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We discuss a notion of gluon-glueball duality analogous to quark-hadron duality. We apply this idea to

the radiative decay of heavy orthoquarkonium, Q �Q ! �gg, which has been used to search for glueballs.

The duality is first introduced in two simplified contexts: (i) a hypothetical version of QCD without any

light quarks and (ii) QCD in the large-Nc limit. We then discuss how an approximate form of this duality

could hold in real QCD, based on a hierarchy of time scales in the temporal evolution of the gg subsystem

in radiative orthoquarkonium decay. We apply this notion of gluon-glueball duality to suggest a method

that could be useful in experimental searches for glueballs.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is a very successful
theory describing quark and gluon interactions. There are
ample observations of gluon jets in high-energy collider
data, and lattice QCD calculations of the pure gluonic
sector of the theory have yielded a detailed spectrum of
(color-singlet) bound states of gluons, commonly called
glueballs [1–3]. The lightest of these can be modeled as gg
states, where g denotes a gluon; these include a state with
S ¼ 0, L ¼ 0, and JPC ¼ 0þþ, and a heavier state with
S ¼ 2, L ¼ 0, and JPC ¼ 2þþ. Radial excitations, states
with angular momentum L � 1, and ggg states also appear
in the spectrum. Over the years there have been numerous
experimental searches for glueballs. It was pointed out
early on that a promising method is to use the radiative
decay of a heavy Q �Q orthoquarkonium state [4,5]. At the
level of elementary constituents, this decay is Q �Q ! �gg,
so that when the two gluons are emitted with an invariant
mass close to that of a glueball, they have substantial
probability to bind to form this state. Other production
channels have also been used. At present, there are strong
indications for hadrons with large gluonic components,
although there is still no consensus concerning the details
of the mixing of q �q and gluonic components to form
various physical mass eigenstates [1–3].

In this paper we examine the temporal evolution of
glueball production in radiative orthoquarkonium decay.
We use the fact that glueballs have a smaller density of
states than q �q mesons, as a function of mass, in conjunc-
tion with the Heisenberg uncertainty principle, to infer that
one can generically measure the formation of a glueball
sooner than the formation of a q �q meson. On the basis of
this observation, we propose a notion of gluon-glueball
duality. We apply this to comment on current experimental
searches for glueballs and to suggest a method that could
be useful for these searches. An outline of the paper is as
follows. In Sec. II we review quark-hadron duality. In
Secs. III and IV we give some background on glueball

properties and searches. In Sec. V we introduce the notion
of gluon-glueball duality in two simplified contexts, and in
Sec. VI we discuss it in full QCD. We point out that in
studying the production and decay of glueballs, it is useful
to analyze the temporal evolution of the gg subsystem as it
is produced, binds to form a protoglueball, mixes with q �q
components, and finally decays. Section VII suggests some
future lattice gauge measurements that are relevant to
gluon-glueball duality, while in Sec. VIII we apply our
observations to experimental searches for glueballs.

II. QUARK-HADRON DUALITY

We first give some background on ideas of duality in
hadronic physics. The reader who is familiar with this
material can skip this section and proceed directly to our
new observations in Secs. V and VI. The idea of quark-
hadron duality in several related forms [6,7] dates back to
the early period in the development of the quark-parton
model. In the Bloom-Gilman form [7], it states, roughly
speaking, that in a reaction such as an electron scattering
off a nucleon, the sum of the cross sections for the full set
of exclusive hadronic final states Xh that are kinematically
accessible at a given center-of-mass energy Ec:m: ¼

ffiffiffi
s

p
is

equivalent to the cross section for the elementary reaction
eþ q ! eþ q involving the quarks in the nucleon. A
similar duality relation applies to charged-current neutrino
reactions such as �� þ N ! �þ Xh. Let us denote the

four-momenta of the incident and scattered leptons as ‘1
and ‘2, with ‘1 � ‘2 ¼ q, ð‘01Þlab ¼ E, ð‘02Þlab ¼ E0, and
the four-momenta of the target nucleon and final hadronic
state as p and pX. We further recall the standard Bjorken
variables x ¼ �q2=ð2q � pÞ and y ¼ q � p=‘1 � p ¼ ðE�
E0Þ=E. Then this duality is the statement that

X
Xh

�ð�� þ N ! �þ XhÞ �
Z 1

0
dx

Z 1

0
dy

d�

dxdy

� ð�� þ f ! �þ f0Þ; (2.1)
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where f denotes all of the charge�1=3 quarks (and charge
�2=3 antiquarks) that can participate in this reaction. At a
fundamental level, this duality is justified by the asymp-
totic freedom of QCD [8]. In the deep inelastic scattering
of an electron or neutrino off a nucleonN, the hadronic part
of the cross section involves the tensor

W��ðq; pÞ ¼ 1

2

X
X

hNjJ�jXihXjJy� jNið2�Þ3�ðpþ q� pXÞ

/
Z d4z

2�
e�iq�zhNjJ�ðzÞJ�ð0ÞyjNi; (2.2)

where X denotes a hadronic final state and J� is the

respective electromagnetic or weak (charged or neutral)
current. One then uses the Wilson operator product expan-
sion to express the bilocal product of currents in terms of a
sum of local operators, applicable near to the light cone
z2 ! 0, as enforced by the kinematic conditions �q2 �
�2

QCD and q � p � �2
QCD, where �QCD ’ 300 MeV is the

scale where QCD confines and spontaneously breaks chiral
symmetry. This enables one to express the deep inelastic
scattering off the nucleon in terms of the scattering off
quarks. The asymptotic freedom of QCD has the conse-
quence that these quarks are quasifree when probed at short
distances. Similarly, away from particle thresholds, one
can calculate the total cross section for eþe� ! hadrons
at center-of-mass energy

ffiffiffi
s

p
in terms of the cross section

for eþe� ! q �q, where 2mq &
ffiffiffi
s

p
. One can consider the

cross section for eþe� ! hadrons, smeared over reso-
nances, to be equivalent to the elementary reaction
eþe� ! q �q, summed over the kinematically accessible
quarks [9–11]

X
Xh

�ðeþe� ! XhÞ �
X
q

�ðeþe� ! q �qÞ: (2.3)

In the full QCD theory, the notion of quark-hadron
duality is naturally generalized to parton-hadron duality,
where the partons include both quarks and gluons, and the
hadrons are understood to include not only qqq baryons
and q �qmesons, but also hadronic mass eigenstates that are
linear combinations of q �q and gg, ggg, etc. Possible exotic
color-singlet hadrons such as, in the bosonic sector, q �qq �q
and q �qg can, in principle, also be included in this set of
physical states. In one sense, this duality amounts to the
statements that (i) there is a complete orthonormal basis of
perturbative quark and gluon states forming the Fock space
of perturbative QCD, and there is a complete orthonormal
basis of physical color-singlet hadronic mass eigenstates
forming another Fock space; and (ii), given the asymptotic
freedom of QCD, the cross section for an inclusive reaction
involving the contributions of many exclusive physical
channels with smearing over resonances as appropriate,
can be expressed in terms of the corresponding cross
section in terms of the elementary partonic degrees of
freedom. In another sense, one can think of it as somewhat

analogous to a Mittag-Leffler expansion, in which a func-
tion is written as a sum over its poles. In this context, one
may recall that the Mittag-Leffler expansion of the Euler
beta function forms part of the mathematical basis of the
s-t duality in the Veneziano and Virasoro amplitudes in
hadronic string theory [12–16].
A specific �qq $ meson duality (and the analogous

gg $ glueball duality to be introduced next) is particularly
useful. This is especially the case if one considers the
large-Nc limit of QCD [17–19]. For large Nc, baryons
become very heavy, and the kinematically accessible had-
ronic states Xh directly produced in eþe� annihilation are
�qq mesons. Since the decay rate of such a meson or
glueball vanishes in the large-Nc limit, meson resonances
are narrow in this limit. The energy integral in Eq. (2.3)
then becomes essentially a summation over the contribu-
tions of these resonances.
Mesons and baryons are observed to lie on approxi-

mately linear Regge trajectories of the form

�ðm2Þ ¼ �0 þ �0m2 (2.4)

with respective intercepts �0 and a common Regge slope
�0 ¼ 0:9 GeV�1. Physical meson states occur where the
angular momentum �ðm2Þ is equal to a non-negative in-
teger. This behavior was originally motivated by analysis
of potential scattering and was elegantly explained by
hadronic string theory (the dual resonance model), accord-
ing to which a meson is a mass eigenstate of an open string.
It is believed (although it has not been proved) that the
large-Nc limit of SUðNcÞ QCD reproduces features of a
hadronic string theory. In the hadronic string model, the
string tension � ¼ 1=ð2��0Þ, so that

ffiffiffiffi
�

p ’ 0:42 GeV.
Physically, this string tension represents the energy per
unit length of the chromoelectric flux tube between the q
and �q forming the meson. An example of a Regge trajec-
tory is that for the S ¼ 1, I ¼ 1 (isovector) mesons, which
includes �ð770Þ, a2ð1320Þ, �3ð1690Þ, and a4ð2040Þ, with
increasing values of J indicated as subscripts (where ~J ¼
~Lþ ~S). The radial excitations �0 ¼ �ð1450Þ, �00 ¼
�ð1700Þ, etc. are on so-called daughter trajectories, form-
ing a horizontal line in the plane with horizontal and
vertical axes corresponding to s ¼ m2 and J, respectively.
A feature predicted by hadronic string theory (predating

QCD) and consistent with data is that the density of q �q
meson states as a function of massm grows rapidly withm.
This is also the case for a specific flavor state such as �ud
and specific values of J, parity and charge conjugation
quantum numbers, such as JPC ¼ 1��. Let us denote the
density of meson states, i.e., the number of states at a given
massm, counting those on the leading and daughter meson
trajectories, as

nðmÞM � dnMðmÞ
dm

; (2.5)

whereM stands for ‘‘meson.’’ For the (bosonic) string in d
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spacetime dimensions, the meson density of states nðmÞM
grows exponentially fast for m2 � ð�0Þ�1 [20,21]:

nðmÞM �m�ðdþ1Þ=4 exp½�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þðd� 2Þ�0p

� (2.6)

where d is the spacetime dimension. Hence, at sufficiently
high mass, these resonances overlap. Indeed, even before
one takes account of this asymptotic exponential growth in
the density of states, the hadronic string model already
implies that they will overlap, because on the leading
Regge trajectory, Eq. (2.4) shows that two successive me-
son states with the same JPC, that differ by two units of L
and J, satisfy �J ¼ 2 ¼ �0ðm2

Lþ2 �m2
LÞ, so that

mLþ2 �mL ¼ 2

�0ðmLþ2 þmLÞ : (2.7)

Hence, as the masses of these states increase, their mass
difference decreases, and eventually becomes less than
their widths, so that they overlap. This happens when the
mass difference mLþ2 �mL becomes comparable to either
of the widths �L or �Lþ2. For the present illustrative
purposes, we approximate these as being roughly equal,
and denote them as �, which we take to be �� 0:25 GeV.
Setting mLþ2 �mL ¼ � and solving, we get

mLþ2 þmL

2
’ 1

�0�
’ 4:5 GeV: (2.8)

Thus, as (light-quark) meson masses increase beyond this
scale, the states in their spectrum tend to merge. In the
upper end of the mass region of interest here, from about
1.5 to 3 GeV, the asymptotic condition m2 � ð�0Þ�1 be-
gins to be satisfied, so the formula (2.6) is relevant. A
hadronization model based on the chromoelectric flux
tube between a q and �q in conjunction with a Schwinger
mechanism was given in Ref. [22]. The non-Abelian gen-
eralization, in which a constant chromoelectric field cre-
ates gluons, was analyzed in terms of relevant invariants in
[23,24]. The flux-tube mechanism is incorporated in cur-
rent hadronization computer programs such as PYTHIA

[25]. Because of the increasing density of meson states
for masses m2 � ð�0Þ�1, the cross section for e�eþ !
q �q ! hadrons then becomes a continuous curve which,
according to the duality assumption, coincides with the
continuous perturbative curve.

An important feature concerns the behavior in the mass
region below approximately 3 GeV. The asymptotic free-
dom and precocious scaling properties of QCD make
quark-hadron duality a property that is effectively local
in mass already at masses that are only modestly greater
than �QCD. Thus, the � and �0 of masses 0.77 and

1.45 GeV largely account for the contributions in their
mass region to finite-energy sum rules [12]. This is also
manifest in Bloom-Gilman duality [7]. A difference is that
Dolen-Horn-Schmid duality applies to 2 ! 2 reactions
involving on-shell hadrons, e.g., �þ�� ! �þ��.
Similarly, Bloom-Gilman duality applies to reactions

such as exclusive electroproduction, e.g., eþ p !
eþ pþ �0.

III. REMARKS ON GLUEBALL PROPERTIES

In this section we note some properties of glueballs that
we will use in our analysis. An especially important and
relevant property that motivates our new suggestion is the
density of states, but we begin with some basic facts. Since
the gluons are bosons, Bose statistics implies that the total
glueball wave function is symmetric under interchange of
any two gluons. A difference between q �q mesons and
glueballs is that, although a confined quark picks up a
(gauge-invariant) dynamical, constituent mass of order
�QCD, one cannot ascribe a mass in the same manner to

a bound gluon, since this would violate the color gauge
invariance. This means that while a constituent quark
model can provide a good description of baryons and q �q
mesons (see, e.g., [26] for a recent discussion and refer-
ences to the literature), one cannot describe the glueball in
quite so simple a manner. Furthermore, in the time evolu-
tion of an initial gluonic state, the splittings g ! gg can
occur in a manner that is leading in 1=Nc, in the large-Nc

limit. This is different from the time evolution of a q �q state,
for which the transition q ! qþ g is suppressed in the
large-Nc limit. Thus, here a physical state denoted as gg
strictly refers only to a state whose quantum numbers are
most simply attainable via a (color-singlet) combination of
two gluons. Keeping this caveat in mind, the lowest-lying
glueballs can be modeled as gg bound states. For these, in
the Clebsch-Gordon decomposition of the gg SUð3Þc rep-
resentations 8� 8, the singlet appears as a symmetric
combination. Hence, the product of the space and spin
wave functions must be even under this interchange. The
spin wave function involves the addition of two spin-1
angular momenta. If the resultant spin of the gg combina-
tion is S ¼ 0 or S ¼ 2, this spin wave function is even, so
the relative angular momentum must also be even, and the
ground state is L ¼ 0. With P ¼ ð�1ÞL and C ¼ ð�1ÞLþS

for this combination of two bosons, one thus expects that
the lowest two glueball states have (i) S ¼ L ¼ J ¼ 0,
whence JPC ¼ 0þþ and (ii) L ¼ 0, S ¼ J ¼ 2, whence
JPC ¼ 2þþ. The higher-lying glueball states can involve
both nonzero internal angular momenta and radial
excitations.
Estimates of glueball masses and widths have been made

on the basis of a number of different methods [1,2,4,5,27–
57]. Continuum approaches include the MIT bag model
[36–48], flux-tube models, AdS/CFT approaches, and cal-
culations based on the Bethe-Salpeter equation. Lattice
calculations have achieved a rather high level of precision
[27,49–57]. These naturally give the mass of a particular
glueball in terms of the square root of the string tension,ffiffiffiffi
�

p ¼ 0:42 GeV. For masses of glueballs in purely gluonic
QCD, recent lattice calculations [51,55,57] yield
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mð0þþÞ ’ 1:7 GeV; (3.1)

mð2þþÞ ’ 2:4 GeV; (3.2)

mð0�þÞ ’ mð0þþ0Þ ’ 2:6 GeV; (3.3)

and

mð1þ�Þ ’ mð2�þÞ ’ 3:0 GeV; (3.4)

up to approximately 3 GeV. Here, the 0þþ0
glueball is a

radial excitation of the 0þþ glueball. Lattice measurements
of higher-lying glueball masses have been made up to
roughly 5 GeV [51,55,57]. Some unquenched calculations
have also been reported [56].

In the context of the Regge or hadronic string model,
glueballs correspond to closed strings, which have a Regge
slope equal to half of the Regge slope for open strings:

ð�0ÞGB ¼ �0

2
: (3.5)

It follows that for m2 � ð�0Þ�1, the density of states for
glueballs (closed strings), nðmÞGB � dnðmÞGB=dm, is ex-
ponentially smaller than the density of states for q �qmesons
(open strings), nðmÞM. Quantitatively, from Eqs. (2.6) and
(3.5), one finds that, for m2 � ð�0Þ�1, the ratio of these
densities of states is

nðmÞGB
nðmÞM

� 2�ðdþ1Þ=4 exp½�mð ffiffiffi
2

p � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 2Þ�0=3

p
�:
(3.6)

With �0 ¼ 0:9 GeV�1 (and d ¼ 4),

nðmÞGB

nðmÞM
� 0:3 for m ¼ 2 GeV (3.7)

and

nðmÞGB

nðmÞM
� 0:1 for m ¼ 3 GeV: (3.8)

Thus, Eq. (3.6) indicates that the spectrum of low-lying
glueball states is more sparse than that of the isoscalar q �q
mesons in the mass region from 1.5 to 3 GeV. To within the
theoretical and experimental uncertainties, this is consis-
tent with the data: for example, in the mass region 1.3 to
2 GeV, there are the following scalar 0þþ states: f0ð1370Þ,
f0ð1500Þ, f0ð1710Þ, and indications from recent BES data
of an f0ð1790Þ and f0ð1810Þ [1]. The lattice estimates (to
be discussed next) indicate that in this interval of masses,
there is one 0þþ glueball expected. In this channel, this
gives a ratio of nðmÞGB=nðmÞM � 0:25.

Estimates have also been made of glueball widths. In the
limit Nc ! 1 with g2sNc fixed and finite [17,18], where gs
is the SUð3Þc gauge coupling, the width of a glueball
vanishes like

�GB ¼ 1

	GB

/ �QCD

N2
c

; (3.9)

while the width of a q �q meson M vanishes like

�M ¼ 1

	M
/ �QCD

Nc

: (3.10)

The relations (3.9) and (3.10) follow from direct diagram-
matic 1=Nc counting. As expected from the close corre-
spondence between the large-Nc limit of QCD and the
hadronic string picture, they can also easily be understood
in a string picture. The decay of a q �q meson resonance (an
open string) takes place via a single cut in the string (flux
tube), whereas the decay of a glueball requires a first cut to
transform it from the initial closed string to an open string
and then a second cut to produce the two-meson (e.g., ��)
final state. With each cut being suppressed by a 1=Nc

factor, the results on �M and �GB follow. Reverting from
the large-Nc limit to real QCD, actual estimates of glueball
widths have varied widely, ranging from a few MeV to
Oð102Þ MeV [37,39,51].

IV. PREVIOUS SEARCHES FOR GLUEBALLS

Here we briefly review results of previous searches for
glueballs. There is extended literature dealing with search
criteria and analysis of data [1,2,4,5,58–87]. One signature
is that glueballs would not fit into the standard set of q �q
states, including their angular momentum and radial ex-
citations. Second, since the gluons carry no electric charge,
one expects a small branching ratio of glueballs into pho-
tons. Third, since the gluons carry no flavor, it was origi-
nally expected that the decays of these states should be
flavor independent, up to phase space considerations. On
the other hand, however, it has been suggested that for J ¼
0 glueballs, there should be helicity suppression of decays
to light-quark hadrons, at least if the decay amplitude
element can be accurately modeled beginning with emis-
sion of a single q �q pair [61]; if it involves higher initial
multiplicity of (anti)quarks, then this helicity suppression
would be reduced [62]. Fourth, some glueball states have
exotic values of JPC that cannot be obtained from q �q.
Experimental searches for glueballs have been carried

out at many laboratories. Experiments using eþe� annihi-
lation include Mark III and the Crystal Ball at SPEAR, the
subsequent Crystal Ball experiment at DORIS, and experi-
ments at other laboratories, including Orsay, CESR,
Novosibirsk, BES, BABAR, and Belle [1,3,63–71]. We
focus first on the isoscalar, JPC ¼ 0þþ channel, since the
lightest pure glueball has these quantum numbers. There
are three prominent isoscalar, Lorentz scalar 0þþ meson
resonances between about 1.0 and 1.7 GeV, namely, the
f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ. The quark model is only
expected to produce two such states, which would have
S ¼ 1, L ¼ 1, J ¼ 0 and be the analogues of the flavor
SU(3) octet and singlet pseudoscalar mesons, 
 and 
0.
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The fact that there are three f0 states in this range is thus
one of several pieces of evidence suggesting that the third
may be primarily a glueball. The f0ð1370Þ is quite broad,
with �� 300 MeV, while the f0ð1500Þ and f0ð1710Þ have
widths of roughly 100–140 MeV [3]. More recently, The
Beijing eþe� collider BES has found evidence for an
f0ð1790Þ and f0ð1810Þ [1]. Several theoretical fits to these
data have been performed [1,2]. The authors of some of
these fits concluded that the lightest glueball forms a
primary component in the f0ð1500Þ [79–82], while others
concluded that this lightest glueball forms the primary
component in the f0ð1710Þ [51,83] and still others invoked
important contributions from q �qq �q states [84,85] (see also
[34]). Further data and analyses should help to elucidate
this situation [1,2,86].

V. GLUON-GLUEBALL DUALITY IN TWO
SIMPLIFIED CONTEXTS

To explain our notion of gluon-glueball duality, we
begin with two simplified forms of QCD, namely
(i) without any light quarks, and (ii) in the large-Nc limit.
Let us first consider the case of no light quarks. For
definiteness, we imagine the standard model with one
generation of fermions with quarksU andD having masses
mU, mD � �QCD. We denote these quarks collectively as

Q. We next consider the favored reaction for glueball
production, namely the production, in eþe� annihilation,
of the orthoquarkoniumQ �Q state, followed by its radiative
decay Q �Q ! �gg. An important feature of this world is
that a number of the lowest-lying glueball states would be
stable. Indeed, using the lattice estimates of low-lying
glueball masses listed above, all six of the states listed
would be stable; in order for a heavier glueball to be
kinematically allowed to decay to two of the lightest glue-
balls, it would necessarily have a mass greater than about
3.4 GeV. Thus, the invariant mass distribution dN=dmG for
the mass of the gluonic states recoiling against the photon
in the radiative orthoquarkonium decayQ �Q ! �gg, i.e., at
the physical level, Q �Q ! �þ XGB, where XGB denotes a
glueball, would exhibit very sharp resonances for mXGB

equal to the mass of each of the stable glueballs, and
then finite-width resonances for the higher-lying unstable
glueballs, up to the kinematic limit allowed by the mass of
the original orthoquarkonium state. The statement of
gluon-glueball duality would be that, with appropriate
smearing,

Z �
dN

dm

�
GB

dm ¼
Z �

dN

dm

�
gg
dm; (5.1)

where the first integral is over physical glueball final states
and the second integral denotes the perturbative calculation
of dN=dm, where m is the invariant mass of the gg sub-
system in the decay Q �Q ! �gg. In terms of the overall
eþe� cross section, the gluon-glueball duality would be
the relation, with appropriate smearing,

X
GB

d�ðeþe� ! n3S1ðQ �QÞ ! �þ XGBÞ

’ d�ðeþe� ! n3S1ðQ �QÞ ! �ggÞ; (5.2)

where again the second term represents the perturbative
calculation of the production and decay.
In the Nc ! 1 limit, q �q mesons and glueballs become

stable, as indicated by Eqs. (3.9) and (3.10). Furthermore,
there is no mixing between glueballs and q �qmesons. Here,
gluon-glueball duality takes a particularly simple form.
With Nc large but finite, so as to allow for the radiative
decay of the heavy orthoquarkonium state, this duality
would again be expressed via the relations (5.1) and (5.2).
Quark-hadron duality also takes a particularly simple form
in this large-Nc QCD. This type of connection between
sums over resonances and properties of the underlying
quarks and gluons was previously used with QCD sum
rules to study correlators of various operators [28–34].

VI. GLUON-GLUEBALL DUALITY IN QCD

We next discuss our notion of gluon-glueball duality in
real QCD. An important part of our discussion of this
duality in the radiative decay of a heavy orthoquarkonium
state Q �Q ! �gg is a careful treatment of the temporal
evolution of the gg subsystem, as it is initially produced, as
the gluons bind to form a protoglueball, as this glueball
mixes with a q �q component, and as it finally decays. To
understand gluon-glueball duality, it is crucial to analyze
the time evolution and hierarchy of time scales relevant to
the Q �Q ! �gg decay, as compared with the production of
mesons in a reaction such as eþe� ! q �q. A general state-
ment concerns the time required for the formation of color-
singlet states from the respective initial q �q and gg states.
Given the fact that QCD confines on a scale �QCD and that

hadrons have a corresponding size

rhad ’ 1

m�

’ 1 fm; (6.1)

and given the causality condition that information cannot
be communicated any faster than at the speed of light, it
follows that a minimum time associated with the formation
of color-singlet hadronic states is

thad ¼ rhad
c

’ 0:3� 10�23 sec (6.2)

(where we have explicitly indicated the speed of light, c).
This is a rough estimate, accurate to a factor of order unity.
For example, given that a glueball is represented by a
closed string, one could consider a special case in which
the closed string forms a circle, and one might argue that it
is the circumference of this circle rather than the radius that
is of order 1 fm. In this case, the radius would be
1=ð2�Þ fm and the time taken for the formation, involving
motion of the gluons outward from the center of the circle
would be smaller than the value given in Eq. (6.2) by the
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factor 2�. Because of the asymptotic freedom of QCD, for
both (i) eþe� ! �qq at center-of-mass energy

ffiffiffi
s

p � �QCD

and (ii) the radiative decay of heavy orthoquarkonium
�QQ ! �gg, there exists a sufficiently short time tpert
such that for times t < tpert the physics can be described

using perturbative QCD. This satisfies the inequality

tpert <
1

�QCD

� thad: (6.3)

Given the precocious scaling behavior of QCD, it is not
necessary that tpert 	 thad. For the two specific cases under

discussion, one could take tpert � 1=
ffiffiffi
s

p
for the reaction

eþe� ! q �q and tpert � 1=ð2mQÞ for the decay Q �Q !
�gg. A typical value would be tpert � 1=ð3 GeVÞ ’
10�25 sec . Thus, in the reaction eþe� ! �qq, during the
time interval 0< t < tpert, the q and �q recede from each

other in an approximately perturbative manner, with the
first modification being the emission of a gluon, leading to
a q �q subsystem in a color octet state together with the
emitted gluon g. In the radiative decay of the heavy ortho-
quarkonium stateQ �Q ! �gg, during the time interval 0<

t < tpert, the gg final-state subsystem mainly evolves into

more gluons via g ! gg splittings. As noted above, this
gluon splitting occurs at leading order in the large-Nc limit,
in contrast to the q ! qþ g or g ! ðq �qÞ8 processes,
which start to mix q �q with the initially purely gluonic gg
subsystem.

After a time tMF, where MF stands for ‘‘meson forma-
tion,’’ the initial �qq system will bind to form a meson, and
after a corresponding time tGBF, where GBF stands for
‘‘glueball formation,’’ the initial gg system will bind to
form a glueball. From the causality argument above, one
has the general inequalities

tMF; tGBF � thad (6.4)

and hence also the obvious inequalities tMF, tGBF � tpert.

The q and �q in the meson, and the gluons in the glueball,
have minimum bound-state momenta kmin ��QCD be-

cause of confinement [35]. Several factors are relevant
for the hadronic formation times tMF and tGBF, including
(i) the intrinsic QCD hadronization time scale thad, (ii) the
mixing of q �q and gluonic states to form mass eigenstates,
(iii) the decay widths �i of various mesons and glueballs,
and (iv) especially importantly for our current discussion,
the density of meson and glueball states, nðmÞM and
nðmÞGB. The quantum-mechanical uncertainty relation
�E�t * @=2 implies that the observation time interval
�t needed for an observer to measure the spectrum of
states with a resolution in mass �m is bounded below by
�t � ð@=2Þ=�m. Here �m is set by a combination of the
density of states with the same quantum numbers (isospin
and JPC) and by the widths of these states. Let us consider a
glueball search conducted in the range of masses mGB ¼
1:5–3 GeV. Given the inequality in the density of glueball

versus q �q meson states in Eq. (3.6), it follows that the time
needed to experimentally measure and resolve glueball
states is shorter than that needed for q �q meson states.
Using the hadronic string model as a theoretical guide,
which is consistent with the observed states in the relevant
mass region, one has, roughly,

tGBF ’ tMF

4
: (6.5)

This leads us to suggest a different picture of glueball
production than the one that is often used in analyses of
experimental data on glueball searches. Conventional
analyses use meson mass eigenstates that are linear combi-
nations of q �q states and gluonic states. Our new point is
that it is crucial to take into account the actual temporal
formation of the glueball states. Given that the glueball
formation time is shorter than the meson formation time,
with tGBF ’ tMF=4 being a reasonable estimate, the glue-
ball forms before significant mixing with the q �q sector
takes place. A concrete realization of both the �qq $ meson
and gg $ glueball dualities can be obtained as follows.
Starting with an initial pure �qq entrance state, we imple-
ment the duality by letting the unitary QCD evolution
operator, formally expressed as UðtÞ ¼ e�iHt, operate on
this state, where here H denotes the QCD Hamiltonian,
yielding

UðtMFÞj �qqðt ¼ 0Þi ¼ jM; mesoni: (6.6)

That is, the evolution over this time interval will yield a
physical �qq meson resonance. In a similar manner, in a
purely gluonic sector

UðtGBFÞjggðt ¼ 0Þi ¼ jGB; glueballi: (6.7)

The two gluons in the gg subsystem produced in the
radiative orthoquarkonium decay �QQ ! �gg emerge
from spacetime points that are separated by a small dis-
tance�r� 1=mQ, whereQ ¼ c or b is a heavy quark. This

is not precisely the same as the production of a scalar
glueball by the action of the local operator

SðxÞ ¼ G��ðxÞG��ðxÞ (6.8)

on the vacuum. However, a semiclassical argument leads to
the conclusion that the gg usually bind with L ¼ 0 relative
orbital angular momentum. For example, in the case Q ¼
b, the spatial separation of the points where the two gluons
are emitted is �r� 1=mb � 0:2 GeV�1. The three-

momenta of the gluons in the gg rest frame are j ~kgj �
mGB=2�Oð1Þ GeV. The resultant average value of the
relative orbital angular momentum is

hLi � j ~kgj�r & 0:2: (6.9)

Hence, one expects that this production mechanism will
yield mainly glueball states with L ¼ 0, namely, the 0þþ
and 2þþ mentioned before.
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In the radiative Q �Q ! �gg decay of orthoquarkonium,
the gg subsystem is manifestly purely gluonic to start with,
and mixing with q �q components occurs subsequently. In
the large-Nc limit, this mixing is suppressed by 1=Nc,
which has led to the common expectation that there could
be hadrons that are primarily gluonic, with only a small q �q
component. Our estimate that tGBF ’ tM=4, in conjunction
with the suggestion from large-Nc arguments that mixing
of gluonic and q �q components may be rather small, leads
us to the important inference that the gluon-glueball dual-
ity could hold reasonably well in full QCD as well as in the
simplified contexts which we initially used to introduce it.
It is understood that there will be some corrections due to
the mixing of the gluons in a primarily gluonic hadron with
q �q states.

Let us next consider the longer times required for the �qq
meson, or the glueball, to decay into hadrons that are stable
with respect to the strong interactions. The formation and
decay times for the meson resonances are comparable,
although 	M * tMF > tpert, and similarly for the glueballs,

one has 	GB * tGBF > tpert. This is to be contrasted with

the situation for a very heavy quark, namely, the top quark,
which decays weakly before it can form color-singlet
hadronic t�t or t �q states. To the extent that the large-Nc

limit is applicable to QCD, one expects that, other factors
such as phase space being equal, the lifetime 	GB might be
somewhat longer than 	M, i.e., the glueball width might be
somewhat smaller than that for a q �q meson of comparable
mass. However, in actual QCD, glueball widths may not be
suppressed, and may, indeed, be of order 100–300 MeV.
This would be somewhat analogous to the situation with
the 
0 meson; in the Nc ! 1 limit (with � � g2Nc fixed),
instanton effects are exponentially suppressed by the factor
expð�8�2=g2Þ ¼ expð�8�2Nc=�Þ, so that Uð1ÞA is a
good global symmetry and the isoscalar pseudoscalar me-
son 
0 is an approximate Nambu-Goldstone boson.
However, in real QCD the 
0 is rather heavy, with a mass
of 958 MeV. An important point is that, with the hierarchy
of time scales that we have noted, the glueball decays by
popping two pairs of light q �q quarks out of the vacuum to
produce the two final-state mesons (�’s, K’s, etc.). This
process is essentially equivalent to the process by which
the initially purely gluonic state acquires a q �q component.

VII. FURTHER POSSIBLE INSIGHT FROM
LATTICE QCD

Lattice calculations have the appeal of providing a fully
nonperturbative tool for studying the properties of QCD,
and the advantage of being able to be continually improved
with the use of larger lattices, longer running times, im-
proved lattice actions, and careful analysis of statistical and
systematic uncertainties. Most lattice QCD calculations of
glueball masses have been performed using the quenched
approximation. Some unquenched calculations have also
been reported [56]. Both the necessity of evaluating the

fermion determinant and the related presence of discon-
nected flavor loops appearing in unquenched calculations
make these calculations more difficult than computations
in quenched QCD. We suggest that it would be worthwhile
for lattice gauge simulations to address some of the issues
that we have raised in this paper. We are interested not just
in minor shifts of the glueball spectrum, but rather in
finding the time t
 by which the admixture of the initial
glue state with the �qq and multiquark states becomes
significant. For this purpose it could be useful to study
the correlator CðtÞ ¼ hSð0ÞSðtÞi of the above-mentioned
scalar glueball operator and examine how its Euclidean
time dependence might differ from a simple exponential of
the form expð�mð0þþÞtÞ. (Here, it is understood that one
would ideally have removed the effects of higher-lying
glueball states with the same JPC ¼ 0þþ and also that
one would have taken account of effects due to periodic
lattice boundary conditions.) For long, asymptotic times t
such that t � 1=ð2m�Þ, the behavior of this scalar corre-
lator CðtÞ is controlled by the lowest-mass s-channel
threshold, namely, that for the 2� final state, but we are
interested in shorter times. Similar calculations could be
performed for the 2þþ glueball state by using an appro-
priate color-singlet tensor correlator. Assessing the full
lifetime until the glueball decays into final hadrons that
are stable with respect to the strong interactions is chal-
lenging, but is not essential for our purposes here.

VIII. APPLICATION TO EXPERIMENTAL
SEARCHES FOR GLUEBALLS

In this section we apply our notion of gluon-glueball
duality to suggest a method that could be useful in experi-
mental searches for glueballs in radiative orthoquarkonium
decays, in particular, those involving the �ð1SÞ, �ð2SÞ,
and �ð3SÞ states. There are very high-statistics data sets
from radiative J=c decays, which have been used quite
effectively for glueball searches. However, radiative �
decays allow one to search in a wider mass range and
reduce phase space suppression for decays into final states
involving more massive glueballs. While a major purpose
of the experiments at BABAR and Belle was to study B
physics and CP violation, they accumulated of order 109

events from decays of �ð1SÞ, �ð2SÞ, and �ð3SÞ, as well as
the �ð4SÞ state that provided a copious source of Bd

mesons [70,71]. These data extended the already impres-
sive data sets collected by the CLEO experiment at CESR
in its later years of high-intensity running [65,66]. For an
average radiative decay branching ratio of 1.5% we expect
of order 1:5� 107 radiative decays in the BABAR and
Belle data. In the radiative �ðnSÞ ! �gg (with n ¼
1; 2; 3), we label the four-momenta of the outgoing photon
and gluons as k�, k1, and k2, and recall that it is necessary

to symmetrize the amplitude under the interchange k1 $
k2 to take account of the two identical bosons in the
(perturbative) final state. If one makes the approximation,
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in the perturbative calculation of the amplitude, that the
outgoing (massless) gluons interact only very weakly with
each other, it follows that the three invariant mass combi-
nations ðk1 þ k2Þ2, ðk� þ k1Þ2, and ðk� þ k2Þ2 are uni-

formly distributed over the Dalitz plot, which becomes
an equilateral triangle. In this Dalitz plot, the region of
interest, which is assumed here to be dominated by the
lowest-lying glueballs, is then a rectangular strip adjacent
to the bottom of the triangle. The total area of this region is
2� ð2:7Þ2=100, i.e. 15% of the total area of the Dalitz plot
and hence includes approximately 2� 106 events. The
notion of gluon-glueball duality that we have discussed
then leads us to the suggestion to analyze the inclusive
mass distribution of these 2� 106 events. This avoids any
bias due to postselection by the final channel (which might
prefer specific final �qq or multiquark resonances). Our use
of gluon-glueball duality is analogous to the use of quark-
hadron duality in the sense that both of these dualities
relate inclusive channels and sums of exclusive channels
in the respective particle processes. For notational simplic-
ity, we denote X � XGB. Clearly, only a crude resolution
�MX ’ 0:5 GeV is needed to resolve the two well-
separated lowest-lying glueball states with JPC ¼ 0þþ
and 2þþ (or the excited 0þþ state). Let us denote the
invariant mass squared of the gg subsystem asM2

X ¼ ðk1 þ
k2Þ2 and take particle energies to be measured in the rest
frame of the decaying Q �Q orthoquarkonium state. The
elementary kinematic relation

M2
Q �Q

¼ ðk� þ k1 þ k2Þ2 ¼ 2E�ðMQ �Q �E�Þ þM2
X (8.1)

implies that

�MX ¼ ð2E� �MQ �QÞ�E�

MX

: (8.2)

As an illustration, we consider the BABAR detector [70];
similar numbers apply for the Belle detector [71]. The
fractional resolution ð�E�Þ=E� of the measurement of

the photon energy by the electromagnetic calorimeter of
this detector varies from about 2% to 3% over the range of
E� from �8 GeV to 1 GeV [70]. Hence, the resultant

resolution �MX from Eq. (8.2), for the radiative decay of
the �ð1SÞ, varies from approximately 0.55 GeV to
0.27 GeV as MX varies from 1.7 GeV to 2.4 GeV. For the
radiative decay of the �ð2SÞ the resolution �MX varies
from about 0.65 GeV to 0.33 GeV as MX varies from
1.7 GeV to 2.4 GeV. Considering the very high statistics
of the data sets obtained by BABAR and Belle, this analysis
could give useful information about glueballs via broad
deviations from the phase space distribution that would

occur in their absence. This analysis presumes that one
takes careful account of pure quantum electrodynamic
(QED) backgrounds and corrections. By insisting on
some hadronic activity in the detector, one may reduce
such QED backgrounds without excessive biasing such as
would result if one were to fully reconstruct the final
hadronic state. Obviously, the experimental procedure
sketched here in the broadest terms is challenging.
Nevertheless, one has observed how much useful new
data BABAR and Belle have obtained concerning new
hadronic states involving charm quarks, including
Xð3782Þ, new Ds states, and others. Provided that our
analysis of the time evolution of the glueball production
process discussed above is correct, then we believe that
these facilities have the potential to considerably clarify
the lingering puzzles in glueball physics.

IX. CONCLUSIONS

In this paper we have presented a different picture of
glueball production than the one commonly used in current
analyses of data. Using the hadronic string model, we have
given a quantitative estimate of the smaller density of
states of glueballs (closed strings) in the region of
�2 GeV, as compared with q �q mesons (open strings),
and, from basic quantum mechanics, we have inferred a
resultant hierarchy of formation times of observable (re-
solvable) glueballs, as compared with q �q mesons, namely,
Eq. (6.5). On the basis of this, together with the suggestion
from the large-Nc expansion that mixing between glueball
and q �q states may be suppressed, we have argued that the
glueballs produced in radiative orthoquarkonium decay
could plausibly form without substantial mixing with q �q
states. This motivates a notion of gluon-glueball duality,
which we have presented, namely that the summation over
sufficiently many glueball states produced in radiative
orthoquarkonium decay Q �Q ! �gg, appropriately
smeared, could be well fit with the perturbative calculation
of this process. We have applied this notion of gluon-
glueball duality to suggest a method that could be useful
in experimental searches for glueballs using radiative de-
cays of the �ð1SÞ, �ð2SÞ, and �ð3SÞ states using the large
data sets that are currently available on these decays.
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