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Universidad Técnica Federico Santa Marı́a, Casilla 110-V, Valparaı́so, Chile

2Joint Institute for Nuclear Research, Dubna, Russia
(Received 1 July 2009; published 8 September 2009)

We study the photoabsorption reaction and real Compton scattering within the color dipole model. We

rely on a photon wave function derived in the instanton-vacuum model and on the energy-dependent

phenomenological elastic dipole amplitude. Data for the photoabsorption cross section at high energies

agree with our parameter-free calculations. We also provide predictions for the differential real Compton

scattering cross section. Although no data for small angle Compton scattering are available so far, this

process can be measured in ultraperipheral hadronic and nuclear collisions at the LHC.
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I. INTRODUCTION

Compton scattering �þ p ! �þ p and the related
photoabsorption reaction have been a subject of intensive
theoretical and experimental investigation [1–15]. While in
the case of deeply virtual Compton scattering, where the
initial photon is highly virtual, the QCD factorization is
proven [5,7,8] and the amplitude can be expressed in terms
of the generalized parton distributions (GPD) [1–15], in the
case of real Compton scattering (RCS) the available theo-
retical tools are rather undeveloped.

On the one hand, it has been shown in Refs. [16,17] that,
for large momentum transfer �?, it is possible to factorize
the RCS amplitude [18,19] and express it in terms of the
distribution amplitudes of the proton. On the other hand, it
is possible to express the amplitude of the process via the
minus 1st moment of GPDs at zero skewedness [5,20,21].

The traditional sources of quasireal and virtual photons,
the electron beams, with very high collision energies are
expected to be available in the near future. The new
projects of the Large Hadron Electron Collider (LHeC)
[22,23] and Electron Ion Collider (EIC) [24,25] are cur-
rently under intensive discussion. Besides the electron
beams, one can also use beams of charged hadrons.
Provided that the transverse overlap of the colliding had-
rons is small, i.e. the transverse distance b between the
colliding centers is larger than the sizes of the colliding
particles b > R1 þ R2, the electromagnetic interaction be-
tween colliding particles becomes the dominant mecha-
nism. Such processes called ultraperipheral collisions can
be studied in pp, pA, and AA collisions. In particular, one
can access RCS in the reaction

A1 þ A2 ! A1 þ �þ A2: (1)

The typical virtualities hQ2
�� i of the intermediate photon ��

are controlled by the form factors of the colliding particles
and are small:

hQ2
�� i & 3

R2
A

� 0:1 GeV2

A2=3
: (2)

Thus, hQ2
�� i is of the order of the soft hadronic scale, so the

intermediate photon can be treated as a free Weizsäcker-
Williams one; i.e. the amplitude of the process (1) can be
described in terms of RCS.
These processes at the LHC will allow one to study RCS

at very high energies. The possibility of the observation of
such processes experimentally has been demonstrated by
the STAR [26–28] and PHENIX [29] experiments at the
Relativistic Heavy Ion Collider. It is expected that at the
LHC photon-proton collisions at energies up to

ffiffiffiffiffiffiffi
s�p

p
&

8� 103 GeV can be observed [30]. In this paper we con-
centrate on RCS on a proton target. Nuclear effects will be
discussed elsewhere.
In what follows, we employ the color dipole approach

introduced in Refs. [31,32]. The central objects of the
model are the dipole scattering amplitude Aðs; �; ~rÞ and
the light-cone quark distribution functions of the photon.
While perturbative QCD (pQCD) predicts the dipole am-
plitude only for small-size dipoles, several successful phe-
nomenological parametrizations for the large-size dipoles
are known. Relying on the photon wave function evaluated
in the instanton-vacuum model [33], which is valid for any
Q2, one can extend the applicability of the model to the
case of the processes with real photons [34]. In this paper,
we are going to consider the real photoabsorption �þ p !
X and the RCS.

II. COLOR DIPOLE MODEL

The color dipole model is valid only at sufficiently high
energies, where the dominant contribution to the Compton
amplitude comes from gluonic exchanges. Then the gen-
eral expression for the Compton amplitude in the color
dipole model has the form
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A��ðs;�Þ � eðiÞ� eðjÞ�

Z
d�1d�2d

2r1d
2r2 ��

ðiÞ
� ð�2; ~r2Þ

�Adð�1; ~r1;�2; ~r2; �Þ�ðjÞ
� ð�1; ~r1Þ; (3)

where eðiÞ� is the photon polarization vector, �1;2 are the

light-cone fractional momenta of the quark and antiquark,
~r1;2 are the transverse distances in the final and initial

dipoles, respectively, � is the momentum transfer in the
Compton scattering, Adð. . .Þ is the scattering amplitude
for the dipole state which also implicitly depends on s, c.m.

energy squared, and�ðiÞ
� ð�2; ~r2Þ is the wave function of the

photon in the polarization state i [33].
At high energies in the small angle approximation

�=
ffiffiffi
s

p � 1, the quark separation and fractional momenta
are preserved, so

I mAdð�1; ~r1;�2; ~r2; �Þ � �ð�1 � �2Þ�ð ~r1
� ~r2Þ ImfN�qqð~r1; ~�; �1Þ: (4)

Generally, the amplitude fN�qqð. . .Þ is a nonperturbative ob-

ject, with asymptotic behavior for small r controlled by
pQCD [31]:

fN�qqð ~r; ~�; �Þ � r2;

up to slowly varying corrections � lnðrÞ.
Calculation of the RCS differential cross section also

involves the real part of scattering amplitude, whose rela-
tion to the imaginary part is quite straightforward.

According to Ref. [35], if the limit lims!1ðImf
s� Þ exists

and is finite, then the real part and imaginary parts of the
forward amplitude are related as

Refð� ¼ 0Þ ¼ s� tan

�
�

2

�
�� 1þ @

@ lns

��
Imfð� ¼ 0Þ

s�
:

(5)

In the model under consideration, the imaginary part of the
forward dipole amplitude indeed has a power dependence
on energy Imfð� ¼ 0ÞðsÞ � s�, so (5) simplifies to

ReA
ImA

¼ tan

�
�

2
ð�� 1Þ

�
� �: (6)

This fixes the phase of the forward Compton amplitude,
which we retain for nonzero momentum transfers assum-
ing for the real and imaginary parts similar dependences.
Finally we arrive at

A�� � ð�þ iÞeðiÞ� ðq0ÞeðjÞ� ðqÞ
Z

d2r
Z

d� ��ðiÞ
� ð�; rÞ

��ðjÞ
� ð�; rÞ ImfN�qqð~r; ~�; �; sÞ: (7)

For the cross section of unpolarized Compton scattering,
from (7) we obtain

d	�p
el

dt
¼ 1þ �2

16�

X
ij

jAðijÞ
�� j2

¼ 1þ �2

16�

X
ij

��������
Z

d2r
Z

d� ��ðiÞ
� ð�; rÞ�ðjÞ

� ð�; rÞ

� ImfN�qqð~r; ~�; �Þ
��������

2

: (8)

The imaginary part of the forward amplitude (7) gives
the total photoabsorption cross section

	�p
tot ¼

1

16�

Z
d�d2rj��ð�; rÞj2 ImfN�qqð~r; ~�; �Þ: (9)

Formulas (8) and (9) are used further for numerical
calculations.

III. WAVE FUNCTIONS FROM THE INSTANTON
VACUUM

In this section, we present briefly some details of the
wave function evaluation in the instanton-vacuum model
(see [36–38], and references therein). The central object of
the model is the partition function of the light quarks,
which has the form

Z½v� ¼
Z

d
D �cDcD�eiS½
;v; �c ;c ;��; (10)

where the effective action S½
; v; �c ; c ;�� is defined as
[38,39]

S½
; v; �c ; c ;�� ¼
Z

d4x

�
N

V
ln
þ 2�2ðxÞ � �c ðp̂þ v̂

�m� c �Lf 	� 
 �m 	 fLÞc
�
:

Here c and � are the fields of constituent quarks and
mesons, respectively, N=V is the density of the instanton
gas, v̂ � v��

� is the external vector current correspond-

ing to the photon, L is the gauge factor,

Lðx; zÞ ¼ P exp

�
i
Z x

z
d��v�ð�Þ

�
; (11)

which provides the gauge covariance of the action, and the
nonlinear term in explicit form is

�c �c �Lf 	� 
 �m 	 fLc � �c
Z

d4xd4yd4z �c ðxÞ
� �Lðx� zÞ~fðx� zÞ
�

�X
i

�iðzÞ�m;i

�
~fðz� yÞ

� Lðz� yÞc ðyÞ; (12)

where �m is one of the matrices, �m ¼ f1; i ~�; �5; i ~��5g,
~fðx� yÞ ¼ R d4p

ð2�Þ4 fðpÞe�ip
ðx�yÞfðpÞ, and fðpÞ is the

Fourier transform of the zero-mode profile.
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In the leading order in Nc, we have the same Feynman
rules as in the perturbative theory, but with momentum-
dependent quark mass �ðpÞ in the quark propagator

SðpÞ ¼ 1

p̂��ðpÞ þ i0
: (13)

The mass of the constituent quark has a form

�ðpÞ ¼ mþMf2ðpÞ;

where m � 5 MeV is the current quark mass and M �
350 MeV is the dynamical mass generated by the interac-
tion with the instanton-vacuum background. Because of
the presence of instantons, the coupling of a vector current
to a quark is also modified:

v̂ � v��
� ! V̂ ¼ v̂þ V̂nonl;

V̂nonl � �2MfðpÞdfðpÞ
dp�

v�ðqÞ þOðq2Þ; (14)

where p is the momentum of the incoming quark and q is
the momentum of the photon. Notice that for an arbitrary

photon momentum q the expression for V̂nonl depends on
the choice of the path in (11), and as a result one can find in
the literature different expressions used for evaluations
[33,39–41]. In the limit p ! 1, the function fðpÞ falls
off as � 1

p3 , so for large p � �1, where  �
ð600 MeVÞ�1 is the mean instanton size, the mass of the

quark�ðpÞ � m and vector current interaction vertex V̂ �
v̂. However, we would like to emphasize that the wave
function�ð�; rÞ gets a contribution from both the soft and
the hard parts, so even in the large-Q limit the instanton-
vacuum function is different from the well-known pertur-
bative result.

We have to evaluate the wave functions associated with
the following matrix elements:

I�ð�; ~rÞ ¼
Z dz

2�
eið�þð1=2ÞÞq
nzh0j �c

�
� z

2
n� ~r

2

�

� �c

�
z

2
nþ ~r

2

�
j�ðqÞi; (15)

where � is one of the matrices � ¼ f��; ���5; 	��g. In the
leading order in Nc one can easily obtain

I� ¼
Z d4p

ð2�Þ4 e
i ~p? ~r?�

�
pþ �

�
�þ 1

2

�
qþ

�

� TrðSðpÞV̂Sðpþ qÞ�Þ: (16)

The evaluation of (16) is quite tedious but straightforward.
Details of this evaluation may be found in Ref. [33].

The overlap of the initial and final photon wave func-
tions in (8) was evaluated according to

�ðiÞ�ð�; r; Q2 ¼ 0Þ�ðiÞð�; r; Q2Þ ¼ X
�

I��ð�; r�; 0Þ

� I�ð�; r; Q2Þ; (17)

where summation is done over possible polarization states
� ¼ f��; ���5; 	��g. In the final state we should use

r�� ¼ r� þ n�
q0?
r?
qþ

¼ r� � n�
�?
r?
qþ

, which is related to

the reference frame with q0?;� ¼ 0 in which the compo-

nents (16) were evaluated.

IV. NUMERICAL RESULTS

A. Photoabsorption

The Bjorken variable used in deep inelastic scattering
(DIS), x ¼ Q2=ð2p 
 qÞ, is not appropriate at small photon
virtualities, since it does not have the meaning of a frac-
tional quark momentum any more and may be very small
even at low energies. In particular, for RCS the Bjorken
variable x defined in this way would be zero. Therefore,
one should rely on the phenomenological dipole cross
section, which depends on energy, rather than x. We use
the s-dependent dipole cross section proposed in [42],
which saturates at large separations in analogy to the
x-dependent one proposed in [43]. Correspondingly, for
the elastic dipole amplitude we employ the model devel-
oped in [34,44–46],

Im fN�qqð ~r; ~�; �; sÞ ¼
	0ðsÞ
4

exp

�
�
�
BðsÞ
2

þ R2
0ðsÞ
16

�
~�
2
?
�

�ðe�i�~r
 ~� þ eið1��Þ ~r
 ~�

� 2eiðð1=2Þ��Þ ~r
 ~�e�ððr2Þ=ðR2
0
ðsÞÞÞÞ;

(18)

where 	0ðsÞ, R2
0ðsÞ, and BðsÞ are the phenomenological

parameters known from DIS and �p scattering data.
We employ the s-dependent parametrization of the di-

pole cross section suitable for soft processes [42]

	 �qqðr; sÞ ¼ 	0ðsÞð1� e�r2=R2
0
ðsÞÞ; (19)

	0ðsÞ ¼ 	�pðsÞ
�
1þ 3

8

R2
0ðsÞ
r2�

�
; (20)

R0ðsÞ ¼ 0:88 fm�
�
s0
s

�
0:14

; (21)

where s0 � 1000 GeV2. For the pion cross section we use
the parametrization and fit of Ref. [47], namely, its
Pomeron part,

	�pðsÞ ¼ 23:6

�
s

s0

�
0:079

mb: (22)

The parameter BðsÞ in Eq. (18), is related to the t slope of
the differential cross section of elastic �p scattering [44–
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46],

BðsÞ ¼ B�p
el ðsÞ � 1

3hr2chi� � 1
8R

2
0ðsÞ: (23)

Here we rely on the Regge factorization and use B�p
el ðsÞ ¼

B0 þ 2�0
Pð0Þ lnðs=�2

0Þ, with B0 ¼ 6 GeV�2, hr2chi� ¼
0:44 fm2, �0

Pð0Þ ¼ 0:25 GeV�2, and �0 ¼ 1 GeV.
This parametrization may be used in Eqs. (8) and (9)

only at very high energies where, in terms of the Regge
theory, the Pomeron term in the cross section dominates.
So far, only two data points shown in Fig. 1 are available
for 	�p from the H1 and ZEUS experiments [48], and our

parameter-free calculation agrees well with these data.
In order to extend the model down to smaller values offfiffiffi
s

p
, where more data are available, we added the Reggeon

contribution, which was fitted to the photoabsorption data
in Ref. [47]:

	ðRÞ
�pðsÞ ¼ 129 nb� s�0:4525: (24)

Besides, the Pomeron part of the dipole cross section
parametrized as in Eqs. (19)–(21) exposes some problems
at low energies. Indeed, as one can see from (21), the
saturation radius R0ðsÞ grows and may substantially exceed
the confinement radius. In order to regularize the low-
energy behavior of R0ðsÞ, we modify Eq. (21) as follows:

R0ðsÞ ) ~R0ðsÞ ¼ 0:88 fm

�
s0

sþ s1

�
0:14

: (25)

A fit to low-energy photoabsorption data allows one to
fix this parameter at

ffiffiffiffiffi
s1

p ¼ 60 GeV (see Fig. 1 for more

details). Since further evaluations are done in the LHC
energy range, the difference between (21) and (25) is
negligible, as one can see from Fig. 1. Indeed, both pa-
rametrizations coincide for

ffiffiffi
s

p
* 10 GeV. In the right

pane of Fig. 1, the contributions of the color dipole (9)
and Reggeon (24) terms are displayed separately.

B. Compton scattering

Using parametrizations (19)–(22), we calculate the elas-
tic RCS differential cross section as

d	�p
el

dt
¼ 1þ �2

16�

X
ij

��������
Z

d2r
Z

d� ��ðiÞ
� ð�; rÞ�ðjÞ

� ð�; rÞ

� ImfN�qqð~r; ~�; �Þ þ 16�	ðIRÞ
�p ðsÞeBIRðsÞt

��������
2

: (26)

Since extraction of Reggeon parameters from experimental
data yields huge uncertainties [49], in this paper we rely on
the f dominance of the Pomeron [50] and take the Reggeon
slope as

BIRðsÞ ¼ B1 þ 2�0
IRð0Þ ln

�
s

�2
0

�
; (27)

where B1 ¼ B0 ¼ 6 GeV�2,�0
IRð0Þ ¼ 0:9 GeV�2, and the

results for the differential cross section are presented in
Fig. 2. As one can see from the left pane, for s * 10 GeV2

the cross section rises with energy for small jtj but falls at
jtj ¼ 1 GeV2. This corresponds to the Regge predicted

energy dependence s2ð�ðtÞ�1Þ. However, a word of caution
is in order here, since the linear t dependence of the
Pomeron trajectory may not continue at large jtj, and
indeed data indicate that �PðtÞ levels off [51]. In the right
pane of Fig. 2, our predictions for the t dependence of the
cross section are plotted for different energies. The cross
section demonstrates a shrinkage of diffraction cone with
energy in accordance with the Regge theory.
The RCS cross section has been measured so far only at

Jefferson Lab (JLAB) at energies s & 10 GeV2 [52]. In
Fig. 3, we compare predictions of the color dipole model
with experimental data. Since these data also have rela-
tively large jtj * 2 GeV2 (wide-angle Compton scatter-
ing), calculations in the dipole approach go beyond the
kinematics of validity of the model. Indeed, Eq. (18), lead

1 10 100

low-energy experiments
H1 1994
ZEUS 1996

100

130

160

190

Color dipole, 
parametrization (25)

Color dipole, 
parametrization (21)

W, GeV

σ to
t ,

µb

Total
Pomeron from color dipole
Reggeon from γp

Color dipole, 
parametrization (25)

1 101 102
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100
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175

σ to
t ,

µb

FIG. 1 (color online). Photoabsorption cross section in the color dipole model as a function of c.m. energy W ¼ ffiffiffi
s

p
.

Left: Comparison of calculations with experimental data from ZEUS [48]. The dashed line corresponds to the parametrization (19)–
(21), and the solid line corresponds to addition of the Reggeon term [Eq. (25)]. Right: The contributions of the Pomeron and Reggeon
parts plotted separately. At W * 10 GeV. the Reggeon contribution becomes negligibly small.
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to the RCS cross section which decreases exponentially at
fixed s=t, while the general pQCD analysis [53] predicts
1=s6 behavior.

As was discussed in the introduction, there are two
approaches which are used to describe the wide-angle

Compton scattering. The first one is valid for large �?
[18,19] and expresses the amplitude via the distribution
amplitude of three valence quarks in the proton. The RCS
cross section in this approach was studied in Refs. [16,17],
and it was found that evaluation with widely used distri-
bution amplitudes also underestimates the JLAB data [52].
Another description expresses the RCS amplitude via the
1=x moment of GPDs at zero skewedness:

R
dx
x Hðx; 0; tÞ

[5,20,21]. This approach is able to describe the existing
JLAB data. However, the t dependence of the cross section

s=6.8 GeV2

s=8.9 GeV2

s=10.9 GeV2

101

 1

10-1

10-2

10-3

10-4

10-5

-t, GeV2

 1  2  3  4  5  6  7

d σ/d
t ,

 n
b/

G
eV

2

FIG. 3. Comparison of the RCS cross section evaluated in the
color dipole model with low-energy (large-angle) experimental
data from JLAB [52].
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FIG. 4 (color online). Twofold cross section kd2	=dtdk at the
LHC with a c.m. energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14 TeV.
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t=-0.5 GeV2

t=-1 GeV2

10 102 103
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G
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2

s=102 GeV2
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102
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 1
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dσ
/d

t ,
 n
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G
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2

FIG. 2. RCS cross section in the color dipole model. Left: Energy dependence of the RCS cross section for different t, W � ffiffiffiffiffiffiffi
s�p

p
.

For s * 10 GeV2, the cross section depends on the energy s approximately as s2ð�ðtÞ�1Þ. For s & 10 GeV2, we have a ‘‘soft’’ regime
where contributions of Reggeons dominate. Right: t dependence of the RCS cross section for different energies in the energy range of
ultraperipheral collisions at the LHC.
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in this approach depends on the model for the GPD used in
the evaluation.

Since the experimental counting rate also includes the
flux of quasireal photons, we present in Fig. 4 the two-
dimensional product of the flux and the differential RCS
cross section

d2	pp!pp�

dkdt
¼ dN�

dk

d	�p!�p

dt
; (28)

where k is the absolute value of the wave vector of the

quasireal photon and photon flux
dN�

dk is given, e.g., in [30].

V. SUMMARY

In this paper, we evaluated the photoabsorption and RCS
cross sections within the color dipole model. We employed
a photon wave function calculated in the instanton-vacuum
model and incorporating nonperturbative effects [33]. For
the dipole cross section, we relied on an energy-dependent

parametrization, because Bjorken x is not a proper variable
at low photon virtualities.
We found that the model describes available data for the

photoabsorption cross section from the ZEUS and H1 data
quite well, justifying application of the color dipole for
processes with real photons. Applicability of the dipole
model was extended down to smaller energies

ffiffiffi
s

p
&

30 GeV by freezing the saturation radius RsðsÞ [Eq. (21)]
for the energy-dependent parametrization [42], to make
sure that it does not exceed the confinement radius.
We also evaluated the RCS cross sections and made

predictions for the energy range to be accessed in ultra-
peripheral collisions at the LHC (Fig. 2).
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