise value of the upper
energy limit. We have used

ffiffiffi
s

p ¼ 2:6 GeV as a large
enough value to cover the energy region where our ap-
proach is valid, namely, near the �ð1020Þf0ð980Þ thresh-
old. The suppression of our results for

ffiffiffi
s

p
& 2 GeV in

Fig. 6 is not due to a negative interference of T�f0 with

the nonresonant contribution. Instead, it is due to the fact
that at the �ð1020Þf0ð980Þ threshold, the V�f0 potential of

Eq. (2.31) is large because of the 1=Q2 factor. This thresh-
old effect is very sensitive to the procedure to disentangle
the f0ð980Þ resonant signal. Here, we have taken for it a
precise mass value given by the f0ð980Þ pole position.
However, experimentally it is obtained from the eþe� !
�ð1020Þ�� data by integrating the two pion invariant
mass distribution within an energy region around the

TABLE I. Fits to the data from BABAR [2] and Belle [5] on eþe� ! �ð1020Þf0ð980Þ. The
first fit uses Mf0 ¼ 0:98 GeV and the second one Mf0 ¼ 0:99 GeV.ffiffiffiffiffiffiffiffiffiffi�g2
p

a1 N �2
d:o:f: Mf0

7:33� 0:30 �2:41� 0:14 0:79� 0:06 88=ð46� 3Þ 0.98 GeV (fixed)

3:94� 0:18 �2:84� 0:18 0:52� 0:05 108=ð46� 3Þ 0.99 GeV (fixed)
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FIG. 6 (color online). Cross section for eþe� !
�ð1020Þf0ð980Þ. The experimental data are from Ref. [2] (dia-
monds and crosses) and Ref. [5] (empty boxes). The solid and
dash-dotted lines correspond to the first and second fits of
Table I. The dashed line shows NNRðsÞ for the first fit.
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FIG. 5 (color online). jT�f0 j2 with the peak at 2.18 GeV as a
function of the �f0 invariant mass. The solid, dashed, and dot-

dashed lines are for
ffiffiffiffiffiffiffiffiffiffi�g2

p ¼ 5, 6, 7, and a1 ¼ �7:1, �5:2,
�4:1, respectively.
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f0ð980Þ signal, typically for 0:85 GeV � ffiffiffiffiffiffiffiffi
s��

p �
1:1 GeV [1], with

ffiffiffiffiffiffiffiffi
s��

p
the two pion invariant mass.

In Fig. 7, jV�f0 j is shown for the two sets of parameters

given in Table I. The solid line is forMf0 ¼ 0:98 GeV and

the dot-dashed one for Mf0 ¼ 0:99 GeV. Both have a

similar peak value, though to accomplish this jg2j is
smaller by around a factor 3 for the first fit in Table I
compared to the second. The reason is again related to the
factor 1=Q2 in V�f0 , Eq. (2.31). Indeed, the integration in x

is logarithmically divergent for thoseQ2 > 0 values [below
the �ð1020Þf0ð980Þ threshold] which are large enough
[around M2

f0
ð4�M2

f0
=m2

KÞ] to make a2 in Eq. (2.24) van-

ish. However, the logarithmic divergence in x disappears
after the integration in cos
 is performed. The onset of this
behavior gives rise to the maximum of V�f0 below thresh-

old, as can be seen in Fig. 7. There is an exception for
which the logarithmic divergence in x remains; this occurs
exactly at the �ð1020Þf0ð980Þ threshold and only for
Mf0 ¼ 2mK. In this case a2 ¼ 0 for all cos
 and the final

result after the two integrations is logarithmically diver-
gent at threshold. This is the reason why, for a fixed value
of g2, asMf0 approaches 2mK the potential becomes larger

with a narrower peak structure. This is the limit that
corresponds exactly to the suppression mechanisms used
to establish that the diagram 2 of Fig. 1 is the dominant
one. The appearance of the Yð2175Þ peak within our ap-
proach is driven by the large value of V�f0 at threshold and

its rather fast decrease in energy for
ffiffiffi
s

p
somewhat above

the �ð1020Þf0ð980Þ threshold.
It is interesting to mention that while

ffiffiffiffiffiffiffiffiffiffi�g2
p

in Table I is
in the range of values used in Fig. 5, the a1 values in the
table are smaller in modulus by around a factor 2–3 com-
pared to those used in Fig. 5, to obtainMY ¼ 2:18 GeV as
in Eq. (3.2). This implies that jT�f0 j2 from the fits to data

has a peak at smaller energies (around 2.09 GeV) and
wider, with a width of around 150 MeV. This is in line
with the findings of the Belle Collaboration [5] discussed
in the Introduction. In all cases a1 is negative, as it should
be for a dynamically generated resonance. In this situation
the potential should be attractive so that 1=V�f0 can cancel

with a1 in Eq. (2.32). On the other hand, for the a1 values in

Table I, the resulting unitary �PT scale, � ¼
ð4�fÞ= ffiffiffiffiffiffiffiffija1j

p ’ 0:75 GeV, preserves a natural size around
M�. However, since the ja1j values in Fig. 5 are signifi-

cantly larger, the interpretation of these peaks as fully
dynamically generated states is more arguable because in
this case the unitarity scale is just around 0.5 GeV.
Nonetheless, even in these cases one can still conclude
that these peaks have a large �ð1020Þf0ð980Þ rescattering
component. On the other hand, for a resonance massMY ¼
2:09 GeV one has 1=p ¼ 0:65 fm and for MY ¼
2:18 GeV, 1=p ¼ 0:45 fm. This indicates that although
the Yð2175Þ had large�ð1020Þf0ð980Þmeson-meson com-
ponents, as our results point out, it is a rather compact
object.

IV. CONCLUSIONS

We have studied the �ð1020Þf0ð980Þ S-wave dynamics
in the threshold region. First, the �K �K scattering ampli-
tude at tree level has been determined from the chiral
Lagrangians using minimal coupling. The rescattering of
the two kaons in an I ¼ 0, S-wave state gives rise to the
f0ð980Þ as a bound state. The residue at the f0ð980Þ double
pole in the initial and final states is used to determine the
interaction potential between the resonances �ð1020Þ and
f0ð980Þ without introducing new extra free parameters.
Afterwards, the �ð1020Þf0ð980Þ S-wave scattering ampli-
tude is determined by resuming the unitarity loops or right-
hand cut. Resonant peaks with mass and width in agree-
ment with those of the Yð2175Þ are naturally obtained
within the approach. In addition, we are able to describe
the eþe� ! �ð1020Þf0ð980Þ experimental data [1,2,5] in
terms of the resulting �ð1020Þf0ð980Þ S-wave amplitude
using natural values of the coupling g2 and the subtraction
constant a1. The negative value of g

2 is reasonable, viewed
as a parameter that accounts for the �K scattering above
the K1ð1400Þ resonance. The negative values of a1 is
characteristic of dynamically generated resonances.
Nonetheless, the a1 values required to obtain the Yð2175Þ
resonance at the nominal mass of 2.18 GeV [2,4] are larger
in modulus than those obtained in our direct fits to eþe� !
�ð1020Þf0ð980Þ data. The latter values fit better for inter-
preting the Yð2175Þ as mainly a �ð1020Þf0ð980Þ dynami-
cally generated resonance while the former ones tend to
indicate some extra (preexisting) contribution. Taking into
account both possibilities, our results suggest that the
Yð2185Þ is a resonant with at least a large
�ð1020Þf0ð980Þ component.
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FIG. 7 (color online). jV�f0 j for the two sets in Table I. The
solid and dot-dashed lines correspond to the first and second fits,
respectively.
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APPENDIX A: SUPPRESSION OF DIAGRAMS IN
FIG. 1

Let us now consider the relative size of diagrams 4–17 in
Fig. 1 compared to diagram 2. Diagram 3 was already
discussed at the end of Sec. II.

Diagram 4
The enhanced configurations are those in which the kaon

line on the left corresponds to an outgoing particle. In this
way the leftmost intermediate kaon propagator is almost on
shell, taking the value

1

ðp� k01;2Þ2 �m2
K

: (A1)

At threshold it is given by 1=a with

a ¼ 2mKðM� � 2mKÞ 	 2mK�: (A2)

Numerically
ffiffiffi
a

p ’ 170 MeV. Like in diagram 2, the ver-
tical kaon propagator is nearly on shell and of value 1=a0
with

a0 ¼ ðk1 þ k2 � k02;1Þ2 �m2
K ¼ ðp0 � pþ k01;2Þ2 �m2

K:

(A3)

While a is not large because of the proximity of the�mass
to the K �K threshold, a0 is proportional to the small kaon
three-momenta. The initial and final jK �Ki0 states are not in
their CM. The velocities of the boosts that take these states
to their CM frames are v ¼ �p=

ffiffiffi
s

p
and v0 ¼ �p0=

ffiffiffi
s

p
,

respectively. These velocities are small because we are
close to threshold so that it is a good approximation to
write

k 1;2 ¼ �qþmKvþOðjvj3Þ

¼ �q� 2mK

ffiffiffi
s

p
sþM2

f0
�M2

�

pþOðjvj3Þ ’ �q� 1

2
p:

(A4)

Similarly,

k 0
1;2 ¼ �q0 þmKv

0 þOðjvj3Þ

¼ �q0 � 2mK

ffiffiffi
s

p
sþM2

f0
�M2

�

p0 þOðjvj3Þ ’ �q0 � 1

2
p0:

(A5)

In the last two equations q and q0 are the CM three-
momentum of a kaon in the initial and final jK �Ki0 states,
respectively. The last equality in these equations follows
because 2mK

ffiffiffi
s

p
=ðsþM2

f0
�M2

�Þ ’ 1=2. In this way we

can rewrite Eq. (A3) as

a0 ¼ ðp0 � pþ k01;2Þ2 �m2
K ¼ Q2 � 2Qk01;2

’ �p2ð1� cos�Þ � 2Qq0; (A6)

which is zero at threshold. On the other hand, the vertices
involving the coupling of the external vector resonances to
two-kaons are proportional to small three-momenta. As a
result, this diagram is of order

g2

f2
m2

K

a0
jkj2
a

; (A7)

with jkj representing the modulus of any small external
three-momentum. Since jkj2=a ¼ Oð1Þ, this diagram
seems to be of the same order as diagram 2. However,
there is an extra suppression coming from the angular
projection into S-wave. The angular dependence is domi-
nated by the ratio jkj2=a0, since a has a finite angular
independent part [Eq. (A2)]. From the vertices with one
vector resonance, one gets a factor

	ðpÞ � k01 	ðp0Þ � ðk01 � pÞ: (A8)

If the spin direction is given by the unitary vector n̂, such
that n̂ � p ¼ 0 we can write

	ðpÞ ¼ ð0; n̂Þ; 	ðp0Þ ¼ ðp0 � n̂=p0
0; n̂Þ þOðv2Þ:

(A9)

The following angular structures result from Eq. (A8)

ðp0 � n̂Þ2; ðp0 � n̂Þðn̂ � q0Þ; ðn̂ � q0Þ2: (A10)

In the energy region where jpj & ffiffiffi
a

p
, diagram 4 is sup-

pressed compared to diagram 2 because of the ratio jkj2=a.
On the other hand, for jpj * ffiffiffi

a
p

, a0 is dominated by
p2ð1� cos�Þ because p2 
 q2 � M2

f0
=4�m2

K for typical

energies just slightly above threshold. Thus, we can neglect
its angular dependence on q̂0 in good approximation. In
this case, the second angular structure in the previous
equation vanishes because of the integration in q̂0. The
last structure is suppressed by a factor �2, with � ¼
jqj=jpj. Regarding the dominant structure in the first line,
when divided by a0, one has

Z þ1

�1
d cos�

p2sin2� cos2�

p2ð1� cos�Þ ; (A11)

where we have written ðp0 � n̂Þ2 ¼ p2sin2� cos2�, since n̂
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is perpendicular to p. Equation (A11) is finite and equal to
2cos2�. For diagram 2 the angular integration on p̂0 is
dominated by 1=a0,Z þ1

�1
d cos�

1

p2ð1� cos�Þ ; (A12)

which is divergent. Keeping also the subleading terms on
the right-hand side of Eq. (A6), the angular integration for
diagram 2 is not infinite but still large, of order 1=�.
Therefore, we conclude that diagram 4 is suppressed by a
factor � with respect to diagram 2 for jpj * ffiffiffi

a
p

and by a
factor jkj2=a for jpj & ffiffiffi

a
p

.
Diagram 5
For the amplitudes represented globally by diagram 5 in

Fig. 1 there are no enhanced vertices like those discussed
above for diagram 2 or 4. For some kaon arrangements, it is
possible that the intermediate kaon is nearly on shell but
each of the vertices in these amplitudes require one power
of small three-momentum. Then, the ratio between the
enhanced propagator and the suppressed vertices is Oð1Þ.
As a result, these diagrams are at most of Oðg2=f2Þ.

Diagram 6
The enhanced configurations have an outgoing kaon on

the leftmost vertex and an incoming one on the vertex at the
far right. In between the kaon propagators are each of them
of size 1=a. On the other hand, the coupling of the external
vector resonances with the kaons is suppressed by small
powers of three-momentum. Then, the size of the ampli-
tudes is estimated to be

g2

f2
m2

K

a

jkj2
a

: (A13)

The suppression compared to the diagram 2 happens in the
same way as for diagram 4. For jpj & ffiffiffi

a
p

the last factor in
the previous equation is small, and for jpj * ffiffiffi

a
p

there is a
suppression due to the angular projection. Indeed, from the
vertices involving the vector states one gets the product

	ðpÞ � k01;2 	ðp0Þ � k1;2; (A14)

which implies that the following angular structures [see
Eq. (A9)]

ðn̂ � p0Þ2; ðn̂ � p0Þðn̂ � qÞ; ðn̂ � q0Þðn̂ � qÞ (A15)

are present. These terms are multiplied by 1=a2 which has
a lessened angular dependence since a is 2mK� close to
threshold. The integrals over q̂ and q̂0 in the second and
third lines of Eq. (A15) are zero. The first line instead is
finite and gives a contribution that compared with dia-
gram 2 is suppressed by a factor �p2=a.

Diagram 7
A K �K pair must couple to the vector propagator. In

addition, the kaon and antikaon in the pair cannot belong
both to the same jK �Ki0 state because the latter is in
S-wave. As a result, the four-momentum running through
the vector propagator nearly vanishes due to the vicinity to
the K �K threshold. Notice that from LV�2 in Eq. (2.7) the

vertex for a vector resonance coupled to a K �K is propor-
tional to the difference of the four-momenta of the kaon
and the antikaon.
The diagram shown in Fig. 8 is obtained by modifying

the local lowest order meson-meson chiral vertex in the
diagram 2 of Fig. 1 by the exchange of a vector resonance
between the kaons with vanishing four-momentum trans-
fer. It is well known that for these modifications to be
meaningful [31], they must be calculated together with
the exchange of the octet of axial-vector resonances a�
in Eq. (2.4). After adding them, the result at the lowest
chiral order is not modified, i.e. the corrections are of
higher order, suppressed by powers of m2

P=M
2
V;A where

mP is the mass of a pseudoscalar meson and MV;A, those

of the first octet of vector and axial-vector resonances. Let
us stress that in Ref. [16] a very good description of the
I ¼ 0, 1 meson-meson scattering data was achieved by
taking the lowest order chiral perturbation theory ampli-
tudes as the interacting kernels. At the two kaon threshold
the I ¼ 0, 1, S-waves are dominated by the presence of the
f0ð980Þ and a0ð980Þ resonances, in that order. Both reso-
nances are well reproduced in Ref. [16], with the same
approach followed here. Therefore, sincewe take diagram 2
into account, we can neglect the contribution of diagram 7
when summed with others not drawn in Fig. 1 and that also
include the exchange of axial-vector resonances, express-
ing the result in terms of the full S-wave K �K strong
amplitude derived in Ref. [16].
Diagram 8
The enhanced configurations in diagram 8 have an out-

going kaon coupled to the vertex at the far left and an
incoming one on the next vertex to the right. In this way the
intermediate kaon propagator �1=a while the vector reso-
nance propagator is �1=a0. The two vertices with two
pseudoscalars and one vector resonance involve small
external three-momenta. Altogether, this diagram is of
order

g2

f2
g2f2jkj2

aa0
: (A16)

Numerically, g2f2 ’ 0:42 GeV2 ¼ 0:64m2
K which implies

already some suppression. In addition, there is an addi-
tional reduction due to the angular integration, similarly to
the situation explained above for diagram 4, so that the

FIG. 8. Configurations left for the coupling of a K �K to an
intermediate vector resonance.
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additional suppression factor � with respect to diagram 2
applies also here.

Diagram 9
Here, the enhanced configurations have, from left to

right, a kaon going out, the next one coming in, another
leaving, and the last one entering the vertex. This means
that the kaon propagators are of size 1=a and the inter-
mediate vector resonance propagator is of size 1=a0. In
addition, one has now four vertices involving one vector
resonance and two pseudoscalars. Each of them is propor-
tional to the difference between two slow kaon four-
momenta. Then, the corresponding amplitudes go as

g2

f2
jkj4g2f2
a2a0

: (A17)

The ratio jkj4=a2 is Oð1Þ but for jpj & ffiffiffi
a

p
is suppressed.

Calculating explicitly the intermediate vertices, attached to
the vector meson propagator, a factor �2 appears, so that
�2=a is suppressed by a factor �=mK. Besides, the angular
projection suppression due to the vertices involving the
external resonances also operates here for their ratio with
a0. As a result there is an extra factor � compared with
diagram 2.

Diagram 10
The enhanced configurations arise when there are, from

left to right, a kaon leaving the diagram and another enter-
ing it on the vertices that couple two pseudoscalars with an
external vector resonance. In this case the intermediate
kaon propagators are �1=a. These contributions are of
order

g2

f2
m2

K

a

g2f2

M2
�

jkj2
a

: (A18)

The last factor is due to the vertices with the external
resonances and involve small external kaon three-
momenta. The angular projection suppression operates
here similarly as for diagram 6.
In analogy to diagram 7, the diagrams 9 and 10 are

vector resonance contributions to the meson-meson scat-
tering vertex. They must be accompanied by other dia-
grams involving also the exchange of axial-vector
resonances so that the final modification of the lowest order
chiral amplitude is further suppressed as indicated in the
discussion for the diagram 7.
Diagram 11
This diagram is similar to diagram 5 but including an

extra vector resonance exchange that modifies the four-
pseudoscalar one-vector vertex to the right of the dia-
gram 5. As for the latter there is a suppression of the
enhanced intermediate propagator, when the external
kaon to the left of the diagram is leaving, because it is
quadratic in the external small three-momentum.
Therefore, it is just Oðg2=f2Þ.
Diagrams 12–17
As in Fig. 8, one must have a leaving and entering K �K

pair attached to every intermediate vector meson line. As a
result, from Eq. (2.10) one can conclude that all these
diagrams are zero. Diagram 12 vanishes because there
are no four vector meson vertices coupling ���0�0,
���þ��, ��!!, and in general ��VW, with V and
W any vector state. Diagram 13 is also zero because there
are no three vector resonance vertices coupling��V, with
V any vector resonance. For the same reason diagrams 14
and 15 are also zero. Finally, diagrams 16 and 17 vanish
because there are no vertices with three vector resonances
that couple �!!, ��0�0, and ��þ��.
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