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We present a model for the decay Dþ ! K��þ�þ. The weak interaction part of this reaction is

described using the effective weak Hamiltonian in the factorization approach. Hadronic final state

interactions are taken into account through the K� scalar and vector form factors fulfilling analyticity,

unitarity, and chiral symmetry constraints. The model has only two free parameters that are fixed from

experimental branching ratios. We show that the modulus and phase of the S wave thus obtained agree

nicely with experiments up to 1.55 GeV. We perform Monte Carlo simulations to compare the predicted

Dalitz plot with experimental analyses. Allowing for a global phase difference between the S and P waves

of �65�, the Dalitz plot of the Dþ ! K��þ�þ decay, the K� invariant mass spectra and the total

branching ratio due to S-wave interactions are well reproduced.
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I. INTRODUCTION

In 2002, the analysis of Dþ ! K��þ�þ decays per-
formed by the E791 collaboration revealed that approxi-
mately 50% of these decays proceed through a low-mass
scalar resonance with isospin 1=2: the K�

0ð800Þ, also called
the � [1]. As a matter of fact, the � was the second elusive
scalar to be firmly detected in Dþ decays since the scalar-
isoscalar f0ð600Þ, or �, had been detected by the same
collaboration in Dþ ! �þ���þ [2]. More recently, the
Dþ ! K��þ�þ decay was revisited by E791 [3] and two
other experiments produced analyses based on larger data
samples, namely, FOCUS [4,5] and CLEO [6]. The main
conclusions of the pioneering E791 work have been con-
firmed in both cases.

In the past, many analyses of K� scattering data had
already claimed the presence of the � pole in the scattering
amplitude [7–10]. The most precise and model indepen-
dent determination of its position in the second Riemann
sheet was produced in Ref. [11], following the method put
forward for the � in Ref. [12]. Using Roy’s equations for
K� scattering [13] and chiral perturbation theory [14]
Descotes-Genon and Moussallam found m� ¼ 658�
13 MeV and �� ¼ 557� 24 MeV [11].

Although the experimental results are sound and the �
pole is at present theoretically well known, a comprehen-
sive and successful description of the reaction Dþ !
K��þ�þ is still not available (for a recent review see
Ref. [15]). Experimentalists, for the want of a better frame-
work, commonly fit their data with the isobar model which
consists of a weighted sum of Breit-Wigner-like propaga-
tors. Often, a complex constant is added to the amplitude in
order to account for the nonresonant decays. It is known,
nevertheless, that the adoption of Breit-Wigner functions
to describe the effect of scalar resonances is problematic.

Some of the deficiencies of this approach are discussed in
Ref. [16] where Oller proposed the substitution of these
functions in the S wave by expressions based on unitarised
chiral perturbation theory [17]. This model provides a good
description of the data but, since the weak part of the decay
was not tackled, the relative weight of the amplitudes
remain arbitrary complex parameters to be determined
from the fit.
Little progress has been achieved in the treatment of

weak decays of charmed mesons since the seminal papers
by Bauer, Stech, and Wirbel [18,19]. This fact stems from
the mass of the c quark that lies between the heavy and the
light domains, rendering heavy-quark approaches or the
use of chiral symmetry less trustworthy. A first attempt to
describe the decay Dþ ! K��þ�þ from first principles
was made by Diakonou and Diakonos in Ref. [20]. In their
work, the weak amplitude was described within naive
factorization with the weak Hamiltonian of Refs. [18,19]
and the final state interactions (FSIs) were implemented by
means of Breit-Wigner type K� form factors. They con-
sidered the contribution of two resonances, namely, the
K�ð892Þ and theK�

0ð1430Þ. In light of the present empirical

data it is clear that this model cannot provide a good
description of the decay. In Ref. [20], the decay is mainly
driven by the K�ð892Þ whereas the analyses of Refs. [1,3–
6] show that the decay is largely dominated by K� pairs in
an S-wave state. On average, the total scalar signal
amounts to 82% [21]. Hence, a more comprehensive model
for the whole scalar contribution is needed to provide a
good description of the data. A first step in this direction
was taken in Refs. [22,23] where the �� scalar signal in
B ! ��� decays was considered. In this framework,
factorisation is assumed for the weak amplitude and the
�� scalar form-factor, constrained by chiral dynamics and
unitarity, provides the description of FSIs [24]. In
Refs. [25,26], a similar description was utilised to describe
the Swave in B ! ��K and B ! K �KK decays. Using the
same method, S-wave FSIs have also been considered in
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the decay Dþ ! �þ���þ [27]. More recently, K� form
factors have been employed in the description of FSIs in
B� ! K����� decays [28]. In the present work, we
follow the same general scheme where a factorised weak
decay amplitude is dressed with FSIs by means of non-
perturbative K� form factors.

For the weak vertex, we employ the effective weak
Hamiltonian of Refs. [18,19] within naı̈ve factorization.
Although the assumption of factorization is less reliable for
the c-quark mass scale, it has been successfully applied to
D decays in several recent papers [27,29–33]. However,
one should consider the Wilson coefficients as phenome-
nological parameters to compensate for the deficiencies of
factorization [34]. The phenomenological values are close
to the calculated ones [35] but have larger errors than in
applications to B decays. The weak amplitude thus ob-
tained receives contributions from color-allowed and
color-suppressed topologies. In the latter, the K� form
factors appear manifestly and the construction of the final
state is straightforward. The color-allowed topology is
more involved but, assuming the decay to be mediated by
resonances as suggested by the experimental results, the
FSIs in this case can also be written in terms of K� form
factors [22,27]. Therefore, in our description the hadronic
FSIs are fully taken into account by the K� scalar and
vector form factors.

Both form factors have received attention in recent years
and are now well known in the energy regime relevant to
Dþ ! K��þ�þ decays. The scalar component was
studied in a framework that incorporates all the known
theoretical constraints in Refs. [36–38]. Analyticity, uni-
tarity, chiral symmetry, the large-Nc limit of QCD, and the
coupling to K� and K�0 channels were taken into account.
The results were subsequently updated and we employ in
this work the state-of-the-art version given in Ref. [39].
The vector form factor, in its turn, can be studied in �� !
K��� decays where the kinematical range is very similar
to the one considered in this paper. A prediction for this
form factor within resonance chiral theory (RChT) [40]
was presented in Ref. [41] and, after the appearance of the
detailed spectrum measured by the Belle collaboration

[42], a fit was performed in Ref. [43]. Here we employ a
slightly different description which fulfils analyticity con-
straints and that was successfully fitted to the Belle spec-
trum in Ref. [44].
Our paper is organized as follows. In Sec. II we present

our model and discuss previous treatments of the same
decay found in the literature. The numerical results are
worked out in Sec. III. Finally, we give a summary and
discuss the results in Sec. IV. Details about the construction
of theK� form factors employed in this work are relegated
to the Appendix.

II. THEORETICAL FRAMEWORK

Our phenomenological description of the weak process
Dþ ! K��þ�þ is based on the effective Hamiltonian

H eff ¼ GFffiffiffi
2

p VcsV
�
ud½C1ð�ÞO1 þ C2ð�ÞO2� þ H:c:; (1)

where GF ¼ 1:16637� 10�5 GeV�2 is the Fermi decay
constant [21], VcsV

�
ud ¼ 1� �2, in the Wolfenstein pa-

rametrization [45] with � � sin	C ¼ 0:2257 [21],
C1;2ð�Þ are short distance Wilson coefficients computed

at the renormalization scale � ¼ OðmcÞ, and O1;2 are the

local four-quark operators

O1 ¼ ½ �ci
�ð1� 
5Þsi�½ �dj
�ð1� 
5Þuj�;
O2 ¼ ½ �ci
�ð1� 
5Þsj�½ �dj
�ð1� 
5Þui�;

(2)

with (i, j ¼ 1, 2, 3) denoting color indices. At the quark
level, the decay Dþ ! K��þ�þ is driven by the transi-
tion c ! su �d, i.e. four different quark flavors are involved.
In this case, only the two tree operators in Eq. (2) have to
be taken into account.
The amplitude for Dþ ! K��þ�þ is given by the

matrix element hK��þ�þjH effjDþi. We assume the fac-
torization approach to hold at leading order (in �QCD=mc

and �s) and as a consequence the amplitude is written in
terms of color allowed and suppressed contributions, A1

and A2 respectively, as

AðDþ ! K��þ�þÞ ¼ GFffiffiffi
2

p cos2	Cða1A1 þ a2A2Þ þ ð�þ
1 $ �þ

2 Þ

¼ GFffiffiffi
2

p cos2	C½a1hK��þ
1 j�s
�ð1� 
5ÞcjDþih�þ

2 j �u
�ð1� 
5Þdj0i

þ a2hK��þ
1 j�s
�ð1� 
5Þdj0ih�þ

2 j �u
�ð1� 
5ÞcjDþi� þ ð�þ
1 $ �þ

2 Þ; (3)

where the last term accounts for the presence of two identical pions in the final state. The QCD factors a1;2ð�Þ are related to
C1;2ð�Þ as follows:

a1ð�Þ ¼ C1ð�Þ þ 1

Nc

C2ð�Þ; a2ð�Þ ¼ C2ð�Þ þ 1

Nc

C1ð�Þ; (4)

where Nc ¼ 3 is the number of colors. For these factors we use the phenomenological values
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a1 ¼ 1:2� 0:1; a2 ¼ �0:5� 0:1; (5)

obtained from different analyses of two-body D meson
decays [34].

The nonperturbative hadronic matrix elements in Eq. (3)
involve several Lorentz invariant form factors. We first
consider those related to the A2 contribution. The tran-
sitionDþ ! K��þ appearing inA1 is more involved and
requires a separate analysis. The matrix element from the
vacuum to the K� final state is given by

hK��þ
1 j�s
�dj0i ¼

�
ðpK � p�1

Þ� �m2
K �m2

�

q2
q�

�

� FK�þ ðq2Þ þm2
K �m2

�

q2
q�FK�

0 ðq2Þ;

(6)

where q ¼ pK þ p�1
and FK�þ;0ðq2Þ are the K� vector and

scalar form factors. Analogously, the transition Dþ ! �þ
is given by

h�þ
2 j �u
�cjDþi ¼

�
ðpD þ p�2

Þ� �m2
D �m2

�

q2
q�

�

� FD�þ ðq2Þ þm2
D �m2

�

q2
q�FD�

0 ðq2Þ;

(7)

where now q ¼ pD � p�2
and FD�þ;0ðq2Þ are the D� vector

and scalar transition form factors, respectively. The ampli-
tude A2 then reads

A2 ¼
�
m2

K�2
�m2

�1�2
� ðm2

K �m2
�Þðm2

D �m2
�Þ

m2
K�1

�

� FK�þ ðm2
K�1

ÞFD�þ ðm2
K�1

Þ

þ ðm2
K �m2

�Þðm2
D �m2

�Þ
m2

K�1

FK�
0 ðm2

K�1
ÞFD�

0 ðm2
K�1

Þ;

(8)

where the Mandelstam variables are defined as

m2
K�1

� ðpK þ p�1
Þ2; m2

K�2
� ðpK þ p�2

Þ2;
m2

�1�2
� ðp�1

þ p�2
Þ2;

(9)

with m2
K�1

þm2
K�2

þm2
�1�2

¼ m2
D þm2

K þ 2m2
�.

In our analysis, we use a simple pole prescription for the
D� transition form factors,

FD�
þ;0ðq2Þ ¼

FD�
þ;0ð0Þ

1� q2=m2
pole

; (10)

withmpole ¼ mD�0 for the vector case andmpole ¼ mD�0
0
for

the scalar one. The normalization constant is by construc-
tion the same in both cases FD�þ ð0Þ ¼ FD�

0 ð0Þ. This pa-

rametrization agrees with the experiments. The analysis

performed by the Belle Collaboration on D0 ! ��lþ�
data gives for the simple pole model mpoleð1��Þ ¼ 1:97�
0:09 [46], which is compatible with the Particle Data
Group value mD�� ¼ 2:01 GeV [21]. Then, in Eq. (10)
we take FD�þ ð0Þ ¼ 0:624 from Ref. [46] and mD�0 ¼
2007 MeV and mD�0

0
¼ 2:352� 0:050 GeV from

Ref. [21].
For the K� vector and scalar form factors, we employ

the same expressions that were used in the successful
reanalysis of �� ! K��� decays performed in Ref. [44].
Since the kinematical region for the K� system available
in D ! K�� decays, mK þm� 	 mK� 	 mD �m�, is
very similar to that of �� ! K��� decays, mK þm� 	
mK� 	 m�, we consider this choice appropriate. Both form
factors are constructed such that they fulfill constraints
posed by analyticity and unitarity. Because of these prop-
erties, the form factors satisfy an n-subtracted dispersion
relation, which in the elastic region admit the well-known
Omnès solution [47]. For the K� vector form factor
FK�þ ðsÞ, a good description of the experimental measure-
ment of �� ! K��� was achieved by incorporating two
vector resonances and working with a three-times-
subtracted dispersion relation in order to suppress higher-
energy contributions [44]. The additionally required scalar
K� form factor FK�

0 ðsÞ had been calculated in the frame-

work of RChT and solving dispersion relations for a three-
body coupled-channel problem in Ref. [36]. Here, we use
the recent numerical update of Ref. [39]. The details of the
form factors used in this work can be found in Appendix A.
Now, we turn our attention to the form factors associated

with the A1 contribution. The form factor denoting the
transition from the vacuum to a pion final state is nothing
else than

h�þ
2 j �u
�ð1� 
5Þdj0i ¼ ifp�2

; (11)

where the constant f equals at lowest order in the chiral

expansion the pion decay constant f ¼ f� ¼ ffiffiffi
2

p
F� ¼

130:5 MeV. The form factors related to the transition
Dþ ! K��þ are more complicated. On general grounds,
the matrix element hK��þ

1 j�s
�ð1� 
5ÞcjDþi can be
written in terms of four different form factors [48]. But,
when saturated with h�þ

2 j �u
�ð1� 
5Þdj0i only one of

those form factors survives, F4, and the amplitude A1

becomes

A 1 ¼ �if�m
2
�F4ðm2

K�1
; m2

K�2
Þ: (12)

Since this amplitude is proportional to m2
� one would

expect it is negligible, as presumed in Ref. [29]. If this
were the case, however, the decayDþ ! K��þ�þ would
be dominated by the P-wave contribution (as demonstrated
in Sec. III) in contradiction with the experimental results
[21]. This fact forces one to consider the A1 contribution
in detail. Unfortunately, the contribution of F4 to semi-
leptonic decays, Dþ ! K��þlþ�l (l ¼ e, �), is propor-
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tional to the lepton masses and neglected [49].
Consequently, one has to resort to theoretical models.

Several methods have been considered in the literature.
Most of them are based on the assumption that the Dþ !
K��þ transition is driven by intermediate resonances,
mainly vectors and scalars in this case. We will not take
into account the contribution of tensor resonances. In the
simplest case, one can consider the exchange of a single
vector and scalar resonance using a Breit-Wigner parame-
trization. For instance, in the paper by Diakonou and
Diakonos [20] the color allowed contribution is written
via the exchange of K�ð892Þ and K�

0ð1430Þ resonances as

A 1 ¼
�X
pol

hK��þ
1 j �K�ih �K�j�s
�ð1� 
5ÞcjDþi

m2
�K� �m2

K�1

þ hK��þ
1 j �K�

0ih �K�
0j�s
�ð1� 
5ÞcjDþi

m2
�K�
0

�m2
K�1

�

�h�þ
2 j �u
�ð1� 
5Þdj0i; (13)

while the color suppressed contribution is given by Eq. (8)
but with monopole K� form factors, FK�

þ;0ðq2Þ ¼
FK�
þ;0ð0Þ=ð1� q2=m2

poleÞ, with mpole ¼ m �K�ð892Þ for the vec-
tor and mpole ¼ m �K�

0
ð1430Þ for the scalar. Taking the matrix

elements from Refs. [18,19] one gets

A 1 ¼
f�g �K�K�m �K�Nðm2

�K� ÞFD �K�
þ ðm2

�Þ
m2

�K� �m2
K�1

� im �K�� �K�

þ
f�g �K�

0
K�m �K�

0
ðm2

D �m2
�K�
0

ÞFD �K�
0

0 ðm2
�Þ

m2
�K�
0

�m2
K�1

� im �K�
0
� �K�

0

; (14)

where Nðq2Þ ¼ m2
D þm2

K þ 2m2
� � 2m2

�1�2
� q2 �

Mðq2Þ, Mðq2Þ ¼ ðm2
K �m2

�Þðm2
D �m2

�Þ=q2,
g �K�K�ðg �K�

0
K�Þ are dimensionless couplings associated to

hK��þ
1 j �K�ð �K�

0Þi, and FD �K�
þ ðm2

�Þ and F
D �K�

0

0 ðm2
�Þ are perti-

nent vector and scalar transition form factors evaluated at
q2 ¼ m2

�. Again, a monopole form is assumed,

FD �K�
þ ðq2Þ ¼ FD �K�

þ ð0Þ
1� q2=m2

pole

;

F
D �K�

0

0 ðq2Þ ¼ F
D �K�

0

0 ð0Þ
1� q2=m2

pole

;

(15)

with mpole ¼ mD�
s
in both cases [18,19].

Experimental data collected in Tables I and II indicate
that the vector contribution to the total signal is largely
dominated by the exchange of K�ð892Þ. Hence, a Breit-
Wigner parametrization with a single vector resonance, as
considered in Ref. [20], should be a reasonable approxi-
mation to the vector induced signal. This is not the case for
the scalar one, where the contribution of K�

0ð1430Þ is

marginal. Besides, the possible K�
0ð800Þ or � and nonreso-

nant contributions are not accounted for in Eq. (14).
Therefore, a more elaborated prescription taking into ac-
count the whole scalar contribution is mandatory. Here, we
follow Ref. [22] and write the color allowed amplitudeA1

in terms of the scalar and vector K� form factors. We
briefly summarize the method applied to our case. The
Dþ ! K��þ matrix element is written as

hK��þj�s
�ð1� 
5ÞcjDþi
¼ X

R¼S;V

hK��þjRiPRhRj�s
�ð1� 
5ÞcjDþi; (16)

where we assumed that only scalar and vector intermediate
resonances propagate. Tensor resonances are not included
in the sum since the K�

2ð1430Þ is seen to contribute less
than 1% [21]. In Eq. (16), hK��þjRi is the coupling ofK�
to the resonance and PR stands for the propagation of that
resonance. The same decomposition is possible for the
matrix element which defines the scalar and vector form
factors. Our aim is to substitute the products hK��þjRiPR,
usually involving Breit-Wigner parametrization, by ex-
pressions based on the relevant form factors.
For the scalar case, let us take for instance the contribu-

tion of K�
0ð1430Þ alone and write

hK��þj�sdj0i ¼ m2
K �m2

�

ms �md

FK�
0 ðq2Þ

¼ hK��þj �K�
0iP �K�

0
ðq2Þh �K�

0j�sdj0i; (17)

where the matrix element h �K�
0j�sdj0i defines the scalar

decay constant. Then,

� �K�
0
K�ðq2Þ � hK��þj �K�

0iP �K�
0
ðq2Þ

¼ 1

h �K�
0j�sdj0i

m2
K �m2

�

ms �md

FK�
0 ðq2Þ

� � �K�
0
FK�
0 ðq2Þ; (18)

with � �K�
0
a pure number understood as a normalization.

Hence, the contribution to the matrix element in Eq. (16) is

hK��þj�s
�ð1� 
5ÞcjDþij �K�
0

¼ � �K�
0
FK�
0 ðq2Þh �K�

0j�s
�ð1� 
5ÞcjDþi: (19)

In order to make contact with Ref. [20] one can consider
the function � �K�

0
K� in a Breit-Wigner parametrization,

�BW
�K�
0
K�

ðq2Þ ¼ g �K�
0K�m �K�

0

m2
�K�
0

� q2 � im �K�
0
� �K�

0

; (20)

recovering the scalar contribution in Eq. (14). For the
remaining matrix element we use
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h �K�
0j�s
�ð1� 
5ÞcjDþi

¼ �i

��
ðpD þ p �K�

0
Þ� �

m2
D �m2

�K�
0

q2
q�

�
F
D �K�

0þ ðq2Þ

þ
m2

D �m2
�K�
0

q2
q�F

D �K�
0

0 ðq2Þ
�
; (21)

with q ¼ pD � p �K�
0
. Finally, we get the K�

0ð1430Þ contri-
bution to A1,

hK��þ
1 j�s
�ð1� 
5ÞcjDþij �K�

0
h�þ

2 j �u
�ð1� 
5Þdj0i
¼ f�� �K�

0
ðm2

D �m2
�K�
0

ÞFD �K�
0

0 ðm2
�ÞFK�

0 ðm2
K�1

Þ: (22)

From Eqs. (18) and (20), one can get an estimate of the
absolute value of � �K�

0
,

� �K�
0
¼

��������
�BW

�K�
0
K�

ðm2
�K�
0

Þ
FK�
0 ðm2

�K�
0

Þ
��������¼ g �K�

0
K�

� �K�
0
ðm2

�K�
0

Þ
1

jFK�
0 ðm2

�K�
0

Þj
¼ ð4:4� 2:8Þ GeV�1; (23)

where the error includes only the uncertainty in g �K�
0K�

and

� �K�
0
. For the numerical values we have used g �K�

0
K� ¼

3:4� 1:9, obtained from BðK�
0 ! K�Þ ¼ ð93� 10Þ%,

� �K�
0
¼ 270� 80 MeV [21], and jFK�

0 ðm2
�K�
0

Þj ¼ 2:89 from

Ref. [39].
If more than one scalar resonance is exchanged then

hK��þ
1 j�s
�ð1� 
5ÞcjDþijSh�þ

2 j �u
�ð1� 
5Þdj0i
¼ f�

X
S

½�Sðm2
D �m2

SÞFDS
0 ðm2

�Þ�FK�
0 ðm2

K�1
Þ: (24)

In Eqs. (22) and (24), the scalar resonances are taken on
shell since it is assumed we are in the vicinity of these
resonances and hence only small energy regions around the
resonance poles are considered. However, we want to
describe the whole K� invariant mass range. For such a
description, we propose the following ansatz for the scalar
contribution to A1,

AS
1 ¼ hK��þ

1 j�s
�ð1�
5ÞcjDþijSh�þ
2 j �u
�ð1�
5Þdj0i;

¼ f�
X
S

½�SF
DS
0 ðm2

�Þ�ðm2
D �m2

K�1
ÞFK�

0 ðm2
K�1

Þ;

� f��
eff
S ðm2

D �m2
K�1

ÞFK�
0 ðm2

K�1
Þ; (25)

where �eff
S is a new normalization constant that contains all

the form factors and normalizations for the scalar reso-
nances. An estimate for �eff

S is given by

�eff
S 
 � �K�

0
F
D �K�

0

0 ðm2
�Þ ¼ ð5:5� 3:5Þ GeV�1; (26)

where the value F
D �K�

0

0 ðm2
�Þ ¼ 1:24� 0:07 is taken from

Ref. [32]. This value, obtained assuming that the form
factor is saturated by the Dþ

s pole, is consistent with
1:20� 0:07 extracted directly from Dþ ! �K�0

0 �þ [32].

Since the estimate in Eq. (26) is a lower bound, we prefer
to leave �eff

S as a free parameter of our analysis to be

determined from the reported value of BðDþ !
K��þ�þÞ [21].
For the vector case, let us discuss in some detail the

contribution of K�ð892Þ. On one side, one takes the vector
current matrix element in Eq. (6) and writes

hK��þj�s
�dj0ij �K� ¼ X
pol:

hK��þj �K�iP �K� ðq2Þh �K�j�s
�dj0i;

¼ g �K�K�m �K�f �K�P �K� ðq2Þ
� ½ðpK � p�Þ� þ � � ��; (27)

where hK��þj �K�i ¼ g �K�K�ðqÞ � ðpK � p�Þ,
h �K�j�s
�dj0i ¼ �m �K�f �K���ðqÞ, with q ¼ pK þ p�, andP

pol:�ðqÞ��ðqÞ ¼ �g�� þ q�q�=m
2
�K� . We have made

explicit only the contribution of the vector transverse de-
grees of freedom. The dots stand for the longitudinal
degrees of freedom which can be shown to contribute to
both the scalar and vector form factors. However, for the
sake of comparison, it is enough to consider the transverse
part. Comparing Eqs. (6) and (27), one finds the equality

� �K�K�ðq2Þ � g �K�K�m �K�P �K� ðq2Þ ¼ FK�þ ðq2Þ
f �K�

� � �K�FK�þ ðq2Þ: (28)

The former equality must be understood as a replacement
of the K�ð892Þ contribution by the vector form factor. This
replacement should be valid at least in the region around
the resonance. A direct estimate of � �K� ¼ ð4:9�
0:2Þ GeV�1 is obtained using f �K� ¼ ð205� 6Þ MeV
from Bð�� ! K�ð892Þ���Þ ¼ ð1:20� 0:07Þ% [21]. On
the other side, one has

q�h �K�j�s
�ð1� 
5ÞcjDþi ¼ ið� � qÞ2m �K�FD �K�
þ ðq2Þ;

(29)

where the matrix element h �K�j�s
�ð1� 
5ÞcjDþi is writ-
ten in general in terms of four different form factors [18].
However, after contraction with q ¼ pD � p �K� only the

scalar form factor FD �K�
þ remains.1 Finally, the K�ð892Þ

contribution to A1 is written as

hK��þ
1 j�s
�ð1� 
5ÞcjDþij �K� h�þ

2 j �u
�ð1� 
5Þdj0i
¼ X

pol:

hK��þ
1 j �K�iP �K� ðm2

K�1
Þh �K�j�s
�ð1� 
5ÞcjDþi

� h�þ
2 j �u
�ð1� 
5Þdj0i

¼ f�� �K�K�ðm2
K�1

ÞNðm2
�K� ÞFD �K�

þ ðm2
�Þ

¼ f�� �K�Nðm2
�K� ÞFD �K�

þ ðm2
�ÞFK�þ ðm2

K�1
Þ: (30)

In the Breit-Wigner parametrization, the function � �K�K�

1In the notation of Ref. [18], FD �K�
þ corresponds to AD �K�

0 .
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corresponds to

�BW
�K�K�

ðm2
K�1

Þ ¼ m �K�g �K�K�

m2
�K� �m2

K�1
� im �K�� �K�

; (31)

again recovering the vector contribution in Eq. (14).
Considering the exchange of more than one vector reso-

nance Eq. (30) turns into

hK��þ
1 j�s
�ð1� 
5ÞcjDþijVh�þ

2 j �u
�ð1� 
5Þdj0i
¼ f�

X
V

½�VNðm2
VÞFDVþ ðm2

�Þ�FK�þ ðm2
K�1

Þ: (32)

Analogously to the scalar case, we propose to take for the
vector contribution to A1,

AV
1 ¼ hK��þ

1 j�s
�ð1�
5ÞcjDþijVh�þ
2 j �u
�ð1�
5Þdj0i;

¼ f�
X
V

½�VF
DVþ ðm2

�Þ�Nðm2
K�1

ÞFK�þ ðm2
K�1

Þ;

� f��
eff
V Nðm2

K�1
ÞFK�þ ðm2

K�1
Þ: (33)

A lower bound for �eff
V is obtained as

�eff
V 
 � �K�FD �K�

þ ðm2
�Þ ¼ ð4:6� 0:9Þ GeV�1; (34)

where the error takes into account the different results for

FD �K�
þ ðm2

�Þ ’ FD �K�
þ ð0Þ extracted from recent analyses. The

value FD �K�
þ ð0Þ ¼ 0:76 is found in a quark model calcula-

tion [50] and a lattice simulation [51]. This value contrasts

with FD �K�
þ ð0Þ ¼ 1:12 found in Ref. [52] using limits of

large energy effective theory and heavy-quark effective
theory. In any case, we like better to leave �eff

V as a second
free parameter to be fixed from the experimental value of
BðDþ ! �K�

0ð892Þ�þÞ þBðDþ ! �K�
0ð1680Þ�þÞ [21].

In Sec. III, we perform a rather exhaustive numerical
analysis of our model and the models of Refs. [20,29]. For
the sake of clarity, our model is defined by the amplitude in
Eq. (3) resulting from the sum of color-allowed scalar and
vector contributions, Eqs. (25) and (33), respectively,

A 1 ¼ f��
eff
S ðm2

D �m2
K�1

ÞFK�
0 ðm2

K�1
Þ

þ f��
eff
V Nðm2

K�1
ÞFK�þ ðm2

K�1
Þ; (35)

and the color suppressed contribution A2 in Eq. (8). It is
worth mentioning, however, that the total scalar amplitude

of our model must be rephased by some amount in order to
carry out a fair comparison with the experimental results,
see Eq. (37) for details. We denote this model as our final
model.

III. NUMERICAL RESULTS

In this section we shall collect all the numerical results
arising from the models discussed in the previous section
and compare them with the experimental results available.
Concerning the branching ratios, we shall take the PDG
averages [21] shown as the second column of Table I. From
this table we learn that (i) the contribution of theK��þ�þ
mode to Dþ decays is important and accounts for about
10% of these decays, (ii) the decay is strongly dominated
by (K��þ) pairs in the S wave, (iii) although less impor-
tant, the vector K�ð892Þ also gives a sizable contribution,
and (iv) the branching ratios of submodes containing the
next vector and the tensor resonances are fairly small.
Often, the branching ratios for the submodes are esti-

mated from the experimental fit to the Dalitz plot through
fit fractions. These fractions quantify the weight of the i-th
component of the amplitude to the final result as

fi ¼
R
D dm2

K�1
dm2

K�2
jAij2R

D dm2
K�1

dm2
K�2

jP
j
Ajj2

: (36)

In this formula i represents a submode that can be a
resonance or the sum of an entire partial wave and D
denotes that the integrals are to be evaluated over the whole
Dalitz plot (see Ref. [21]). The fit fractions from the
analyses of Refs. [1,3–6] are shown in Table II along
with the results of our model, discussed in the remainder
of this section. Experimental groups have used different
models to fit the Dalitz plot. In Ref. [1] the isobar model
was employed and the contribution from the � was in-
cluded as a Breit-Wigner function. In Ref. [4] a K-matrix
model was used for the S wave. The results from
Refs. [3,5,6] are obtained using a quasi-model-independent
bin-by-bin analysis for the S wave introduced in Ref. [3].
In Ref. [6], a ð�þ�þÞI¼2 amplitude is also included in the
model and is found to give a sizable contribution.

TABLE I. World average for the relevant branching ratios as reported by the Particle Data Group [21] and results for the three
models discussed in Sec. II. ðK��þÞS;P denote K��þ pairs in S or P waves.

Mode World Average [21] Model from Ref. [20] A2 only Our Model

Dþ ! K��þ�þ ð9:22� 0:21Þ% 0.63% 3.17% Fixed

Dþ ! ðK��þÞS�þ ð7:54� 0:26Þ% . . . 0.27% ð7:6� 0:2Þ%
Dþ ! ðK��þÞP�þ . . . . . . 2.84% Fixed

Dþ ! K�
0ð1430Þ�þ . . . 0.016% . . . . . .

Dþ ! K�ð892Þ�þ ð1:22� 0:09Þ% 0.5% . . . . . .
Dþ ! K�ð1680Þ�þ ð0:16� 0:06Þ% . . . . . . . . .
Dþ ! K�

2ð1430Þ�þ ð0:030� 0:008Þ% . . . . . . . . .
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Finally, a comprehensive account of the decay should be
able to reproduce not only the known branching ratios and
fit fractions but also the detailed shape of the Dalitz plot.
This is discussed for our final model at the end of this
section.

A. Previous models in the literature

Here, we update the results of two models found in the
literature for the decay under study [20,29]. In both cases
the description of the weak decay is based on the effective
weak Hamiltonian and therefore it is simple to make con-
tact with our model. We begin considering the model
presented in Ref. [20] where A1 is described by
Eq. (14) and A2 is given by Eq. (8). We have updated
the values of the relevant constants for the form factors and
for the Breit-Wigner parameters as compared with the
original work and calculated branching ratios and fit frac-
tions from this model. The outcome of this exercise is
shown in Tables I and III. The total branching ratio ob-
tained is about a factor of 15 smaller than the world
average. Moreover, in Table III we show that this result
is largely dominated by the K�ð892Þ with a fraction of
86.1% of the total result. The S-wave component is repre-
sented by the K�

0ð1430Þ alone and accounts for 10.7% of

the result. Therefore, the model fails to reproduce the

absolute branching fractions of Table I and the strong
dominance of the S wave that is evident from Tables I
and II. As a last comment, note that we employed the
central values for a1 and a2 given in Eq. (4). Shifts within
uncertainties in these values could produce sizable changes
in the branching fractions. However, since the general
picture of this model does not agree with the known
S-wave dominance, we do not attempt to fine-tune these
values in the case at hand.
Before turning to our final model it is worth investigat-

ing the suggestion of Ref. [29]. In this work, the authors
advocated that A2 should give the dominant contribution
since the color-allowed topology appears multiplied by a
factor of f�m

2
�. Following this suggestion, we ignore for

the moment the color-allowed topology. In the amplitude
A2 the K� form factors enter manifestly and it is straight-
forward to introduce the ones from Refs. [39,44], as shown
in Eq. (8). The use of these form factors improves the
description of FSIs as compared with Ref. [20] incorporat-
ing constraints from analyticity and unitarity. The numeri-
cal results from this model are shown Tables I and III. The
total branching ratio is now about a factor of 3 smaller than
the experimental average. Nevertheless, the dominant con-
tribution is again given by the P wave that accounts for
89.6% of the total result. Since the result for A2 is un-
ambiguous and we employed state-of-the-art form factors
we are led to the conclusion that A1 must be taken into
account. As a matter of fact, it is now transparent that the
large S-wave contribution originates precisely in the color-
allowed topology.

B. Our model

Let us now investigate in detail the numerical results for
our final model which includes the contribution of both
A1 and A2 topologies. The corresponding expressions
are given in Eqs. (8) and (35). We begin by considering the

TABLE II. Fit fractions (in %) for the different submodes of the decay Dþ ! K��þ�þ. From Ref. [6] we quote the values for the
quasi-model-independent analysis given in their Table VII. Results marked with an asterisk are the sum of all contributions to a given
partial wave. They do not take into account interference effects and were not quoted in the original works. The errors in the results of
our model take into account the uncertainties in a1 and a2, Eq. (4).

E791 (’02) [1] E791 (’06) [3] FOCUS (’07) [4] FOCUS (’09) [5] CLEO [6] Our Model

NR 13� 7 . . . . . . . . . . . . . . .
� 48� 13 . . . . . . . . . . . . . . .
K�

0ð1430Þ 12:5� 1:5 . . . . . . . . . 13:3� 0:6 . . .
K�ð892Þ 12:3� 1:3 11:9� 2:0 13:6� 1:0 12:4� 0:5 9:8� 0:5 . . .
K�ð1410Þ . . . . . . 0:48� 0:27 . . . . . . . . .
K�ð1680Þ 2:5� 0:8 1:2� 1:3 1:9� 0:8 1:8� 0:8 0:20� 0:12 . . .
K�

2ð1430Þ 0:5� 0:2 0:2� 0:1 0:39� 0:10 0:58� 0:12 0:20� 0:04 . . .
ðK��þÞS ð73� 15Þ� 78:6� 2:3 83:2� 1:5 80:2� 1:4 83:8� 3:8 82:0� 0:3
ðK��þÞP ð14:8� 1:5Þ� ð13:1� 2:4Þ� ð16:0� 1:3Þ� ð14:2� 0:9Þ� ð10:0� 0:5Þ� 15:0� 0:2
ð�þ�þÞI¼2 . . . . . . . . . . . . 15:5� 2:8 . . .P

ifi 88.6 91.9 99.57 94.93 122.8 97.0

TABLE III. Results for the fit fractions (in %) arising from the
three models described in the text.

Mode Model from Ref. [20] A2 only Our Model

NR . . . . . . . . .
K�

0ð1430Þ 10.7 . . . . . .
K�ð892Þ 86.1 . . . . . .
ðK��þÞS . . . 8.5 82:0� 0:3
ðK��þÞP . . . 89.6 15:0� 0:2P

ifi 96.8 98.1 97.0
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S-wave description which is, in our opinion, the main
aspect of the problem. On the experimental side, in 2006,
E791 introduced a new type of Dalitz plot analysis [3]
where, instead of modeling the K� S wave, its absolute
value and phase are determined in a bin-by-bin basis
directly from the data. This is done assuming a reference
amplitude, customarily that of the K�ð892Þ. The analysis
was repeated by CLEO [6] and FOCUS [5] with similar
results. It is important to remark that this framework can
only be considered as quasi-model-independent (QMI)
since the P and D waves are still described by their isobar
expressions. Nevertheless, since the isobar prescription
seems to be more accurate for these latter waves, one can
expect that the results have little model dependence.
Therefore, the results of the QMI analyses of
Refs. [3,5,6] are the better source of empirical information
about the K� S-wave amplitude in Dþ ! K��þ�þ.

The QMI measurement of the S-wave phase can be used
to test whether Watson’s theorem [53] holds for the three-
body decay in question. The theorem states that, in the
elastic domain, the K� S wave would exhibit the corre-
sponding K� scattering phase shift. However, this is valid
only in the absence of genuine three-body effects.
Therefore, in Dþ ! K��þ�þ, the empirical S-wave
phase could be distorted as compared with the scattering
one due to interactions of the resonant K� pair with the
bachelor pion. In our model, the S-wave FSIs are described
by the K� scalar form factor of Ref. [39] in a quasi two-
body approach, i.e., we assume that the K� pairs in Eq. (3)
form an isolated system and do not interact with the
bachelor pion. Moreover, the form factor of Ref. [39] is
obtained from dispersion relations that fix its phase to be
the scattering one within the elastic region [36].
Consequently, our S-wave amplitude has the K� I ¼ 1=2
scattering phase up to roughly 1.45 GeV where the K�0
channel starts playing a role. We compare in Fig. 1 the
experimental results from Refs. [3,5,6] with the phase of
our S wave. The high-statistics results of the CLEO
Collaboration have the smallest errors. One observes
from Fig. 1 that the QMI phases start at negative values
ranging from �60� [6] to �145� [5] whereas our phase
evolves from 0� up to about 200� (modulo �) in the
allowed phase space. Since we are dealing with a produc-
tion experiment, a global phase difference is expected as
compared with scattering results [4]. Therefore, we allow
for a global phase shift � in our S-wave amplitude2:

A Sðm2
K�1

; m2
K�2

Þ ! ei�ASðm2
K�1

; m2
K�2

Þ: (37)

In Fig. 1, we also plot as the dot-dashed line the phase of
our amplitude shifted by� ¼ �65�. With this shift, we see
that up to 1.5 GeV CLEO’s results and ours share a

remarkably similar dependence on energy.3 The results of
E791 and FOCUS seem to have a somewhat different
energy dependence, although they have larger error bars
due to smaller statistics. Inspired by the inspection of
Fig. 1, we consider as our final model the one given by
Eqs. (8) and (35) with a shift of � ¼ �65� in the S-wave
phase as defined in Eq. (37). We will discuss further con-
sequences of this shift below.
In order to compare the absolute value of our S wave

amplitude with the experimental data, we need to fix the
only two free parameters that occur in our model, namely,
the normalization constants �eff

S and �eff
V . Estimates for the

normalizations were given in Eqs. (26) and (34) but in
order to perform a careful comparison with the experimen-
tal results we choose to refine these values. With that aim,
we employ the following strategy. The constant �eff

V is
fixed in order to reproduce the value of the sum of all
vector submodes4 in the second column of Table I. Then,
we fix the scalar normalization �eff

S requiring the total

branching ratio from our model to match the world average
of Table I. Taking the central values for a1 and a2 given in
Eq. (4) this procedure gives

�eff
S ¼ 4:9� 0:4 GeV�1; �eff

V ¼ 4:4� 0:6 GeV�1;

(38)

-200

-150

-100

-50

 0

 50

 100

 150

 200

 250

 0.6  0.8  1  1.2  1.4  1.6

S
-w

av
e 

ph
as

e 
 [d

eg
re

es
]

mKπ     [GeV]

E791 [3]
Focus [5]
CLEO [6]

Our phase
Our phase -65o

FIG. 1 (color online). S-wave phases from the QMI analyses
of Refs. [3,5,6]. The solid line is the phase of our S-wave
amplitude with � ¼ 0� in Eq. (37), whereas the dot-dashed
line is the S-wave phase with � ¼ �65�. The dashed line
delimits the K�0 threshold.

2The results of the model are sensitive only to the phase
difference between the S and P waves. Therefore, � can be
considered as a global phase difference between the two waves.

3The S-wave phase of the form factor of Ref. [39] exhibits
around 1.8 GeV a decrease similar to the one observed in the
experimental results of Fig. 1.

4This procedure does not take into account possible interfer-
ence effects. However, these effects are likely to be small since
the resonances are relatively narrow. Furthermore, to the best of
our knowledge, there is no experimental value for the total
P-wave branching ratio.
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in good agreement with our estimates in Eqs. (26) and (34).
The uncertainties take into account the error in a1 and a2
which dominate by far as compared to the relatively small
errors of the world averages of Table I. We are now in a
position to compute the scalar branching ratio, shown in
Table I, as well as the fit fractions of the total vector and
scalar contributions which are shown in Tables II and III.
The model reproduces the dominant S-wave contribution
and gives fit fractions in fair agreement with the experi-
mental results.

We can now compare the absolute value of our S-wave
amplitude with experimental results from the QMI analy-
ses. However, since in isobar-like analyses the fit is sensi-
tive only to the relative weights of the amplitudes, in order
to compare the measurements with our result we need
perform a normalization. We define a normalized S-wave
amplitude by

ANorm
S ðm2

K�1
;m2

K�2
Þ¼ AS

ðRDdm2
K�1

dm2
K�2

jASj2Þ1=2
: (39)

This amplitude, by construction, is free of any global
constants that appear in AS and has a dimension of
½Energy��2. Interpolating the results from the tables found
in Refs. [3,5,6] we can calculate the normalized S wave for
each experiment. We repeated the same procedure for our
total S-wave amplitude. The QMI results for the Swave are
compared with our model in Fig. 2. Up to 1.55 GeV the
agreement of our results with the experimental ones is
remarkable.
Finally, we can perform a Monte Carlo (MC) simulation

to obtain a Dalitz plot from our model and compare the
diagram and its projections with the experimental results.
For the lack of a true data set, we resort to a MC simulation
of the original E791 data [1]. Reproducing their fit func-
tion, we generated a symmetrized Dalitz plot with 14 185
independent signal events which corresponds to the num-
ber of events in the sample analyzed by [1]. The obtained
diagram is shown in Fig. 3(a). Then we performed the same
exercise for our model and the result is shown in Fig. 3(b).
It is important to remark that the shape of the Dalitz plot is
related to the global phase shift of Eq. (37). In the words of
Ref. [3], the asymmetry in the K� P-wave bands reflects
the value of �. We have checked that taking � ¼ 0� in Eq.
(37) reverses the observed asymmetry, i.e., the high-energy
part of the Dalitz is more populated than the low-energy
corner. Consequently, we confirm the finding of Ref. [3]:
the asymmetry pattern in the Dalitz plot is a direct con-
sequence of the global phase difference between the S- and
P-wave phases. Finally, in Fig. 4 we show the projections
of the diagrams of Figs. 3(a) and 3(b). The results for our
model with � ¼ �65� and the simulated E791 data agree
quite well. The discrepancy in Fig. 4(a) around 1 GeV2 is
due to the interference pattern between the S and P waves.
This could be fixed through a fit to real data, which would
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give a refined value for�. One also sees around 2:5 GeV2 a
second discrepancy, seen in both Figs. 4(a) and 4(c), that is
a consequence of the disagreement of our S wave with
respect to the experimental ones for mK� > 1:45 GeV, as
shown in Fig. 2. Small isospin-breaking effects in the P
wave are to be expected as well, since the vector K� form
factor employed here was obtained from �� ! K���

decay data [44] where the charged vector resonances
intervene.

As a final comment, we remark that we do not include
ð�þ�þÞI¼2 interactions in our model. Within the frame-
work employed here this contribution does not appear.
Since the inclusion of an ad-hoc I ¼ 2 amplitude would
downgrade the model, we prefer to consider only the I ¼
1=2 FSIs. Additionally, ð�þ�þÞI¼2 scattering is entirely
nonresonant [21] with a slow variation of the correspond-
ing phase shift [54], indicating that interactions in this
channel are weak. Furthermore, from an experimental
point of view, the need for the I ¼ 2 amplitude is not
well established and requires further confirmation (see
Table II).

IV. SUMMARYAND DISCUSSION

We have presented a model aimed at describing the
decay Dþ ! K��þ�þ. The weak amplitude is described
within the effective Hamiltonian framework with the hy-
pothesis of factorization. TheK� hadronic FSIs are treated
in a quasi two-body approach by means of the well-defined

scalar and vector K� form factors, thereby imposing ana-
lyticity, unitarity, and chiral symmetry constraints. We
used the experimental values for the total and P-wave
branching ratios to fix the two free parameters in the
model. The relative global phase difference between the
S and P waves was fixed phenomenologically using the
experimental results of Ref. [6].
The use of theK� scalar form factor is shown to provide

a good description of the S-wave FSIs. Both the modulus
and the phase of our S wave compare well with experi-
mental data up to mK� & 1:5 GeV. It is worth mentioning
that the form factor we used has a pole that can be iden-
tified with the �. Furthermore, the model is able to repro-
duce the experimental fit fractions and the total S-wave
branching ratio. Finally, the Dalitz plot arising from the
model agrees with a MC simulated data set.
The main hypotheses of our model are the factorization

of the weak decay amplitude and the quasi two-body nature
of the FSIs. Therefore, the success of our description for
mK� & 1:5 GeV suggests that, in this domain, the physics
of the decay is dominated by two-body K� interactions.
We are led to conclude that effects not included in our
model such as the I ¼ 3=2 nonresonant K� S wave, the
nonresonant I ¼ 2 �þ�þ interactions and genuine three-
body interactions, could be considered as corrections to the
general picture described here.
Part of the discrepancy observed in our Dalitz plot is due

to the disaccord of our S-wave amplitude for mK� *
1:5 GeV. A possible cause for this disagreement is the
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FIG. 4 (color online). Projections from the MC generated Dalitz plots of Figs. 3(a) and 3(b). The error bars and the bands represent
solely statistical fluctuations. (a) Total projection, (b) high-energy projection, (c) low-energy projection.
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fact that factorization in a three-body decay is expected to
break down close to the edges of the Dalitz plot [28,55].
Furthermore, in this region, the kinematical configuration
of the final state momenta renders the quasi two-body
treatment less trustworthy as well. Finally, our model
does not include the tensor component. Although marginal,
this amplitude has a nontrivial distribution in the phase
space and could induce sizable interference effects in our
plots. In the vector channel, we find it puzzling that the
K�ð1410Þ, which gives a sizable contribution for �� !
K��� [43,44], is hardly seen in experimental analyses of
Dþ ! K��þ�þ.

In conclusion, since we do not fit the Dalitz plot we think
that the agreement between the model and the experimen-
tal data is satisfactory.
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APPENDIX A: K� FORM FACTORS

The scalar and vector K� form factors employed in this
work were obtained, respectively, in Ref. [39,44]. The
details can be found in the original references but for the
sake of completeness we briefly summarize here how they
are obtained.

1. Scalar K� form factor

The framework for the determination of the scalar K�
form factor, FK�

0 ðsÞ, is described in detail in Ref. [36]. The
results were numerically updated later and we employed in
our numerical analysis the latest version given in Ref. [39].
In Ref. [36], the authors solved a generalized Omnès
problem where three channels, namely K�, K�,and K�0,
are taken into account. In this framework, the scalar form
factor for channel k, Fk

0ðsÞ (where 1 � K�, 2 � K�, and
3 � K�0), can be cast as a sum over the three channels as

Fk
0ðsÞ ¼

1

�

X3
j¼1

Z 1

sj

ds0
�jðs0ÞFj

0ðs0Þtk!j
0 ðs0Þ�

ðs0 � s� iÞ : (A1)

In the last equation, sj is the threshold for channel j, �jðsÞ
are two-body phase-space factors and tk!j

0 are partial wave

T-matrix elements for the scattering k ! j. The form
factors are obtained solving the coupled dispersion rela-
tions arising from Eq. (A1). This is done imposing chiral
symmetry constraints and using T-matrix elements from
Ref. [10] that provide a good description of scattering data.
One recovers the elastic approximation by considering
solely the contribution of the channel k to the right-hand
side of Eq. (A1), which is then reduced to the usual Omnès
equation [47].

2. Vector K� form factor

The vector K� form factor, FK�þ ðsÞ, employed in this
work was obtained in Ref. [44] within a dispersive repre-
sentation from fits to �� ! K��� data obtained by the
Belle Collaboration [42]. The reduced vector form factor
~FK�þ ðsÞ � FK�þ ðsÞ=FK�þ ð0Þ is written in terms of a three-
times-subtracted dispersion relation that takes the form

~F K�þ ðsÞ ¼ exp

�
�1

s

m2
�

þ 1

2
�2

s2

m4
�

þ s3

�

�
Z scut

sK�

ds0
�K�
1 ðs0Þ

ðs0Þ3ðs0 � s� i0Þ
�
; (A2)

where sK� is the K� threshold and �K�
1 is the form-factor

phase. The subtraction constants �1 and �2 can easily be

related to the slope parameters �ðnÞ
þ , which appear in the

Taylor expansion of ~FK�þ ðsÞ around s ¼ 0,

~F K�þ ðsÞ ¼ 1þ �0þ
s

m2
�

þ 1

2
�00þ

s2

m4
�

þ � � � ; (A3)

as �0þ ¼ �1 and �00þ ¼ �2 þ �2
1. The cutoff scut is intro-

duced as the upper limit of the Omnès integral to study the
importance of the high-energy region which is strongly
suppressed by the factor s03 in the denominator of the
integrand of Eq. (A2). Furthermore, within the elastic
region, �K�

1 is the P-wave I ¼ 1=2 K� scattering phase
shift. An advantage of the three-times-subtracted form of
~FK�þ ðsÞ is to make the results less sensitive to deficiencies
of the phase shift in the higher-energy region. Then, the
integral in Eq. (A2) emphasizes the lower-energy domain
(elastic domain), for which one can provide a reliable
model for the phase shift. The description of �K�

1 we
used is inspired by RChT and includes the contribution
of two vector resonances, namely, the K�ð892Þ and the
K�ð1410Þ. The detailed expressions can be found in
Ref. [44].
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