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Compton scattering off elementary spin 3 particles
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We calculate Compton scattering off an elementary spin % particle in a recently proposed framework for
the description of high spin fields based on the projection onto eigensubspaces of the Casimir operators of
the Poincaré group. We also calculate this process in the conventional Rarita-Schwinger formalism. Both
formalisms yield the correct Thomson limit but the predictions for the angular distribution and total cross
section differ beyond this point. We point out that the average squared amplitudes in the forward direction

for Compton scattering off targets with spin s = 0

>

1 are energy independent and have the common

value 4e*. As a consequence, in the rest frame of the particle the differential cross section for Compton
scattering in the forward direction is energy independent and coincides with the classical squared radius.
We show that these properties are also satisfied by a spin % target in the Poincaré projector formalism but

not by the Rarita-Schwinger spin % particle.

DOI: 10.1103/PhysRevD.80.054002

L. INTRODUCTION

A long standing problem in particle physics is the proper
description of high spin fields. The widely used Rarita-
Schwinger (RS) formalism [1] was shown to be inconsis-
tent for interacting particles long ago [2], and lead to
superluminical propagation of spin % waves in the presence
of an external electromagnetic field [3]. Similar and related
problems have been found in the presence of other inter-
actions [4].

Recently, a new formalism for the description of high
spin fields was put forward by Napsuciale Kirchbach and
Rodriguez [5] (NKR in the following), based on the pro-
jection onto eigensubspaces of the Casimir operators of the
Poincaré group. In that work, it is shown that, under
minimal coupling, the (parity-conserving) electromagnetic
structure of a spin % particle transforming in the
(1/2,1/2) ® [(1/2,0) ® (0, 1/2)] representation of the ho-
mogeneous Lorentz group (HLG) depend on two free
parameters denoted by g and f. The propagation of
spin % waves was studied for the case f = 0 and it is shown
there that the value of the gyromagnetic factor g is related
to the causality of the propagation of spin % waves and
causal propagation is obtained for g = 2. This result re-
lates the ““natural” value of the gyromagnetic factor [6] to
causality for spin 3.

The case of spin 1 particles in the (%, %) representation
space of the HLG was addressed in [7]. In this case, the
most general electromagnetic interaction of a spin 1 vector
particle was also shown to depend on two parameters
(denoted by g and ¢) which cannot be fixed from the
Poincaré projection alone. These parameters determine
the electromagnetic structure of the particle and were fixed
imposing unitarity at high energies for Compton scattering.
This procedure fixes the parameters to g =2 and ¢ = 0
predicting a gyromagnetic factor g = 2, a related quadru-
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pole electric moment Q = —e(g — 1)/m? and vanishing
odd-parity couplings as a consequence of & = (0. The
obtained couplings coincide with the ones predicted for
the W boson in the standard model [8].

These results make it worthy to study the analogous
problems for spin 3 particles and this work is devoted to
this purpose. The electromagnetic properties of spin % par-
ticles have been addressed in a number of previous papers
aiming to understand either the electromagnetic structure
of hypothetical elementary particles or the electromagnetic
properties of hadrons [6,9].

In this work, we study the electromagnetic structure of a
spin % particle in the NKR formalism and calculate
Compton scattering both in the NKR and RS formalisms.
We compare the predictions of these formalisms for the
angular distribution and total cross section and notice that
the average squared amplitude for Compton scattering of
spin O, %, and 1 particles in the forward direction is energy
independent. This property is satisfied by spin % particles in
the NKR formalism but not in the Rarita-Schwinger one.
This paper is organized as follows: in the next section we
revisit the electromagnetic structure of a spin % particle
under U(1),,, gauge principle in the NKR formalism, ex-
tract the corresponding Feynman rules and prove that Ward
identities are satisfied. In Sec. III, we calculate the ampli-
tude for Compton scattering, show that it is gauge invari-
ant, and work out the predictions for the differential and
total cross sections. In Sec. IV, we calculate this process in
the conventional Rarita-Schwinger formalism. We discuss
our results in Sec. V and give a summary in Sec. VI.

II. ELECTROMAGNETIC INTERACTIONS OF

SPIN % PARTICLES IN THE NKR FORMALISM
The NKR Lagrangian for spin % interacting particles

with charge —e has been discussed in [5] and we refer
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the reader to this work for the details. The most general
free Lagrangian for a spin % particle arising from the
Poincaré projectors is

LO(G, b) = (au(pa)l“aﬁﬂvalll/jﬁ - mZI_palpa +é

m2

X (0", )0 ,) + - (G y )y y).
(1

Here, a, b are free (“‘gauge’) parameters and the corre-
sponding (“‘gauge fixing”) terms are associated to the
constraints (see [5] for a discussion on this point). The
most general tensor compatible with Poincaré projection
and Lorentz covariance is

r = Boz,B,uV - ig[M,LLV]a,B + &YS[MMV]Q,B + 5EQBMV

+ ifyseaB#V) (2)

aBuv

with
BaB;U/ = %(_'Y,B')’Vga,u, - Zgﬁyga,u + Ya¥Yu8pv
- ’Ya/’YBg,u,v + 3gaﬁg,u.1/)’ (3)

[M;Ly]aﬂ = %a',uvgaﬁ + i(g,u.agVB - g/.LﬂgVCY)' (4)

Here M ,,, are the generators of the (1/2,1/2) ® [(1/2,0) ®
(0, 1/2)] representation of the HLG and o, = £[v,,. 7, ].
We included the odd-parity terms & d for the sake of
completeness. This tensor coincides with the one in
Eq. (141) of [5] when f =0 and ¢ = d = 0; it has been
slightly rewritten for convenience in the calculations
below.

The propagator is calculated as the inverse of the kinetic
term. We obtain [5]

S(p.0.0) = 2 )
with
Alp.a,b) = —P% — [(bp* + a(l — b)m)P})
N e e
(6)
‘= L )

w2 (3 — b)(bp* — a(l — b)ym?) — 3am*’

Here, P stands for the spin % projector and P%-) are the
spin % projectors (for i = j) and “‘switch” operators (for
i # j)inthe (1/2,1/2) ®[(1/2,0) ® (0, 1/2)] representa-
tion space of the HLG.

Electromagnetic interactions are introduced in Eq. (1)
using the U(1),,, gauge principle which amounts to use the
minimal coupling recipe 9¢ — D* = 9¢ — ieA*. We ob-
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L(a,b) = Ly(a, b) — ej,(a)A*
+ AP Tapunp? + é Y, )ARAY, (8)
with
Ju(@) = i g, @ P — 10" §°T o, P
F L @io =i ). ©

In momentum space, using ¢, = u,(p)e ’* the transi-
tion current reads

j/.L = I’_‘a(pl)[raﬁv,u,p/y + Faﬁ,u,vpy

1
+(8upPa t g,mp;;)]uﬁ(p),

a“(p") V(p', p, @) apuu®(p), (10)

where the electromagnetic vertex V(p’, p, a) is defined by
the latter relation. The Feynman rules derived from Eq. (8)
are shown in Fig. 1.

A straightforward calculation shows that this vertex
satisfies

(p/ - P)MV(P/: P a)aﬂ,u
2

1 m
= {Kaﬁ(p’) +—(Papp) — m*g.p + 7%7;;}

m2

1
- {Kaﬁ(p) + E(pﬂpa) - ngaﬂ + 7Fya’)/ﬂ}’ (11)

where K,g(p) =Typ,,p*p”. In terms of the inverse
propagator we get

(p' = P V(P p, @apy = Sop(p a, b) = S, 4(p, a, b),
(12)

i.e., the Ward-Takahashi identity is satisfied for any value
of a, b.

The calculations below simplify in the ‘“unitary gauge”
a = b = oo, thus in the following we will work in this
gauge. In this case

j,u. = Iza(p/)(raﬁv,u,p“, + Faﬁ,u,vpv)uﬁ(p)
= ’/_la(P/)@(P/) p)aﬁ,uuﬁ(p)! (13)
and the electromagnetic vertex reads
V(P/, D, oo)o(ﬁlu, = @(Pl, p)a,B,u
= Faﬂv,uplv + Fa,B,quVr (14)

O, P)app = YLOWP', P)ap)¥° = Op. P)pap.
(15)

The propagator in this case is
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FIG. 1. Feynman rules for arbitrary values of the gauge parameters a, b.

—_pd 42 —2m2 PY denote the energies of the incoming and outgoing photon,
S(p, 00, 0) = II(p) = g m2m+ e respectively. They are related by
mo

A I'= , 19

(p) (16) T w(1 — cosh) (19)

TP —mtie
where 6 stands for the angle of the outgoing photon with

and the Ward-Takahashi identity simplifies to . .
respect to the incoming one.

(p' — p)*O(p/, Papu = {Ka,g(l?/) - nga[;} The amplitude for Compton scattering has three contri-
_ {KaB(P) _ ngaﬁ} butions:
= T1_4(p") — T 4(p). (17) M =My + Mg+ Mc (20)
where My, My, and M, correspond to s-channel,
III. COMPTON SCATTERING u-channel exchange and the “‘seagull” contact term re-
spectively:

In this section we calculate Compton scattering. Our

conventions are given in Fig 2. We will work in the rest M, = ¢23%(p")O(p’, 0) oy I172(0)O(Q, p)s3,u” (p)
frame of the initial spin % particle (lab frame). In this frame

*® !/ 14
the differential cross section reads X e (¢')e"(q), @
do 1 |jw|2<a/)z
dQ  4(dm)? m? ’

(18) MB = ezﬁa(p/)@(P/) R)ayVHya(R)@(R’ p)B,B,uu'B(p)
X e (q')€” (q), (22)

w

where m stands for the mass of the spin % particle and w, @’
MC = _ezaa(pl)(raﬁ,uv + Faﬁ'v,u)uﬁ(p)elu*(q/)ev(q)’
(23)
withQ=p+gqg=p +qgandR=p —qg=p—4q'. As
a check, replacing €”(q) by ¢” and using the Ward-
Takahashi identity we obtain
My(e”(q) = q") = a*(p)O(p', Q) apuu” (p)e™(q),
(24

FIG. 2. Compton scattering off a spin % particle.
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Mp(e”(q) = q") = —e*a*(p)OR, p)ap,u”(p)e*(q"),
(25)

Mc(e”(q) = q*) = —2a*(pO(P', Q) g,
— O(R, p)apuJuf(p)er(q').  (26)

Adding up these contributions, we obtain that gauge in-

variance is satisfied [10]
|

= 1
PP = I MP

pol
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M(e(qg) — q) = 0. (27)

A similar result is obtained for the outgoing photon.

The calculation of the spin averaged squared amplitude
is straightforward but involves a large number of manipu-
lations and properties of the formalism, hence, we will give
some details. From Egs. (20)—(23) we obtain

4 ~
= % Tr[Ana(p/){@(pl’ Q)ayMHya(Q)@(Q’ p)ﬁ,BV + (D(P/, R)a'yVHya(R)@(Rr p)S,B,u
- (Faﬁ,uu + Faﬁv,u)}ﬁﬁg(p){@(p! Q){¢pH¢0(Q)(9(Q’ P/)amr + @(P: R){¢0H¢0(R)(9(R’ pl)ﬁnp

- (F{‘r]pa' + F{na'p)}]g#”gyp- (28)
Here, A denotes the projector onto the subspaces spanned N o,
by the desired solutions to the free equation ut(p, =1/2) = N n*(p, =Du(p, 1/2)
A o5(p) = Yua(p, Vitg(p, V). (29) b 31)
A + 437 Oulp, —1/2),
Since we are working with parity-conserving interactions N 2 — e ; /2
we will use the solutions with well-defined parity. These u*(p, =3/2) = n*(p, —Du(p, —1/2),
solutions were constructed in [5] and we just quote the final where
result here.
u®(p,3/2) = n“(p, Du(p, 1/2),
1
u*(p, 1/2) = —=n*(p, Hu(p, —1/2
(p.1/2) \/577(17)(1? /2) (30)
2 a
+ 37, Oulp. 1/2),
|
—2(m + Po)(P12+ ips) (m + po)ps
1 —m" — pom — py — ipiPa 1 P1P3
1) == . X ! , ,0
n(p. 1) V2m(m + pg) —i(p3 — ip1pa + m(m + py)) n(p.0) m(m + po) P2pP3
—(p1 +ip2)ps p3 + m(m + py) 32
(m + po)(py — ip2)
n(p, —1) = 1 f’122+ pom +pi—ipip
2m(m + py) | —i(p2 + ipipy + m(m + py))
(p1 = iP2)ps
and
m + Po 0
1 1 1 1
u(p );:7 0 u(p,——) — | m*tpo | (33)
2 V2m(m + pq) P3 2 2m(m + pg) | P1 — P2
p1Tipy —D3
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Using these solutions, a straightforward calculation yields

p+m
2m
(34)

where A,g(p) is the operator associated with the NKR
propagator in Eq. (16).

It is important to remark that the formalism we are using
is based on the projection onto subspaces of the Casimir
operators of the Poincaré group, W? and P2. This projec-
tion does not define the parity properties of the solutions in
the case of spin % (it does in the case of spin 1). However, it
is always possible to choose solutions with well-defined
parity as we have done. In this case, the external product of
the solutions projects also onto the parity subspaces. This is
the reason of the (§ + m)/2m factor in Eq. (34). As a
check we also constructed the negative parity solutions
obtaining a similar result as Eq. (34) but with the factor
(=p+m)/2m.

In order to simplify the trace calculation by symmetry
considerations, we use the notation

Aaﬁ(p) = Zua(p’ /‘)l’_lﬁ(p’ )‘) = _Aozﬁ(p)
A

|M|> = AA + AB— AC + BA+ BB— BC — CA — CB
+ CC, (35)

where

AA = THA™ (PO, 0) a0y I17°(Q)O(Q, p) 55, AP (p)
X O(p, Q)74,11%(Q)O(Q, p')pyole*g#7 8" /8,
(36)

AB = TH{A™(p)O(p', 0) 4y, T17°(Q)O(Q, p)sp, AP (p)
X @(p: R){qﬁo'nqse(R)@(R: p/)anp]e4g,u0'g7/p/8’
(37)

AC =T A" (p)O(p', Q)ay, 11" (Q)O(Q, p)ss, AP (p)
X (ng'/]pa' + F{na'p)]e“glurgyp/& (38)

cC= Tr[Ana(pl)(raﬂp,V + Faﬂv,u,)ﬁlgg(p)
X (anpa' + ana-p)]e‘tglw-gyp/& (39)

The other traces can be found using the following symme-
try properties:

AA "=’ BB, AB "=’ BA,
(40)

AC'="BC, CA"=' CB,

so that we only need to calculate half the traces. We still
have heavy calculation to carry out due to the undeter-
mined parameters in Eq. (2). However, some of these
parameters must vanish if we want to preserve parity.
Indeed, it can be shown that & and d yield odd-parity
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multipoles, hence, they must vanish in a parity invariant
theory. With this simplification and using the constraints,
the interaction current has a Gordon-like decomposition of
the form

jp, = ﬁa(p/)[gaﬁ(pl + p),u + ig[M,uV]aB(p/ - P)V
- iysfeaﬂﬂv(p/ - P)V]uﬂ(l?) (41

A final simplification consist in reducing all vertex func-
tions appearing in the trace by the projection rules

A"(p)py = A"(p)ya =0,
Py A" (p) = v,A"(p) = 0.

After these simplifications, we calculate the average
squared amplitude with the aid of the FEYNCALC package.
The result is too long to be included here and we defer it to
the Appendix. It depends on the free parameters f and g,
on the Mandelstam variables s and u, and is manifestly
crossing symmetric. In the lab frame

(42)

s=(p+q?=mm+2w),
t=1(q — q)? = —2wo'(1 — cosh), (43)
u=(p—q)=mm-2e".

The classical limit corresponds to the low energy limit
o < m. The expansion of the average squared amplitude
in this limit yields

do(f, g m.x) 2<x2 +1 3,2
— 2 P = +@—x+x—1
70 0 > ( )77

+ 0(772)), (44)

where n = w/m, x = cos#, and ry = a/m denotes the
classical radius. Therefore, in the classical limit we obtain
a differential cross section which is independent of the

undetermined parameters and coincides with the
Thomson result
do(f, g m, x)] 1
o B =_(1+x)r. 45
[ dQ) 70 PR )

IV. COMPTON SCATTERING OFF RARITA-
SCHWINGER SPIN 2 PARTICLES

The Rarita-Schwinger Lagrangian is
L (RS)(A) = l_p'u(iaar,ual/(A) - mB;U/(A))lpV: (46)
where
(A = 8u¥a T Alyug®s + 8,.%7)) + By v*vs,
B(A) = 8u = CYuY,  A#3 (47)
B=3A>+A+1} C=3A2+3A+1

The case A = — % corresponds to the Lagrangian originally
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proposed in [1], while for A = —1 the Lagrangian simpli-
fies to

£(RS)(A = _1) = l_ﬂ'u(iaae,u,avp’ys‘yp - imo-,u,v)lpy'

(48)
The propagator is
2(p A)
A LA “V—, 49
wr(pyA) = o (49)
with
1 A+1 p>—m?
A)=2 - _—
E/LV(p’ ) msS mv 6 A+ m
=)+ ()
A+1 15
2
oA T 1(7 Yo~ Vﬂy)} (50)
where
1 1
S/,LI/ = {_g,uu + §7M7V - %(Yﬂpll - p,u,YV)
2 p+m
+WP,LLPV}W' (51)

Electromagnetic interactions are introduced using the
gauge principle, which amounts to use the minimal cou-
plingd, — D, = d, — ieA,. The interacting Lagrangian
is

1nt lﬂ [lD'ura,u,ﬁ(A)

The electromagnetic current reads

mBg(A) P (52)

Ju= 0 TaupA)y?, (53)
which yields the vertex function
O 4pu(A) =T, 5(A). (54)
If we define
K uo(p, A) = p L% (A) —mB,,,(A),  (55)

it can be easily shown that the Ward-Takahashi identity
|

64

81m8(m? — 5)2(m? — u)?
+ 12(s + u)(8s® + 63us + 8u?)m'°
+ (s + u)(19s* + 56us® + 142u%s>

[Megs]? = [1530m!°

— (48s* + 269us> + 358u?s?
+ 56u3s + 19u*)m® — su(24s* + 37us> + 94u®s?

PHYSICAL REVIEW D 80, 054002 (2009)
holds
(pl - p)'u@aﬁy,(A) = j(aﬁ(pI’ A) - j(aﬁ(p’ A) (56)

The interacting Lagrangian can be factorized as
(RS) v A A
LEA) =GRy, (5 )50 (@, 0,3 )07, (57)

where 7, = p,, — eA, and

Rup(W) =gy,

This factorization can be used to show that the Lagrangian
is invariant under the point transformations

A—2w
1+ 4w’

WYLV, (58)

w,u - d’,lu, = R,LLV(W)":[’V)

(59)

The freedom represented by the parameter A reflects in-
variance under “‘rotations” mixing the two spin 1* and 3~
sectors residing in the RS representation space besides
spin % [4]. It can be shown [11] that the elements of the S
matrix do not depend on the parameter A. In the following
we will work with A = —1 in whose case the propagator
takes its simplest form.

Compton scattering is induced by the s and u channel
conventional diagrams. The corresponding amplitudes are

M = a*(p") 04y, 117°(0) O, uP (p)e” (q) € (q')
(60)

M, = e2a*(p) 04y, 17 (R)Os 5,1 (p)e” (q) € (q).
(61)

Replacing €”(g) by ¢” and using the Ward-Takahashi
identity we obtain

D, (e(g) = q) = e*e*(q)ia*(p") O 4, uP (p),
N, (elg) = q) = —e*a®(p")Oyp,,uP (p)e(q"),

and gauge invariance is obtained adding up Egs. (62).
Analogous results hold for the outgoing photon.

The average squared amplitude is obtained using the
FEYNCALC package as

(62)

—996(s + u)ym'* + (595> — 982us + 59u*)m'?

+ 269u3s + 48u*)m?®
+ 37uds + 24u*)m*

+ 252u(s + u)(3s% + 8us + 3uP)m® — sPud(s* + u?)]. (63)

It is explicitly symmetric under s < u exchange. In the lab frame the differential cross section reads
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>
dogs o

dQ  162(1 + 5(1 — x))°

[2(x — 1)*(15x* — 36x + 25)n°

PHYSICAL REVIEW D 80, 054002 (2009)

—2(x — )(3x* — 16x3 + 134x* — 216x + 103)n°

+ (7x* — 244x3 + 1010x> — 1284x + 527)n* — (x — 1)(81x* — 162x> + 164x* — 582x + 723)n3
+ (243x* — 486x3 + 487x% — 696x + 564)n? — 243(x — 1)(x* + 1)y + 81(x> + 1)]. (64)

In the low energy limit we get

dO-RS ()C +1
2

+ P —x+x—1)n+ 0(772)), (65)

and comparing with Eq. (44) we can see that the predic-
tions of the RS and NKR formalisms coincide to order 7.
In particular, in the classical limit the Thomson result is
obtained in both formalisms. Integrating the solid angle we
get the total cross section

Ops = Ir : [3307* + 87 — 2352 — 1627

64873(2n + 1
—162)log(2y + (27 + 1)*
+ 20 (1447° + 23298 + 144477 + 434470

|
where o = 87r}/3 stands for the Thomson total cross

section. As far as we know, these results were obtained first
in [12] using a different procedure.

V. DISCUSSION

Before we start the discussion of our results, it is im-
portant to recall results for Compton scattering of particles
with lower spin. In the case of scalar particles a straightfor-
ward calculation yields

de*(5m® — 4(s + uym® + (s> + u?)m* + s2u2)
(m* — $)*(m* — u)?

|§I_Ro|2 =

|0, =
2

(67)
+ 81821° + 155109* + 189277 + 1221972
+ 38887 + 486)], (66)| For a Dirac particle we obtain
4e*(6md — (3s% + 14us + 3u®)m* + (s + Tus® + Tu®s + u?)m?* — su(s® + u2))
5 5 (68)
2(m? — $)2(m* — u)
|

The calculation of Compton scattering in the NKR The average squared amplitudes for spin s = 0, 1 3, 1in

formalism for a vector particle, i.e., a spin 1 particle trans-
forming in the (3, 1) representation of the homogeneous
Lorentz group, was done in [7]. The electromagnetic struc-
ture of a vector particle is characterized by two free pa-
rameters g and &, the last one corresponding to the odd-
parity terms. The specific values of g and ¢ were fixed in
[7] analyzing the high energy behavior of the total cross
section for Compton scattering and it was concluded there
that the only values preserving unitarity in the high energy
limit are g = 2 and & = 0. As discussed in [7] these values
reproduce the electromagnetic couplings of the W boson in
the standard model. The average squared amplitude in this
case turns out to be

4e*
3(m? — 5)*(m* — u)?
+ m*(31s% + 40su + 31u?)
— 4m?(3s3 + 55%u + 5su’ + 3u’) + 25* + 453u
+ 75%u* + 4su’ + 2u*]. (69)

10,12 = [31m® — 44mO(s + u)

l ED/E RS | forward ~

_ 2e*(191m® — 60m®s + 34m*s* —

Egs. (67)—(69) are symmetric under s < u exchange and
have the interesting property that in the forward direction
(t =0, u=2m?> — s) they are energy independent and
have the common value

| S‘IR |forward 464' (70)

As can be seen using Eq (18), in the rest frame of a particle
with spin s =0, 1 3. 1, it requires the differential cross
section for Compton scattering in the forward direction
to be energy independent and coincide with the classical
squared radius

doy

dQ |forward r%- (7 1)

As for spin % the Rarita-Schwinger result quoted in
Eq. (63) in the forward direction reduces to

4m?s® + %)

81m® 72
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In the NKR formalism, the average squared amplitude in the Appendix depends on two parameters f and g, which
determine the electromagnetic structure at tree level of the spin % particle. It was shown in [5] that causal propagation of
spin % waves in an electromagnetic background is obtained for g = 2 and f = 0 and we will consider these values in the
following. Using these values we get the average squared amplitude as

4e*

Tl =
BEVEY 81m'%(m? — $)>(m* — u)

5[5952m" — 5272m'%(s + u) + m'*(310s* — 6148su + 310u?)

+ 2m'2(1045s% + 5703s5%u + 5703su> + 1045u3) — m'°(1401s* + 7048s3u + 9966s52u> + 7048su’

+ 1401u*) + m3(339s° + 2119s*u + 3718s3u® + 3718s%u® + 2119su* + 339u°)

— m®(22s% + 34355u + 764s*u* + 678s3u> + 764s%u* + 343su’ + 22u°)

+ 2m*(s7 + 26s5%u + 93s7u? + 52s5*u® + 5253u* + 9352w’ + 26su° + u’)

— 4m2su(s® + 8s7u + 65*u® + 253u> + 65%u* + 8sud + u®) + 25%u*(s + u)(s* + u?)?]. (73)

In the forward direction, this average squared amplitude
has the value

|Myke|? = de*. (74)

We remark that the properties in Eqgs. (70) and (71) are
satisfied by a spin % in the NKR formalism but not in the RS
formalism.

The differential cross section reads

donkr 7(2) &
= h,(2)n", 75
70 (1+nz)7,§0 (@) (75)
1 do
rg? 40

o3bLL— . . .. e ]

FIG. 3 (color online). Differential cross section in the RS and
NKR formalisms as a function of x = cosé for low values of the
energy of the incident photon in the laboratory frame: 7 = w/m.
The black curve corresponds to 7 = 0 (Thomson limit), dashed
curves correspond to n = 0.2 in the NKR formalism (short-
dashed curve), and RS formalism (long-dashed curve).

|
with z =1 — x, x = cosf, and

1

ho(z) = E(z2 -2z +2),
5

hy(z) = 51(12 -2z +2),

5
hy(z) = 512(2z2 — 4z +5),
hy(z) = 523(z2 — 2z + 4),

1

hy(z) = ﬁz2(45z4 —90z% + 38472 + 8z + 18),
1

hs(z) = 6Z3(3Z4 — 623 + 907> + 8z + 18),

he(z) = éz(1053z5 +2977* + 5497% + 108z?
— 208z + 64),

hy(z) = 8—11z2(108z5 + 117z* + 1447° + 108z?
— 208z + 64),

1
hg(z) = @f(slz“ + 63z2° + 12022 — 256z + 128),

2
ho(z) = ﬁz“(3z2 — 12z + 16),

8 5
ho(z) = S—Zl (76)

In Fig. 3, we show the results of both formalisms for the
differential cross section for low values of 7. Although
both formalisms coincide in the classical limit, even for
values as low as = 0.2 there are sizable differences in the
angular distribution of the emitted photons. For higher
values of 7 these differences become more important as
shown in Fig. 4.
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1 do
r02 dQ
[ T T . . : . . . 2 ‘
st
i
3t
af
1F _
[p=z==m==m it 1 1 |
X

FIG. 4 (color online). Differential cross section in the RS and
NKR formalisms as a function of x = cosf for n = 1.5. The
solid curve corresponds to the results of the NKR formalism
while the dashed curve is the results of the RS formalism.

Integrating the solid angle we find the total cross section
as

ar
32409°(2n + 1)°
— 1119 — 1539% — 54n — 54)log(2n + 1)
+ 21(53769'2 — 640n'" — 159367910
+ 149847° + 516 6407° + 14677507
+2010 1507 + 17424457 + 1082 1607*

+ 493 830%° + 155 115%% 4+ 29 1607 + 2430)].
(77)

ONKR = [45279 + 1)°(4n° + 2179*

The cross section normalized to the Thomson one is shown
in Fig. 5 for n = 1.5 along with the result of the RS
formalism in Eq. (66). The NKR and RS formalisms yield
the same result in the Thomson limit but their predictions
for the total cross section differ beyond this point.

In the high energy limit, the total cross section predicted
by the NKR formalism grows as n*. This is in contrast with
the spin 1 case studied in [7] where the total cross section
remains finite in the high energy limit and further work is
necessary in order to understand this point.

VI. SUMMARY AND PERSPECTIVES

In this work, we study Compton scattering off a spin %
elementary target in a recently proposed formalism for the
description of high spin fields based on the Poincaré pro-
jectors and also in the conventional Rarita-Schwinger for-
malism. These formalisms yield the same result for the

PHYSICAL REVIEW D 80, 054002 (2009)
g

or

L e e e e e LA B e e e e e B L E m e p e

FIG. 5 (color online). Total cross section normalized to the
Thomson cross section. The solid line corresponds to the NKR
formalism. The dashed curve is the result of the RS formalism.

angular distribution and total cross section in the classical
limit and coincide with the Thomson result. However, we
obtain different predictions for these observables beyond
this point, these differences becoming stronger at higher
energies.

It is pointed out that the average squared amplitudes for
Compton scattering in the forward direction for lower spin,
(s =0, % , 1), are energy independent and have the common
value 4¢*. In consequence, the differential cross sections in
the forward direction and in the rest frame of the particles,
coincide with the squared classical radius. This property is
shared by the average squared amplitude for Compton
scattering off spin % particle as calculated in the Poincaré
projector formalism but not in the Rarita-Schwinger
formalism.

The classical regime tests only the lowest multipole (the
electric charge), thus the differences in the angular distri-
butions in these formalisms arise from the different pre-
dictions of these theories for higher multipoles and a
calculation of these multipoles is desirable. Such analysis
could also shed light on the high energy behavior of the
total cross section. In contrast to the case of spin 1 in the
(%, %) representation space studied in [7], which reprodu-
ces the electromagnetic couplings of the W in the standard
model and whose total cross section for Compton scatter-
ing remains finite at high energies, in the case of spin %
studied here it grows as (%)4 in this energy regime.

On the other hand, in the case of spin 1 the Poincaré
projectors automatically project onto subspaces with well-
defined parity. This is not the case for spin % in whose case
solutions with well-defined parity must be chosen by hand.
Therefore, it would be interesting to explore the conse-
quences of a simultaneous projection onto well-defined
parity subspaces at the free particle level. Under U(1).p,
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gauging we expect different predictions for the higher APPENDIX

multipoles in this case. Our calculation yields the average squared amplitude
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|
Iy = 2(f> + gf + g2)*s%u’(s + u)(s* + u?)?, (A2)

Ly =2(=5f*+ 49— 10g)f> + 4(—9g> + 6g + 7)f> — 4g(g(g + 12) — 16)f + 4g*((g — 12)g + 16))s*u*
— (25f* + (92g — 52)f3 + 6(g(25g — 16) — 2)f% + 8g(g(19g — 24) + 6)f + 4g%(g(19g — 32) + 12))
X 32+ uP)u? —4(f2 + gf + g2)(6f> +6(3g —2)f +3g(5g —4) — 4)s>(s* + ut)u?
—4(f2 + gf + g2)*s(s® + u)u

Iy = (s + u)(—2(17f* + 438 — 17g)f> + (—303g> + 852g — 504)f> + 4(g(7(27 — 5g)g — 276) + 80)f
— 4(g(g(g(Tg — 136) + 357) — 316) + 116))s%u + (95/* + 14(35¢ — 32)f3 + (3g(441g — 596) + 448) f2
+ 4(g(g(316g — 459) + 94) + 24)f + 2(g(g(g(277g — 592) + 518) — 504) + 328))(u>s* + u*s?)
+2(f2+ gf + (17> —36f + 448> + 8(7f — 3)g — 28)(us® + w’s) + 2(f> + gf + g2)*(s® + u®))

le = —2(185f* + 2(899g — 1126)f> + (69g(83g — 156) + 4996)f2 + 4(g(g(1210g — 2709) + 2272) — 388)f
+ g(g(g(2291g — 9592) + 15856) — 10448) + 2976)s’u> — (447f* + 30(93g — 106) 3
+ 2(4443g% — 7332g + 2846) 1% + 4(g(3g(653g — 1150) + 2062) — 352)f
+ 16(g(g(3g(76g — 231) + 892) — 554) + 200))(u?s* + u*s?) — (206f* + (826g — 736)f°
+ (3g(739g — 844) + 584)f2 + 4(g(g(460g — 387) — 16) + 60)f + g(g(g(941g — 1592) + 968) — 912)
+ 1120)(us® + w’s) — 2(f> + gf + g»)(16g> + 22fg + f(7f — 12) — 20)(s® + u®)

ls = (s + u)(2(388f* + (3446g — 4020)f> + 2(5079g% — 9216¢ + 4054)f2 + 8(1165g> — 2610g% + 1792¢ — 190)f
+ 4849g* — 15312g% + 18704g% — 7984¢ + 1568)s2u® + 2(349f* + 2(679g — 836)f> + (5175g% — 7392g
+3232)f% + 4(1013g3 — 1320g% + 532¢ + 80)f + 2278g* — 4628g> + 4492g% — 1856g + 560)(us> + u’s)

+ (116f* + (202g — 268)f3 + 6(151g% — 84g + 6)f2 + 8(56¢° — 27g% — 6g + 18)f + 389g* — 272g3 + 54042
— 768g + 752)(s* + u))

Lo = —2(1177f* + 22(359g — 386)f> + (3g(9953g — 14396) + 15572)f> + 4(g(g(6491g — 11 139) + 3668)
+2252)f + g(g(g(13105¢ — 20512) + 5072) + 9424) — 4992)s%u> — (1647f* + 36(187g — 223)f3
+2(27g(617g — 768) + 7726) % + 8(g(3177g> — 4362g + 994) + 1376)f + 2(g(g(6705g> — 8688g + 3604)
+ 2800) — 1408))(us> + u’s) + (—416f* — 26(5g — 28)f> — (9g(515g — 268) + 160)f> — 4(g(g(463g — 249)
+316) + 76)f — g(g(g(1517g — 976) + 2080) — 1552) — 736)(s* + u*)
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l;, = (255f* + 2(2409g — 928) 3 + (55731g% — 48972¢g + 5904) f2 + 4(10989¢> — 933952 — 54185 + 8632)f
+ 2(6489g* + 5212¢° — 24 534g% + 21 064g + 1736))(us® + u®s) + (301f* — 2(653g — 544)f>
+ 9(1425g% — 388g — 336)f2 + 4(1511¢> + 231g% + 258¢g — 72)f + 1414g* + 2632g3

— 4404g + 4080g — 784)(s> + u?)

Iy = 2(1699f* + 4(908g — 2063)f> — 84(276g> — 44g — 75)f> — 16(1108g> + 603g> — 1536g + 450)f
+ 2(1649g* — 11240g> + 14328g> — 5376g — 7616))su + (1361 f* + (5488¢g — 8756)f°
— 4(4854g% + 1056g — 2321) > — 16(704g> + 1035g% — 473g — 608)f
+2(2407g* — 8072¢> + 8584g% — 2848g — 96))(s* + u?)

lis = —4(735f% + (2178 — 3704) 3 + (1688 — 33g(111g + 124))f2 + 4(g(566 — 3g(197g + 735)) + 2020)f

+ g(g(g(3033g — 5308) + 926) + 4184) + 2952)(s + u)

lig = 12(139f* + (3982 — 668) % — 3(117g> + 316g + 20)f2 — 4(55g3 + 45082 + 54g — 628)f

+ 4(157g* — 154g> — 189g> + 404g + 652)).

This amplitude is clearly symmetric under the s < u exchange.
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