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Departamento de Fı́sica Teórica, Universidad de Valencia (UV) and IFIC (UV-CSIC), Valencia, Spain
(Received 12 March 2009; revised manuscript received 27 July 2009; published 9 September 2009)

Screening effects from sea pairs on the quark-antiquark static potential are analyzed phenomenolog-

ically from the light-quark to the heavy-quark meson spectra. From the high excited light-quark meson

spectrum, a universal form for the screened static potential is proposed. This potential is then successfully

applied to heavy quarkonia. Our results suggest the assignment of Xð4260Þ to the 4s state of charmonium

and the possible existence of a 5s bottomonium resonance around 10748 MeV.
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I. INTRODUCTION

One remaining problem in our understanding of QCD
has to do with quark confinement in hadrons. We expect
confinement to be the dominant quark-antiquark (q� �q) or
quark-quark interaction at large separation distances and
therefore to be determinant to explain the properties of
highly excited (large sized) hadrons. In recent years, there
has been important progress in the knowledge of the spec-
trum of highly excited mesons in the light-quark (u; d) [1]
as well as in the heavy-quark (c; b) [2,3] sectors. In par-
ticular, highly excited light-quark mesons show an intrigu-
ing hydrogenlike spectral pattern [4] which can be
reproduced, within a nonrelativistic constituent quark
model framework, by means of a static q� �q interaction
which becomes asymptotically Coulombic [5]. Here, we
suggest that this asymptotic behavior has to do with con-
finement (nonperturbative gluonic effects) and not with the
perturbative gluonic Coulomb interaction as suggested in
[5]. We propose that string breaking gives rise, from a
linear confining interaction, to an asymptotically
Coulombic potential. When this screened confinement is
complemented with a screened ‘‘gluonic’’ Coulomb inter-
action, an accurate description of the highly excited light-
quark meson spectrum is achieved. The resulting static
potential depends on four parameters. The two entering
in the confinement term—the string tension and the string
breaking distance—are considered universal in the sense of
having the same values in all meson sectors. This is also the
case for the orbital-angular-momentum parameter related
to the onset for states of confinement. The remaining
parameter, the effective gluonic Coulomb strength, obtains
different values when going from light to heavier quarks. It
should be pointed out that the potential does not contain an
additive constant. The calculated meson masses, obtained
by adding the mass of the quark and the mass of the
antiquark to the eigenvalues of the Schrödinger equation,
are directly compared to the experimental meson masses.
In practice, for equal quark and antiquark masses, the
quark mass and the effective gluonic Coulomb strength

are fixed from two well-established experimental meson
masses in the region of applicability of the static approach.
The successful spectral description obtained in the light-

quark meson case can be extended to other meson sectors,
in particular, to heavy quarkonia where an accurate de-
scription of the highly excited states may be very helpful
for an unambiguous quantum numbers assignment. Our
results suggest that Xð4260Þ could be the 4s state of
charmonium and that a noncataloged bottomonium reso-
nance around 10748 MeV might exist.
The contents of this article are organized as follows. In

Sec. II we establish the general character of the constituent
quark model approximation that we use and the general
criterion of validity of the static potential in the different
meson sectors. In Sec. III the asymptotically Coulombic
potential inferred from the study of the highly excited
light-quark meson spectrum is derived from a screened
confinement potential ansatz. The implementation of an
effective gluonic interaction and the consideration of an
additional L-dependent correcting factor for it allow for a
precise description of the known static spectrum. In
Sec. IV the same potential is applied to heavy quarko-
nia—charmonium and bottomonium—where a distinct
quantum numbers assignment for highly excited states
comes out. Finally, in Sec. V we summarize our main
results and conclusions.

II. QUARK MODEL APPROACH

In the study of the meson spectra, from light to heavy
quarkonia, we shall rely on a nonrelativistic constituent
quark model (NRCQM) framework. We will solve the
Schrödinger equation for a static potential. Although the
application of the NRCQM to heavy-quark systems, at
least for bottomonium, can be taken for granted, its appli-
cation to light-quark systems (mu ¼ 340 MeV) is always a
matter of debate. In the spirit of NRCQM calculations, the
effective values of the parameters take into account, at least
to some extent, relativistic corrections in the kinetic and
potential energies. Actually, it has been recently shown [5]
that the known spectrum of highly excited light-quark
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mesons can be nicely reproduced within such a calculation
framework despite its very relativistic character indicated
by the calculated values of pu=mu � 1.

The main distinctive feature of the effective potential
employed in [5] is its asymptotically Coulombic tendency.
Explicitly,

Vlight-quarkðr ! 1Þ ¼ �urs � ku
r
þ Cu; (1)

where �u ¼ 932:7 MeV=fm stands for the string tension,
ku ¼ 2480 MeV � fm for a Coulomb strength, and Cu ¼
1070 MeV for a constant to fix the origin of the potential.
The distance rs represents the onset for the screening of the
interaction due to the presence of light quark-antiquark
pairs popping out of the vacuum. The value chosen rs ¼
1:15 fm is inferred from lattice calculations (see [6], and
references therein). As for �u, the value used is extracted
from the phenomenological analysis of the (�; a2; . . . ; )
Regge trajectory (see also [6]). Concerning the value of
ku, one could tentatively try to ascribe it to the chromo-
electric one gluon exchange (OGE) interaction as done in
[5]. However, as we shall show in the next section, it may
be rather giving to account for the long distance attenu-
ation, due to string breaking, of the linear confining term.

It should be recalled that the accurate energy description
of the meson states is linked to the correct long distance
behavior of their wave functions. Given the relativistic
character of the fitted spectrum, we should not trust
much, at intermediate and short distances, the nonrelativ-
istic wave functions obtained from the Schrödinger equa-
tion. Only very large sized light-quark mesons [in our
scheme the higher the root mean square (rms) radius of
the meson, the lower the pq=mq value], for which there are

no available data yet, can be considered nonrelativistic
systems. For them, the wave function coming out from
the Schrödinger equation might also be accurate at short
and intermediate distances.

For the sake of completeness, it is worthwhile to recall
the criterion derived in [5] for the applicability of a static
potential to a meson (q �q) sector within our NRCQM
framework. It reads

hr2i1=2 � 1

mq

; (2)

where hr2i1=2 stands for the rms radius of the meson state.
So only for mesons with a large size, as compared to 1=mq,

the static approach makes sense. For u and d quarks (mq ¼
340 MeV) this means hr2i1=2 � 0:6 fm. In fact, the light-
quark meson spectrum has been well reproduced for states
with rms radii greater than or equal to three and a half times

this limit: hr2i1=2 * 2:1 fm.

When going to heavier quarkonia, we have hr2i1=2 �
0:4 fm for s�s (ms � 500 MeV), hr2i1=2 � 0:14 fm for c �c

(mc � 1400 MeV), and hr2i1=2 � 0:04 fm for b �b (mb �
4800 MeV), where typical values for the constituent quark

masses have been chosen. Then, by using the same validity
factor of 3.5 as in the light-quark case, we expect the static

approximation to be valid for ðhr2i1=2Þs�s * 1:6 fm,

ðhr2i1=2Þc �c * 0:6 fm, and ðhr2i1=2Þb �b * 0:16 fm.
Notice though that the constituent quark mass in a

meson sector is a parameter to be fixed from data in our

model and that the values of hr2i1=2 result from the solution
of the Schrödinger equation. Therefore the established
criterion has to be checked a posteriori. Nonetheless, its
consideration is essential to adequately select the specific
data to be used to fix the free parameters. Thus, for light-
quark mesons, data corresponding to L ¼ 4 and L ¼ 5
states were used, since these states are expected to have
large rms radii due to the presence of the centrifugal
barrier.

III. LIGHT-QUARK MESONS

A. String breaking

The static q� �q potential can be derived from lattice
QCD [6]. In the quenched approximation, only valence
quark qv and antiquark �qv, it has the funnel form

�VðrÞ ¼ �r� �

r
; (3)

where � is the string tension and � is the strength of the
Coulomb interaction. This potential has to be corrected at
short distances so that � becomes a function of r [7]. When
including sea quarks, an unquenched potential results from
the screening of the static sources qv and �qv by light q �q
pairs created in the hadronic vacuum. A parametrization of
this effect was proposed 20 years ago [8]. Unquenched
lattice results for the potential between two heavy static
quarks separated by a distance r: 0 ! 1 fmwere described
by the potential

�V scrðrÞ ¼
�
�r� �

r

��
1� e��r

�r

�
; (4)

where ��1 represented a screening length and � was
related to the quark-quark-gluon coupling �s through � ¼
ð4=3Þ�s. The screening factor HðrÞ � ð1�e��r

�r Þ was con-

structed so that �VscrðrÞ has a Coulombic behavior at small
distances while approaching a constant at large distances.
When applied to heavy quarkonia, this potential form with
effective values of its parameters provided a precise de-
scription of the spectrum of b �b states with rms radii
smaller than 1.1 fm [9,10]. However, up until now, lattice
calculations did not allow extraction of the precise form of
the QCD static potential at large distances [6,11]. So the
asymptotic constant behavior should be considered as an
educated guess.
Alternatively, an attenuated linear form of confinement

has been implemented for the asymptotic potential in the
framework of the QCD string approach (QCDSA) that has
been successfully applied to light-quark [12,13] and heavy-
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quark [14,15] mesons. In this physical picture, the string
tension � is attenuated at separations r * R1 ’ 1:2 fm,
becoming a function of r so that for r * R2 ¼ 2:5 fm,
string breaking occurs with large probability. This attenu-
ation plays a key role to correctly obtain the masses of the
radial excitations of light-quark mesons within this ap-
proach. More explicitly, the confinement potential reads

VSAðrÞ ¼ �ðrÞr ¼ �r

�
1� �

expð ffiffiffiffi
�

p ðr� R1Þ
Bþ expð ffiffiffiffi

�
p ðr� R1Þ

�
; (5)

with � ¼ 0:185 GeV2 ¼ 937:5 MeV=fm, � ¼ 0:4, R1¼
6GeV�1¼1:18 fm, and B¼20. The screening factor be-
tween parenthesis, which will be called GðrÞ henceforth,
varies from ’1 for r ¼ 0 to a value of ’ð1��Þ for r > R2.

Following the same philosophy as in [13], we shall
attempt to extract information over the variation of the
confining potential with r from a systematic analysis of
the meson spectrum within our NRCQM framework. As
mentioned above, the main distinct feature resulting from
the application of the NRCQM to the light-quark meson
spectrum is the Coulombic asymptotic behavior of the
potential as given by Eq. (1). It is then interesting to
examine the possibility that it may come from confinement
as a result of string breaking. Indeed, the form of the
potential in Eq. (1) can be derived from the screened
confinement potential ansatz

VconfðrÞ ¼ �rð1� e�ð�=rÞÞ � �rFðrÞ; (6)

as can be easily checked by using FðrÞ ! �
r � �2

2r2
and

making the identifications (up to order 1=r2)

�� ¼ �urs þ Cu; (7)

��2

2
¼ ku: (8)

Then from the numerical values of �u, Cu, and ku previ-
ously quoted, we get

� ¼ 2:3 fm; (9)

� ¼ 925:5 MeV=fm: (10)

Let us realize that the value of � stays within the uncer-
tainty interval of the phenomenological string tension ex-
tracted from the �; a2; . . . ; Regge trajectory as it should.
Regarding � ’ 2rs, note its similarity to R2 ’ 2R1 in the
QCDSA. In the same manner, � can be interpreted as the
onset for string breaking to occur with large probability.
We should realize though, that for r > R2 ¼ 2:5 fm, GðrÞ
keeps an almost constant value; whereas FðrÞ varies in a
Coulombic way.

It is interesting to establish, from the comparison of the
spectrum obtained from VconfðrÞ, Eq. (6), with data,
whether the onset for the states of confinement in our
model may have been experimentally reached or not.
These states may be characterized for having a vanishing

probability of presence for r < rc being rc, a distance
related to the confinement scale in QCD. From the quan-
tum number standpoint, this means that meson states have
orbital angular momentum L greater than or equal to a
value Lc. A comparison of the light-quark meson spectrum
obtained from VconfðrÞ with data shows that for L ¼ 4, for
instance, the calculated mass is more than 100 MeVabove
the upper limit of the experimental interval. Although this
difference between calculation and experiment increases
when decreasing L, or equivalently decreases when in-
creasing L, the significant discrepancy for L ¼ 4 might
suggest that we are still far from the pure confinement
region, i.e. Lc � 4.

B. Phenomenological static potential

In order to accurately describe the knownmeson spectra,
the unquenched confinement potential VconfðrÞ, Eq. (6), has
to be complemented. The natural way to do it is through the
incorporation of an effective gluonic Coulomb interaction
so that one recovers at short distances, when the effect of
q �q pairs is negligible, the quenched (funnel) form of the
potential. For the sake of simplicity, we shall assume the
same screening factor used for confinement. Thus the
potential reads

VsbðrÞ ¼
�
�r�

��q

r

�
ð1� e�ð�=rÞÞ; (11)

where ��q is the gluonic Coulomb strength. The subindex

sb indicates that string breaking has been implemented in
both terms of the potential. Certainly, ��q keeps some

relation with the quark-quark-gluon coupling �s, since
the chromoelectric OGE contribution should be contained
in it. However, corrections to the kinetic and potential
energies could also be taken into account through the
effective value of ��q. These corrections may include, for

instance, relativistic terms in the kinetic energy and in the
OGE potential, nonperturbative contributions to the con-
finement term and to the quark-quark-gluon coupling, etc.
Therefore ��q has to be considered as a free parameter. To

fix it from data, we calculate the high excited light-quark
meson spectrum and require that the known states with a
high orbital angular momentum, L ¼ 4 for instance, for
which we expect the static approximation works well, are
reproduced. The results for ��u ¼ 1065 MeV � fm are pre-
sented in Table I. For the multiplets, we have used the
quantum numbers notation (L; nr), nr: radial quantum
number, as derived from the solution of the Schrödinger
equation. The mass in a multiplet is denoted asML;nr . Only

states giving rise to hr2i1=2 * 2:1 fm, for which the static
approximation makes sense and for which there are well-
established experimental candidates, are considered. Data
are taken from the Cristal Barrel Collaboration (CBC),
Ref. [1], and from the Particle Data Group (PDG) review,
Ref. [2]. The ordering of the states has been chosen to
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make the bias of the results clear: the lower the L, the
bigger the difference between calculated masses and data.

This deficiency can be corrected in an ad hocmanner by
introducing an additional L-dependent factor in the gluonic
Coulomb term so that

VðrÞ ¼
�
�r��qð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~L2

LcðLcþ1Þ
q

Þ
r

�
ð1� e�ð�=rÞÞ if L� Lc;

VðrÞ ¼ VconfðrÞ if L� Lc: (12)

This form for VðrÞ satisfies effectively the requirement that
for L � Lc, the contributions to the energy from other
terms in the potential different than the confining interac-

tion VconfðrÞ, Eq. (6), are negligible. Moreover, the poten-
tial for states with L close to below Lc differs little from
VconfðrÞ as it should. Note also that the lower the L, the
bigger the probability for short quark-antiquark separa-
tions and the bigger the relativistic corrections to the
potential and kinetic energies. Therefore the value of �q

(corresponding to the strength for L ¼ 0) may be incorpo-
rating, at least to some extent, such corrections in an
effective manner. Actually, the same discussion done for
��u can be repeated here about the effective character of the
gluonic Coulomb strength �u. Therefore any attempt to
identify our �u with the coefficient of the chromoelectric
Coulomb potential obtained from the OGE in QCD is risky.

TABLE II. Calculated masses and rms radii from VðrÞ with mu ¼ 340 MeV, � ¼
925:5 MeV=fm, � ¼ 2:3 fm, �u ¼ 1600 MeV � fm, and Lc ¼ 16. Notation as in Table I. The
experimental candidates that will be members of the multiplets are also indicated.

(L; nr) hr2i1=2 fm ML;nr MeV ððMÞL;nr ÞCBC MeV ððMÞL;nr ÞPDG MeV

(5, 1) 3.8 2432 2450� 130
a6ð2450Þ

(1, 4) 3.7 2256 2219� 43
b1ð2240Þ

a1ð2270Þ, a2ð2175Þ
(2, 3) 3.5 2252 2248� 37

	2ð2245Þ, �ð2265Þ
�2ð2225Þ, �3ð2260Þ �3ð2250Þ

(3, 2) 3.1 2250 2258� 38
b3ð2245Þ, a2ð2255Þ
a3ð2275Þ, a4ð2255Þ

(4, 1) 2.7 2254 2262� 28 2330� 35
	4ð2250Þ, �3ð2260Þ
�4ð2230Þ, �5ð2300Þ �5ð2350Þ

(1, 3) 2.5 1967 1947� 47
b1ð1960Þ

a1ð1930Þ, a2ð1950Þ
(2, 2) 2.2 1956 1980� 23

	2ð2005Þ, �ð2000Þ
�2ð1940Þ, �3ð1982Þ �3ð1990Þ

TABLE I. Calculated massesML;nr and rms radii hr2i1=2 for (L; nr) multiplets from VsbðrÞ with
mu ¼ 340 MeV, � ¼ 925:5 MeV=fm, � ¼ 2:3 fm, and ��u ¼ 1065 MeV � fm. Experimental
average masses as in [5] from Ref. [1], ððMÞL;nr ÞCBC, and Ref. [2], ððMÞL;nr ÞPDG, are shown

for comparison. The superindex y in the (4, 1) calculated mass indicates the average mass value
chosen to fix ��u.

(L; nr) hr2i1=2 fm ML;nr MeV ððMÞL;nr ÞCBC MeV ððMÞL;nr ÞPDG MeV

(5, 1) 3.8 2432 a6ð2450� 130Þ
(4, 1) 2.8 2281y 2262� 28 �5ð2330� 35Þ
(3, 2) 3.4 2302 2258� 38
(2, 3) 3.9 2329 2248� 37 �3ð2250Þ
(2, 2) 2.5 2089 1980� 23 �3ð1990� 20Þ
(1, 4) 4.3 2359 2219� 43
(1, 3) 2.9 2143 1947� 47

P. GONZÁLEZ PHYSICAL REVIEW D 80, 054010 (2009)

054010-4



The calculated masses from VðrÞ, for �u ¼ 1600 MeV �
fm and Lc ¼ 16, and their comparison to data are shown in
Table II, where the states have now been ordered according
to their sizes. As can be seen, the agreement is remarkable.
We should not forget though that the values of the parame-
ters �, �u, and Lc have been fixed from the set of data in
Table II. Regarding the other parameters of the model, let
us recall that the value of � comes from an external input:
the phenomenological analysis of Regge trajectories in-
volving lowly excited light-quark mesons. As for mu, the
value chosen corresponds to the average dynamic mass
generated by spontaneous symmetry breaking in the en-
ergy region under consideration (see [5], and references
therein).

Let us realize that in most multiplets, the difference in
mass between members of the same multiplet is quite small
due to what can be interpreted as the absence of significant
spin-orbit and tensor contributions for the large sized states
considered. On the other hand, the calculated meson states
become less relativistic when increasing (Lþ nr). So p=m
goes from ’ 1:5 for ðLþ nrÞ ¼ 4 to ’ 1 for ðLþ nrÞ ¼ 6.
It is then interesting to give the model predictions for
higher (L; nr) multiplets for which the nonrelativistic treat-
ment becomes less effective. The average values, from the
calculated masses corresponding to the different (L; nr)
combinations giving the same (Lþ nr), are listed in
Table III. A look at the Table shows the quite small
difference with the predictions given in [5], as could be
expected from the same asymptotic behavior of the poten-
tials employed and the large meson radii involved. It
should also be added that the limiting mass for the light-
quark meson spectrum evaluated in [5] remains almost
unaltered as it is given by

ðMLimÞu �u ¼ mu þm �u þ �� ¼ 2809 MeV: (13)

IV. HEAVY QUARKONIA

The proposed form for the screened potential VðrÞ
should be tested in other meson sectors. Heavy quarkonia,
in particular, the nonrelativistic bottomonium, constitute
the ideal laboratory to test it, since the static approximation
is expected to be valid for the whole spectrum. To apply
VðrÞ to different meson sectors, a criterion to fix the values
of the parameters has to be established. As usual, we shall
assume that the string tension � is quite approximately
flavour independent. Regarding �, its value has to do with
the screening effect caused dominantly by light sea quark-
antiquark pairs. Consequently, it seems reasonable to take
the same value for it in the different meson sectors. The
universality can be tentatively extended to Lc given its
connection to rc, or equivalently to the confinement scale
in QCD. Our results will justify this extension. As for the
gluonic Coulomb strength �q and the quark mass mq, they

will be fixed to get the correct splitting and masses of two
chosen states.
Let us remark that we are dealing with a spin indepen-

dent potential. For s waves, we can assume that the ex-
perimental energy difference between spin singlet and spin
triplet states [from VðrÞ, they are degenerate] comes
mainly from the spin-spin interaction. Taking into account
that the correction for the spin singlet is in absolute value 3
times bigger than for the spin triplet, we shall consider our
calculated s-wave states to be describing spin-triplets. For
p and d waves, spin-orbit and tensor interactions may give
significant contributions to the mass. If we recall that for
light-quark mesons these kind of contributions were sup-
pressed for rms radii, as calculated in our model greater
than 2 fm, we can expect a similar suppression in heavy
quarkonia to take place perhaps at shorter distances, since
the strength of the spin-orbit and tensor interactions de-
creases when increasing the mass of the quark.

A. Charmonium

In order to fix �c and mc, we should rely on the highest
well-established excitations with an unambiguous quan-
tum numbers assignment. We only have J=c ð1sÞ, c ð2sÞ,
and 
c0;c1;c2ð1pÞ. As our model does not contain either

spin-orbit or tensor interactions that can give account of the
important mass splitting (140MeV) in the 1pmultiplet, we
should choose J=c ð1sÞ and c ð2sÞ. However, this choice is
problematic, since the rms radius for J=c obtained from

the fixed parameters hr2i1=2 ¼ 0:4 fmwould not satisfy the

static condition ðhr2i1=2Þc �c * 0:6 fm, showing that the
static approximation is invalid for J=c . Instead, we shall
take for granted the conventional assignment of c ð4040Þ to
c ð3sÞ and choose c ð2sÞ and c ð3sÞ as referents to fix the
parameters. Notice that by attributing the mass difference
M½c ð2sÞ	 �M½�ð2sÞ	 ’ 49 MeV to the spin-spin interac-
tion, the error in the determination of M½c ð2sÞ	 due to the
nonconsideration of such interaction is only of 12 MeV.
For M½c ð3sÞ	, we expect even a lower error.

TABLE III. Predicted masses and rms radii from VðrÞ for some
(L; nr) multiplets with Lþ nr � 6. Parameters as in Table II.

(Lþ nr) hr2i1=2 ML;nr

(L; nr) fm MeV

6 4:6� 0:8 2421� 11
(1, 5), (2, 4), (3, 3)

(4, 2), (5, 1)

7

(1, 6), (2, 5), (3, 4) 6:4� 0:7 2524� 8

(4, 3), (5, 2), (6, 1)

8

(1, 7), (2, 6), (3, 5) 8:6� 0:6 2592� 6
(4, 4), (5, 3), (6, 2), (7, 1)

9

(1, 8), (2, 7), (3, 6), (4, 5) 11:0� 0:5 2638� 5
(5, 4), (6, 3), (7, 2), (8, 1)
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The results for the static c �c spectrum for �c ¼
157 MeV � fm and mc ¼ 1448 MeV are shown in
Table IV as compared to data through a tentative quantum
numbers assignment. QCDSA results for the nrL states are
also shown for comparison.

As expected, the lowest p and d states are not well

reproduced. For 1p, with hr2i1=2 ¼ 0:7 fm, the discrepancy
goes from 20 MeV for 
c2 to 160 MeV for 
c0. For 1d,

with hr2i1=2 ¼ 1:0 fm, the calculated mass differs about
100 MeV from the only known experimental candidate.

The situation improves extraordinarily for hr2i1=2 *
1:5 fm, since the calculated masses for the 2d, 4s, 3d,
and 5s states can be put in perfect correspondence with
experimental candidates [the resonances Yð4360Þ from
Belle and Yð4324Þ from BABAR are assumed to correspond
to the same state]. This is a very distinct feature of our
model.

It is noteworthy that Xð4260Þ appears as a natural 4s
state [instead in the QCDSA, the 4s state is identified with
c ð4415Þ]. Actually, the reluctancy to assign 4s quantum
numbers to Xð4260Þ comes to some extent from the much
higher mass predicted from conventional charmonium
models [18], since experimental data might be accommo-

dated by making such a choice [19]. Let us also point out
that in our model, the Yð4660Þ reported only by Belle could
correspond to the overlap of the energetically close 7s and
8s states. Our 6smodel state at 4528MeVwould be missed
as well as other ns states with n � 9. These excitations
would be very close in energy which could make their
experimental disentanglement difficult despite the fact
that the limiting mass of the spectrum is still quite far
above

ðMLimÞc �c ’ mc þm �c þ �� ¼ 5025 MeV: (14)

It should also be remarked that the quite relativistic char-
acter of the fitted spectrum is indicated by the values
ðpc=mcÞ2 � 0:25–0:16. Nonetheless, the values of the
wave functions at the origin for ns states (n: 2; 3; 4; 5)
differ at most 15% from the ones obtained from the solu-
tion of the Salpeter equation in the QCDSA [14]. Hence
quite similar results (within a 20% of difference) would be
obtained for the dielectron widths and the same conclusion
inferred: the measured values for ns states [ndðn: 1; 2Þ] are
systematically smaller (much bigger) than the calculated
ones. This can be explained by the presence of s� d states
mixing as a consequence of their coupling to open chan-
nels. This mixing would significantly modify the values of
the s- and d-wave functions at the origin. On the other
hand, the very good fit obtained for the spectrum without
mixing suggests that this should not have any significant
effect on the calculated masses of the corresponding s and
d states. Both features can be understood by realizing that
dielectron widths are sensitive to the wave functions at the
origin; whereas spectral masses are more related to their
long distance behavior.

B. Bottomonium

An analysis that is parallel to the one just carried out for
charmonium can be done for bottomonium. As ns states up
to n ¼ 4 have been experimentally identified, we choose
�ð3sÞ and �ð4sÞ to fix the parameters �b and mb. From
M½�ð3sÞ	 ¼ 10355 MeV and M½�ð4sÞ	 ¼ 10579 MeV,
we find �b ¼ 102:6 MeV � fm and mb ¼ 4795:5 MeV.
The results for the spectrum are shown in Table V and
assigned to data. For comparison, results from the QCDSA
are also listed. For the sake of completeness, it should be
pointed out that the results for ns states with an ‘‘inter-
mediate’’ model based on the asymptotically constant
screened potential of Eq. (4) [10] lay in between ours
and the QCDSA ones. On the other hand, quark potential
models not incorporating screening [18] predict much
larger energy splittings for high nr.
Again the 1p, 2p, and 1d states are not well described.

Now for 1pð2pÞwith hr2i1=2 ¼ 0:4 fm (0.7 fm), the dis-
crepancy goes from 60MeV (30 MeV) for 
b2 to 110 MeV

(70 MeV) for 
b0. For 1d, with hr2i1=2 ¼ 0:6 fm, the
calculated mass differs about 50MeV from the only known
experimental candidate. Unfortunately, we do not have

TABLE IV. Calculated c �cmasses and rms radii from VðrÞ. The
superindex y indicates the masses used to fix �c ¼ 157 MeV �
fm and mc ¼ 1448 MeV. Masses for experimental candidates
ðML;nr ÞPDG have been taken from [2] unless otherwise stated by

means of a superindex: Be for Belle data [16], Ba for BABAR
data [17]. For p waves, we quote the np0, np1, and np2 states.
Masses calculated in the QCD string approach [14], ðML;nr ÞSA,
are also shown for comparison.

nrL hr2i1=2 fm ML;nr MeV ðML;nr ÞPDG MeV ðML;nr ÞSA MeV

1s 3096:916� 0:011 3105

2s 0.9 3686y 3686:09� 0:04 3678

1d 1.0 3869 3772:92� 0:35 3800

3s 1.4 4039y 4039� 1 4078

2d 1.5 4148 4153� 3 4156

4s 2.0 4263 4263þ8
�9 4398

3d 2.1 4335 4361� 18Be 4464

4324� 24Ba

5s 2.6 4417 4421� 4 4642

4d 2.8 4468 4690

6s 3.3 4528 4804

5d 3.5 4565

7s 4.1 4611

6d 4.4 4639

4664� 16Ba

8s 5.0 4674

1p 0.7 3574 
c2ð3556:20� 0:09Þ

c1ð3510:66� 0:07Þ

c0ð3414:75� 0:31Þ

2p 1.2 3965 
c2ð3929� 5� 2Þ
3p 1.8 4212

4p 2.4 4380
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data at our disposal for higher radial p or d excitations to
fix a value for the rms radius beyond which spin-dependent
contributions are negligible. If we assume a correct pre-
diction for the 3p state, this radius would be of �1 fm.

A very good correspondence between calculated and
experimental masses (a difference of 15 MeV at most) is
found for 1s, 2s, 6s, and 7s if the �ð10860Þ is assigned to
�ð6sÞ [not to �ð5sÞ as usually done] and �ð11020Þ to
�ð7sÞ. Notice that the recent measurements by BABAR
[20] give 10876 MeV and 10996 MeV for the masses of
these two resonances. Moreover, the �ð11020Þ appears in
[21] as a peak between 10990 MeVand 11060 MeV that is
compatible with being the overlap of our 7s and 8s states.

It should be emphasized that the assignment of
�ð10860Þ to �ð6sÞ implies the existence of a �ð5sÞ reso-
nance with a mass

M½�ð5sÞ	 � 10748� 15 MeV (15)

that can be considered as a main prediction (the quoted
error of 15 MeV has been estimated from Table V) and at
the same time as a stringent test of our potential model. The
presence of this resonance might have some relation with
the experimental shoulder present on the tail of �ð4sÞ with
a mass of 10684� 10� 8 MeV and a width of 131�
27� 23 MeV in Ref. [22] and a mass between 10 670

and 10 730 MeV in [21] (see Table I of this reference). In
the recent study by BABAR [20], there appears to be a small
bump around 10700 MeV not identified as a resonance (see
Fig. 1 of this reference) that might have to do with the
predicted state. It should be added that the presence of the
close Bs

�Bs threshold at 10732 MeV may complicate the
experimental extraction of this resonance, if it exists.
An additional argument in favor of this resonance can be

elaborated from the comparison of the experimental energy
differences between contiguous s excitations in charmo-
nium and bottomonium as done in Table VI.
The assumption that the 4s� 3s mass differences in

bottomonium (224 MeV) and charmonium have close
values as it is the case for 3s� 2s, and 2s� 1s requires
a 4s resonance around 4260 MeV for c �c, as our model
predicts. Then, assuming that Xð4260Þ is the 4s state, the
extension of the argument to the 5s� 4s mass differences
(158 MeV in charmonium) implies the existence of �ð5sÞ
at about 10740 MeV. Alternatively, as is the case in the
QCDSA, the Xð4260Þ could not be a c �c state, and the
�ð10748Þ could not exist but then the energy difference
pattern in charmonium and bottomonium would be very
different (the 4s� 3s mass difference in charmonium
would be 382 MeV against 224 MeV in bottomonium). It
should be emphasized that this discrepancy in the interpre-
tation of the experimental states is directly related to the
different manner at which string breaking is implemented
in both models. Then the experimental confirmation (ref-
utation) of our results would serve to establish the
Coulombic (non-Coulombic) character of the asymptotic
quark-antiquark potential.
Concerning other ns states with n � 8, the small sepa-

ration in energy between neighbors suggests important
overlaps among them and difficulties for a separated iden-
tification. This may explain the nonidentification of any
clear signal for a resonance in the region of 11 000–
11 200 MeV recently explored by BABAR [20]. Let us
realize that the limiting mass of the spectrum is still quite
far above

ðMLimÞb �b ’ mb þm �b þ �� ¼ 11 720 MeV: (16)

TABLE VI. Experimental mass differences (in MeV) between
ðnr þ 1Þs and nrs states in charmonium and bottomonium. The
superindex 
 indicates that the corresponding difference has
been calculated assuming that Xð4260Þ and c ð4415Þ are the 4s
and 5s states of c �c.

(nr þ 1) (M0;nrþ1 �M0;nr ) (M0;nrþ1 �M0;nr )

c �c b �b

2 589 563

3 353 332

4 224
 224

5 158

6

TABLE V. Calculated b �b masses and rms radii from VðrÞ with
�b ¼ 102:6 MeV � fm and mb ¼ 4795:5 MeV. Notation as in
Table IV. The superindex Ba indicates now recent BABAR data
[20]. Masses calculated in the QCD string approach are taken
from [15].

nrL hr2i1=2 fmML;nr MeV ðML;nr ÞPDG MeV ðML;nr ÞSA MeV

1s 0.2 9458 9460:30� 0:26 9453

2s 0.5 10037 10023:26� 0:31 10010

1d 0.6 10218 10161:1� 1:7 10144

3s 0.8 10355y 10355:2� 0:5 10356

2d 0.8 10471 10446

4s 1.1 10579y 10579:4� 1:2 10630

5s 1.4 10748 10862

6s 1.7 10880 10865� 8 11067

10876� 2Ba

7s 2.0 10986 10996� 2Ba 11240

11019� 8
8s 2.4 11073

9s 2.7 11144

10s 3.1 11205

11s 3.6 11256

1p 0.4 9970 
b2ð9912:21� 0:57Þ 9884


b1ð9892:78� 0:57Þ

b0ð9859:44� 0:57Þ

2p 0.7 10300 
b2ð10268:65� 0:72Þ 10256


b1ð10255:46� 0:72Þ

b0ð10232:5� 0:9Þ

3p 1.0 10535 10541
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It is also worthwhile to emphasize the nonrelativistic
character of the fitted static spectrum in bottomonium since
ðpb=mbÞ2 � 0:1–0:06. Then we can tentatively identify
�b ¼ 4ð�sÞb=3 where �s stands for the quark-quark-gluon
coupling at the bottomonium scale. This gives ð�sÞb ¼
0:39 in agreement with the value derived from QCD in
bottomonium for the 1p and 2p states [23].

As we are dealing with a nonrelativistic system, we
expect that the wave functions obtained from the
Schrödinger equation may accurately account for other
observables. In particular, s-wave splittings and leptonic
(dielectron) widths depend directly on the values of the
wave functions at the origin. Thus in first order perturba-
tion theory, the splitting energy between the triplet �ðnsÞ
and the singlet �bðnsÞ spin states is given by

M½�ðnsÞ	 �M½�bðnsÞ	 ¼ 4

3
ð�sÞb 2

3m2
b

jRnrsð0Þj2; (17)

where Rnrsð0Þ stands for the radial wave function at the

origin for �ðnsÞ. The resulting splitting for nr ¼ 1 is

M½�ð1sÞ	 �M½�bð1sÞ	 ¼ 173 MeV (18)

in accord with the experimental value

M½�ð1sÞ	ex �M½�bð1sÞ	ex ¼ 160� 40 MeV: (19)

For nr ¼ 2, the predicted value is

M½�ð2sÞ	 �M½�bð2sÞ	 ¼ 70 MeV: (20)

Regarding the leptonic widths �eþe� for nrs states, they
can be evaluated as [24]

�eþe�ðnrsÞ ¼ �ð0Þ
eþe�ðnrsÞ

�
1� 16ð�sÞb

3	
þ �ðnrsÞ

�
: (21)

The terms with [� 16ð�sÞb=3	] and [�ðnrsÞ] account for
the leading order radiative and higher order radiativeþ
relativistic corrections to

�ð0Þ
eþe�ðnrsÞ �

4e2b�
2

M2
nrs

jRnrsð0Þj2; (22)

where eb ¼ �1=3 is the quark electric charge, � ¼
1=137:036 is the fine structure constant, and Mnrs is the

mass of the nrs state for which we shall use the experi-
mental value. The calculated leptonic widths are shown in
Table VII. Although the correction � depends on the
particular nrs state, we shall consider it, for the sake of
simplicity, as an effective constant. We fix its value from
�eþe�ð�ð10 580ÞÞ since it corresponds to the highest exci-
tation with well identified quantum numbers (4s), and we
expect the nonrelativistic and static approaches to be more
accurate for it than for lower excited states. Then we get
� ¼ 0:22, one third of the value of the first order radiative
correction 16ð�sÞb=3	 ¼ 0:66.

It should be pointed out that the measured �eþe�ð10 860Þ
in [2] might be contaminated by the hidden �ð10 748Þ.

Instead for nr � 5 data from [22], where a resonance of
about 1700 MeV is taken into account, are used.
Table VII shows clearly that a good agreement with the

data (10% difference at most) may be achieved except for
�eþe�ð1sÞ. This might have to do with either the � depen-
dence on the nrs state or a deficient description of the wave
function at the origin for �ð1sÞ, the more relativistic state
for bottomonium with the more important spin-spin cor-
rection. Indeed, a 13% decrease in the value of jR1sð0Þj
would fit the central experimental value of �eþe�ð1sÞ (no-
tice that the 1s spin splitting would be 130MeV, still within
the experimental uncertainty). It should also be kept in
mind that a systematic deviation of the values of the wave
functions at the origin might be hidden through the effec-
tive value of �. Actually, the values we get for R1sð0Þ and
R2sð0Þ are significantly bigger than the ones obtained in the
QCDSA.
Dielectron widths can be also calculated for nd states,

but no data are available. Therefore we will only mention
that the calculated values in our model from (see for
instance [15])

�ð0Þ
eþe�ðndÞ ¼

25e2b�
2

2m4
bM

2
nd

jR00
ndð0Þj2; (23)

where R00
ndð0Þ stands for the second derivative of the radial

wave function at the origin, are four orders of magnitude
smaller than for nrs states.
For the sake of completeness, E1 decay widths are also

evaluated. By using a single quark operator approximation,
the width can be written as [25]

�E1
if ¼ 4

27e
2
b�k

3
ifð2Jf þ 1ÞD2

if; (24)

where kif is the photon energy or momentum, Jf is the total

angular momentum of the final meson, and Dif is the

transition matrix element

TABLE VII. Leptonic widths �eþe� (in keV) for b �b. The
superindex y indicates the value used to fix �. Data from [2]
except for nrs with nr > 3 are taken from [22] and indicated by a
superindex 
. The experimental number between the 7s and 8s
states indicates that the resonance �ð11020Þ in [22], to which
this number is assigned, could be a result of the overlap of the 7s
and 8s states.

nrL �eþe� ð�eþe�Þexp
1s 1.7 1:340� 0:018
2s 0.61 0:612� 0:011
3s 0.39 0:443� 0:008
4s 0:27y 0:272� 0:029
5s 0.21 0:20� 0:05� 0:10

6s 0.16 0:22� 0:05� 0:07

7s 0.13

0:095� 0:030� 0:035

8s 0.11
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Dif ¼
Z 1

0
druiðrÞ 3

kif

�
kifr

2
j0

�
kifr

2

�
� j1

�
kifr

2

��
ufðrÞ;

(25)

being that ui;fðrÞ is the reduced radial wave functions of the
initial and final mesons, and j0, j1 are spherical Bessel
functions. The results obtained for �ð2sÞ ! �
bJð1pÞ and
�ð3sÞ ! �
bJð2pÞ are compiled in Table VIII. As a re-
minder, that the three calculated 
bJðnpÞ states are degen-
erate in our model. Hence the same wave function is
employed for all of them. This can be justified by assuming
that the experimental masses are explained by the effect of
spin-dependent interactions calculated in perturbation the-
ory to the first order. The differences in Table VIII among
the three �ð2sÞ ! �
bJð1pÞ or the three �ð3sÞ !
�
bJð2pÞ decays come from the use of the nondegenerate
experimental 
bJ masses to evaluate kif.

A clear bias of the results is observed: they are system-
atically higher than data. The discrepancy is more pro-
nounced for 
b0ðnpÞ final states. As 
b0ðnpÞ states are the
ones requiring a bigger spin-dependent mass contribution
in our model, the systematics may suggest the need to
implement 
bJðnpÞ wave function corrections.

V. SUMMARY

To summarize, a universal form for the quark-antiquark
static potential, incorporating the screening of the color
charges by sea pairs, has been proposed within a non-
relativistic quark model framework. This potential, with
a confining long-distance Coulombic behavior, reproduces
the highly excited light-quark meson spectrum and pro-
vides a successful spectral description of charmonium and
bottomonium, suggesting the assignment of Xð4260Þ to the

4s state of c �c and the existence of a noncataloged
�ð10748Þ resonance corresponding to the 5s state of b �b.
These very distinctive predictions of our model come from
the way screening has been implemented within it.
Therefore their experimental confirmation or refutation
could allow us to establish the Coulombic or non-
Coulombic character of the long distance quark-antiquark
static potential.
It should be remarked that the only dependence of the

potential on the particular meson sector comes from the
value of an effective gluonic strength. As the light-quark
mesons, and to a lesser extent the charmonium, are clearly
relativistic systems, one can tentatively think that some
relevant relativistic corrections could be effectively taken
into account through the value of this parameter. The fact
that the gluonic Coulomb strength obtains a systematically
greater value than the gluonic chromoelectric strength in
QCD seems to point in this direction. For the nonrelativ-
istic bottomonium, this gluonic strength can correspond
with the strength of the chromoelectric one gluon exchange
interaction in QCD or, equivalently, with the quark-quark-
gluon coupling �s at the corresponding Q2 scale.
In our nonrelativistic treatment, the quark and antiquark

masses are parameters of the model. Their values should be
added to the binding energies to obtain the meson masses.
A peculiarity of our potential is the absence of any additive
constant to obtain acceptable values of the constituent
quark masses (in the sense of being able to account for
other observables, such as hadronic magnetic moments)
from the fitted meson masses.
All of these features make the effective nonrelativistic

quark model proposed very useful to identify excited states
from existing experimental candidates and for assigning
quantum numbers to them. Furthermore, it can be used to
advance predictions on highly excited states in all meson
sectors.
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