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We present the results of a Bayesian analysis of solar and KamLAND neutrino data in the framework of

three-neutrino mixing. We adopt two approaches for the prior probability distribution of the oscillation

parameters �m2
21, sin

2#12, sin
2#13: (1) a traditional flat uninformative prior; and (2) an informative prior

which describes the limits on sin2#13 obtained in atmospheric and long-baseline accelerator and reactor

neutrino experiments. In both approaches, we present the allowed regions in the sin2#13-�m
2
21 and

sin2#12-sin
2#13 planes, as well as the marginal posterior probability distribution of sin2#13. We confirm

the 1:2� hint of #13 > 0 found in [G. Fogli et al., Phys. Rev. Lett. 101, 141801 (2008).] from the analysis

of solar and KamLAND neutrino data. We found that the statistical significance of the hint is reduced to

about 0:8� by the constraints on sin2#13 coming from atmospheric and long-baseline accelerator and

reactor neutrino data, in agreement with [T. Schwetz, M. Tortola, and J.W. F. Valle, New J. Phys. 10,

113011 (2008).].
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I. INTRODUCTION

Neutrino oscillation experiments have shown that neu-
trinos are massive and mixed particles (see Refs. [1–3]).
Solar and KamLAND neutrino experiments observed

�
ð�Þ

e ! �
ð�Þ

�;� transitions due to neutrino oscillations gener-

ated by a squared-mass difference

�m2
SOL ’ 8� 10�5 eV2: (1.1)

Atmospheric and long-baseline accelerator neutrino ex-

periments measured �
ð�Þ

� ! �
ð�Þ

� transitions due to neutrino

oscillations generated by a squared-mass difference

�m2
ATM ’ 2:5� 10�3 eV2: (1.2)

Hence, there is a hierarchy of squared-mass differences:

�m2
ATM ’ 30�m2

SOL: (1.3)

This hierarchy is easily accommodated in the framework of
three-neutrino mixing, in which there are two independent
squared-mass differences. We label the neutrino masses in
order to have

�m2
SOL � �m2

21; (1.4)

�m2
ATM ’ j�m2

31j ’ j�m2
32j: (1.5)

The two possible schemes are illustrated in Fig. 1. They
differ by the sign of �m2

31 ’ �m2
32.

For the 3� 3 unitary mixing matrix of neutrinos we
adopt the standard parametrization in Eq. (A2) of
Appendix A [4,5]. The negative results of the Chooz [6]
and Palo Verde [7] long-baseline neutrino oscillation ex-
periments, together with the evidence of neutrino oscilla-
tions in atmospheric and long-baseline accelerator neutrino
experiments, imply that the mixing angle #13 is small [8]

(see Ref. [9] for updated bounds). On the other hand, the
values of the other two mixing angles are known to be large
from the results of solar and KamLAND experiments (#12)
and the results of atmospheric and long-baseline accelera-
tor neutrino experiments (#23).
In Ref. [10] we presented the results of a Bayesian

analysis of the solar and KamLAND neutrino data in the
framework of two-neutrino mixing, which is obtained from
three-neutrino mixing in the approximation of negligible
#13. In this paper, we extend our Bayesian analysis to the
framework of three-neutrino mixing, aiming at the deter-
mination of the constraints on the value of the small mixing
angle #13 implied by solar and KamLAND neutrino data.
The plan of the paper is as follows. In Sec. II we present

the constraints on the value of #13 in a standard �2 analy-
sis, to be compared with the Bayesian results with an

FIG. 1. The two three-neutrino schemes allowed by the hier-
archy �m2

SOL � �m2
ATM.
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uninformative prior presented in Sec. III. In Sec. IV we
present the results obtained with an informative prior
which represents information on #13 obtained in atmos-
pheric and long-baseline accelerator and reactor neutrino
experiments, independently from solar and KamLAND
neutrino data. The conclusions are given in Sec. V.

II. �2 ANALYSIS

The traditional way to extract information on the neu-
trino mixing parameters from solar neutrino data is based
on the standard least-squares method, also called ‘‘�2

analysis.’’ The least-squares function �2 is given by �2 ¼
�2 lnLþ constant, where L is the likelihood function. In
this section we present our results in a traditional least-
squares analysis of solar and KamLAND neutrino data.
The least-squares function described in this section will be
used in the Bayesian analysis presented in Sec. III for the
calculation of the sampling probability distribution, which
is proportional to the likelihood function.

We consider the data of the following solar neutrino
experiments: Homestake [11], GALLEX/GNO [12],
SAGE [13], Super-Kamiokande [14,15], and SNO [16].
The least-squares function of solar neutrino data is given
by

�2
S ¼ XNS

i;j¼1

ðRexp
i � Rth

i ÞðV�1
S ÞijðRexp

j � Rth
j Þ: (2.1)

Here Rexp
i are the solar data points, whose number is NS ¼

80, accounted as follows:
(i) the rate of the Homestake 37Cl experiment [11];
(ii) the combined rate of the 71Ga experiments

GALLEX/GNO [12] and SAGE [13];
(iii) the day and night energy spectra of the Super-

Kamiokande experiment [14] (21þ 21 bins) and
Super-Kamiokande experiment [15];

(iv) the day and night energy spectra of charged-current
events in the SNO experiment [16] (17þ 17 bins);

(v) the neutral-current event rate in the salt phase of the
SNO experiment [16];

(vi) the neutral-current detection array neutral-current
event rate in the SNO experiment [17].

The corresponding theoretical rates Rth
i depend on the

neutrino oscillation parameters. The covariance error ma-
trix VS takes into account the correlations of theoretical
uncertainties, according to the discussions in Refs. [18–
21]. In our analysis, the initial flux of 8B solar neutrinos is
considered as a free parameter to be determined by the fit,
mainly through the SNO neutral-current data. For the other
solar neutrino fluxes, we assume the BP04 standard solar
model [22]. The transition probability in the Sun is calcu-
lated using the standard method [23] based on the hier-
archy of squared-mass differences in Eq. (1.3), which
implies that the oscillations generated by the large mass-

squared difference �m2
ATM are averaged out (see Refs. [1–

3]). For the calculation of the regeneration of solar �e’s in
the Earth, we use Eq. (A12), derived in Appendix A.
Neutrino oscillations due to the same mixing parameters

which generate the oscillations of solar neutrinos have
been observed in the KamLAND very-long-baseline reac-
tor neutrino oscillation experiment [24]. The KamLAND
least-squares function is1

�2
S ¼ XNK

i;j¼1

ðNexp
i � Nth

i ÞðV�1
K ÞijðNexp

j � Nth
j Þ; (2.2)

where NK ¼ 17 is the number of energy bins, N
exp
i is the

number of events measured in the ith bin and Nth
i is the

corresponding theoretical value, which depends on the
neutrino oscillation parameters. The covariance error ma-
trix VK takes into account the statistical uncertainties and
the correlated and uncorrelated systematic uncertainties,
all added in quadrature.
The global least-squares function is

�2
T ¼ �2

S þ �2
K: (2.3)

We minimized �2
T with respect to the three mixing parame-

ters�m2
21, sin

2#12, and sin
2#13. We found the best-fit point

�m2
21 ¼ 7:58� 10�5 eV2; sin2#12 ¼ 0:31;

sin2#13 ¼ 0:021:
(2.4)

The 90%, 95%, and 99.73% C.L. regions in the
sin2#13-�m

2
21 and sin2#12-sin

2#13 planes are shown, re-
spectively, in Figs. 2 and 3. These regions correspond to
2 degrees of freedom. The third parameter (#12 in Fig. 2
and �m2

12 in Fig. 3) is marginalized by minimizing �2
T .

From Figs. 2 and 3, one can see that KamLAND data
constrain #13 more than solar data.
Figure 4 shows the difference ��2 of �2 from its mini-

mum value as a function of sin2#13. The resulting 90%,
95%, and 99.73% C.L. upper bounds for sin2#13, deter-
mined by the intersection of the ��2 curve with the
straight horizontal lines in Fig. 4, are, respectively,

sin 2#13 < 0:051ð90%Þ; 0:057ð95%Þ;
0:076ð99:73%Þ: (2.5)

It is interesting to note that the best-fit point for sin2#13

in Eq. (2.4) is slightly larger than zero, in agreement with
the value obtained in Ref. [27] (see also Refs. [9,28]),
sin2#13 ¼ 0:021� 0:017. Since we have sin2#13 ¼
0:021� 0:018, our hint of #13 > 0 is at the 1:2� level

1In Ref. [10] and in the first version of this paper
(arXiv:0810.5443v1) we adopted a different least-squares func-
tion, which is appropriate for a Poisson distribution (see
Refs. [5,25]). We think that the Gaussian least-squares function
in Eq. (2.2) is more appropriate for the analysis of KamLAND
data, because it allows us to take into account the systematic
uncertainty in each energy bin, as discussed in Ref. [26].
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(the precise value of ��2 for #13 ¼ 0 is 1.33, correspond-
ing to 1:15�).

III. BAYESIAN ANALYSIS

In the Bayesian approach, the analysis of the data allows
us to calculate the posterior probability distribution of the
mixing parameters, assuming a prior probability distribu-

tion which quantifies the prior knowledge. Denoting with
M ¼ f�m2

21; sin
2#12; sin

2#13g the set of mixing parame-
ters to be determined by the analysis, the normalized
posterior probability distribution of the mixing parameters
is given by

pðMjD; IÞ ¼ pðDjM; IÞpðMjIÞR
dMpðDjM; IÞpðMjIÞ ; (3.1)

where pðDjM; IÞ is the sampling probability distribution,
pðMjIÞ is the prior probability distribution, and dM �
d�m2

21dsin
2#12dsin

2#13. The symbolsD and I represent,
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FIG. 2 (color online). The 90%, 95%, and 99.73% C.L. regions in the sin2#13-�m
2
21 plane obtained in the least-squares analysis. The

solid and dotted lines enclose, respectively, the regions obtained with solar data and KamLAND data. The shadowed areas are obtained
from the combined analysis of solar and KamLAND data. The figure on the right is an enlargement of the interesting area of the figure
on the left. The dot, cross, and asterisk indicate, respectively, the best-fit points of the solar, KamLAND, and combined analyses.
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FIG. 3 (color online). The 90%, 95%, and 99.73% C.L. regions
in the sin2#12-sin

2#13 plane obtained in the least-squares analy-
sis. The solid and dotted lines enclose, respectively, the regions
obtained with solar data and KamLAND data. The shadowed
areas are obtained from the combined analysis of solar and
KamLAND data. The dot, cross, and asterisk indicate, respec-
tively, the best-fit points of the solar, KamLAND, and combined
analyses.
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FIG. 4. ��2 as a function of sin2#13. The straight horizontal
lines show the levels corresponding to 90%, 95%, and
99.73% C.L.
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respectively, the experimental data and all the prior general
knowledge and assumptions on solar and neutrino physics.

The sampling probability distribution is given by

pðDjM; IÞ / ðjVSjjVKjÞ�1=2e��2
T=2; (3.2)

with the least-squares function �2
T given in Eq. (2.3). The

normalization factor is irrelevant, since it cancels in

Eq. (3.1). We retained only the coefficient ðjVSjjVKjÞ�1=2,
which depends on the neutrino mixing parameters in M
(see Ref. [21]).
In Ref. [10] we have shown that the choices of

constant uninformative priors in the sin2#12-�m
2
21 or

log sin2#12- log�m
2
21 planes are practically equivalent, be-

cause of the excellent quality of the data. Hence, in the
three-neutrino mixing analysis we assume a constant prior
in the three-dimensional space of the parameters �m2

21,

sin2#12, and sin2#13.
Figures 5 and 6 show the resulting credible regions with

90%, 95%, and 99.73% probability in the sin2#13-�m
2
21

and sin2#12-sin
2#13 planes, respectively. A credible region

is the smallest region with the given integral posterior
probability. In practice, a credible region is calculated as
the two-dimensional region surrounded by an isoprobabil-
ity contour which contains the point of highest posterior
probability. In each plane of parameters, the probability
distribution is calculated by integrating pðMjD; IÞ over
the third parameter (sin2#12 in the plane sin

2#13-�m
2
21 and

�m2
12 in the plane sin2#12-sin

2#13).
The credible regions in Figs. 5 and 6 are similar but

slightly lager than the �2-allowed regions in Figs. 2 and 3.
The comparison of the two types of region is shown in
Fig. 7 and 8. It is fair to conclude that the Bayesian analysis
with an uninformative prior confirms the results obtained
with the traditional �2 analysis.
Figure 9 shows the marginal posterior probability distri-

bution of sin2#13, which is given by
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FIG. 5 (color online). The 90%, 95%, and 99.73% Bayesian credible regions in the sin2#13-�m
2
21 plane obtained with an

uninformative constant prior probability distribution. The solid and dotted lines enclose, respectively, the credible regions obtained
with solar data and KamLAND data. The shadowed areas are obtained from the combined analysis of solar and KamLAND data. The
figure on the right is an enlargement of the interesting area of the figure on the left. The dot, cross, and asterisk indicate, respectively,
the best-fit points of the solar, KamLAND, and combined analyses.
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FIG. 6 (color online). The 90%, 95%, and 99.73% Bayesian
credible regions in the sin2#12-sin

2#13 plane obtained with an
uninformative constant prior probability distribution. The solid
and dotted lines enclose, respectively, the regions obtained with
solar data and KamLAND data. The shadowed areas are ob-
tained from the combined analysis of solar and KamLAND data.
The dot, cross, and asterisk indicate, respectively, the best-fit
points of the solar, KamLAND, and combined analyses.
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pðsin2#13jD; IÞ ¼
Z

d�m2
21

Z
dsin2#12pðMjD; IÞ:

(3.3)

The resulting credible upper bounds for sin2#13 with 90%,
95%, and 99.73% probability are, respectively,

sin 2#13 < 0:048ð90%Þ; 0:054ð95%Þ;
0:075ð99:73%Þ: (3.4)

These limits are similar to those in Eq. (2.5), in agreement
with the above conclusion that an uninformative-prior
Bayesian analysis confirms the results obtained with a �2

analysis.
We investigated also the hint of #13 > 0 in the Bayesian

approach. Since the probability of the smallest posterior
credible region which includes #13 ¼ 0 is 0.86, consider-
ing the rescaled probability corresponding to a two-tailed
posterior Gaussian distribution we obtain a hint of #13 > 0
at the 1:2� level, as in the �2 analysis (see the discussion at
the end of Sec. II).
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FIG. 7 (color online). Comparison of the allowed regions in the sin2#13-�m
2
21 plane obtained with the �2 analysis and the Bayesian

approach. The light-shadowed and lightþ dark-shadowed areas cover, respectively, the Bayesian credible regions with � probability
and the �2 region with � C.L. In the three figures, from left to right, � ¼ 90%; 95%; 99:73%.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

sin2θ12

si
n2 θ 13

χ2

bayesian

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

sin2θ12

si
n2 θ 13

χ2

bayesian

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

sin2θ12
si

n2 θ 13

χ2

bayesian

FIG. 8 (color online). Comparison of the allowed regions in the sin2#12-sin
2#13 plane obtained with the �2 analysis and the

Bayesian approach. The light-shadowed and lightþ dark� shadowed areas cover, respectively, the Bayesian credible regions with �
probability and the �2 region with � C.L. In the three figures, from left to right, � ¼ 90%; 95%; 99:73%.
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As a caveat on the comparison of frequentist and
Bayesian results, let us remind that the two theories are
based on different definitions of probability. Hence,
although ‘‘numerical results tend to be the same for the
two approaches in the asymptotic regime, that is, when
there are a lot of data, and statistical uncertainties are small
compared with the distance to the nearest physical bound-
ary’’ [29], the interpretation is different.

In the frequentist theory the probability of a class of
random events is the relative frequency of occurrence of
these events when the total number of events tends to
infinity. In parameter estimation, a confidence interval
with � C.L. is an element of a hypothetical set of con-
fidence intervals which have a frequentist probability � of
covering the true value of the parameter (see
Refs. [29,30]). Notice that in frequentist statistics it is not
allowed to make any statement about the true value of the
parameter, which is a fixed unknown number, not a random
variable, albeit in practice frequentist statistics is very
often applied to quantities which are not random variables,
as systematic errors. The correct frequentist statements in
parameter estimation concern intervals in the parameter
space and the frequency of their coverage of the unknown
true value in the asymptotic limit. This is the meaning of
the allowed regions in Figs. 2 and 3. The 1:2� hint of#13 >
0 discussed at the end of Sec. II means that the best-fit
value of sin2#13 is 1:2� away from sin2#13 ¼ 0, i.e. the
confidence intervals obtained in the �2 analysis with less
than about 76% C.L. do not include sin2#13 ¼ 0.

In the Bayesian theory probability represents the degree
of belief based on the available knowledge. Hence it is
possible to estimate a probability for any kind of event, not
only for random variables as in frequentist statistics. In
particular, systematic errors can be treated without any
inconsistency. Moreover, there is no need to consider
hypothetical quantities, since the posterior probability dis-
tribution is straightforwardly obtained from the prior
probability distribution and the sampling probability dis-
tribution using Bayes’ theorem, as in Eq. (3.1). The only
difficult task in Bayesian theory probability is the estima-
tion of the prior probability distribution on the basis of the
available knowledge. In parameter estimation, one can
calculate the Bayesian probability of the true value of the
parameter to lie in an interval by integrating the posterior
probability distribution. The 1:2� hint of #13 > 0 dis-
cussed above means that the credible intervals obtained
with a Gaussian approximation of the posterior probability
density having less than about 76% probability do not
include sin2#13 ¼ 0. Note that the Gaussian approxima-
tion of the posterior probability density is defined on the
whole real axis of sin2#13 for the comparison with the
analogous frequentist result using the traditional terminol-
ogy. In fact, the least-squares analysis leads to correct
frequentist confidence intervals only in the case of a
Gaussian likelihood in which the mean values of the data

points are linear functions of the parameters. In practice
this requirement is approximately satisfied in a region
around the minimum of the �2 if the data are abundant
and the minimum of the �2 lies far from any boundary of
the parameters. Since in the case under consideration we
are close to the boundary sin2#13 � 0, we can compare the
Bayesian result with the frequentist least-squares result in
which the boundary has not been taken into account only
by relaxing the boundary restriction.

IV. AN INFORMATIVE PRIOR

In the previous section we analyzed the solar and
KamLAND neutrino data assuming a constant uninforma-
tive prior probability distribution in the three-dimensional
space of the parameters �m2

21, sin2#12, and sin2#13.
However, as remarked in the introductory Sec. I, the value
of #13 was known to be small before the analysis of solar
and KamLAND neutrino data from the negative results of
the Chooz [6] and Palo Verde [7] long-baseline neutrino
oscillation experiments combined with the evidence of
neutrino oscillations in atmospheric and long-baseline ac-
celerator neutrino experiments. In the Bayesian approach it
is natural to try to express this prior knowledge through a
prior probability distribution. The resulting posterior
probability distribution of the mixing parameters �m2

21,
sin2#12, and sin

2#13 is interpreted as our knowledge about
their values obtained from solar and KamLAND neutrino
data, taking into account the information on #13 obtained
in atmospheric and long-baseline accelerator and reactor
neutrino experiments.
Since we do not have the machinery for the fit of the data

of atmospheric and long-baseline accelerator and reactor
neutrino experiments, we constructed a prior probability
distribution for #13 using the �2 reported in Fig. 24 of
Ref. [31], where such fit was performed. In Fig. 24 of
Ref. [31] there are two slightly different curves corre-
sponding to the normal and inverted schemes (see
Fig. 1), which depict �2ðcos� sin#13Þ for the two
CP-conserving cases cos� ¼ �1, where � is the phase in
the mixing matrix in Eq. (A2). Since we do not have any
information on the value of �, for each scheme we consid-
ered a prior probability distribution for #13 marginalized
over cos� ¼ �1:

pð#13jIÞ /
X

cos�¼�1

exp

�
��2ðcos� sin#13Þ

2

�
: (4.1)

For sin2#12 and �m2
21 we assumed constant uninformative

priors as in Sec. III.
The prior distributions (4.1) in the normal and inverted

schemes are depicted by the dotted curves in Fig. 12, from
which one can see that they have a maximum for sin2#13 ¼
0. Hence, they disfavor the hint of #13 > 0. The 90%, 95%,
and 99.73% prior upper bounds for sin2#13 are
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sin 2#13 <

�
0:030; 0:036; 0:051 ðnormal schemeÞ;
0:033; 0:039; 0:057 ðinverted schemeÞ:

(4.2)

Notice that such disfavoring of the hint of#13 > 0 obtained
from the �2 in Fig. 24 of Ref. [31] in the Bayesian
approach is in contrast with a faint hint of #13 > 0 which
can be obtained in the frequentist approach by considering
the minimum of �2 at cos� sin#13 ’ �0:1 and ��2 ’ 0:2
at #13 ¼ 0 (see the discussion in Ref. [31]). The contrast is
due to the different marginalization procedures in the
frequentist and Bayesian theories: in the frequentist theory
only the minimum of �2 with respect to the marginalized
parameters is considered, whereas in the Bayesian theory
marginalization is implemented by integrating over the
distribution of the marginalized parameters, as we have
done, for example, in Eq. (3.3). In the case of the margin-
alization over cos� ¼ �1, the Bayesian procedure of sum-
ming the prior probability distribution over cos� ¼ �1 in
Eq. (4.1) for each value of sin#13 is different from the
frequentist consideration of �2ðsin#13Þ for cos� ¼ �1
only, which is due to �2ðsin#13j cos� ¼ �1Þ<
�2ðsin#13j cos� ¼ 1Þ. In general, the Bayesian marginali-
zation procedure has the merit to take into account all the
distribution of the marginalized parameters, which gives
more information than the single point of minimum of �2.

Using the informative prior on #13 in Eq. (4.1), from the
analysis of solar and KamLAND data We found the best-fit
point, corresponding to the maximum of the posterior
probability distribution,

�m2
21 ¼ 7:58� 10�5 eV2; sin2#12 ¼ 0:31;

sin2#13 ¼ 0:012:
(4.3)

The shadowed areas in Figs. 10 and 11 show the posterior
credible regions with 90%, 95%, and 99.73% probability in
the sin2#13-�m

2
21 and sin

2#12-sin
2#13 planes, respectively.

The boundaries of the corresponding regions obtained with
an uninformative prior, shown in Figs. 5 and 6, are depicted
with solid lines.
Since the prior information constrains only #13, the best-

fit values and allowed ranges of �m2 and #12 are similar to
those obtained in Sec. III with an uninformative prior. A
small change is due to the correlation with #13.
On the other hand, one can see that the assumption of the

informative prior in Eq. (4.1) leads to a significant reduc-
tion of the allowed range of #13 with respect to that
obtained with an uninformative prior, as should have
been expected.
A curious feature of Figs. 10 and 11 is that the 90% and

95% allowed ranges of sin2#13 seem to be larger than those
allowed by the prior distribution (vertical straight lines in
Fig. 10 and horizontal straight lines in Fig. 11). Such a
conclusion would be erroneous, because the prior distribu-
tion in Eq. (4.1) concerns only one parameter, whereas the
credible regions in Figs. 10 and 11 constrain two parame-
ters taking into account their correlation.
The posterior probability distribution of sin2#13 ob-

tained from the marginalization in Eq. (3.3) implies an
allowed range of sin2#13 which is smaller than that given
by the prior distribution, as one can see from Fig. 12. We
obtained the 90%, 95%, and 99.73% upper bounds
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FIG. 10 (color online). Shadowed areas: 90%, 95%, and 99.73% Bayesian credible regions in the sin2#13-�m
2
21 plane obtained with

the informative prior probability distribution in Eq. (4.1). The regions enclosed by solid lines correspond to those in Fig. 5, obtained
with an uninformative prior. The straight vertical dotted lines enclose, respectively, the 90%, 95%, and 99.73% prior credible regions
of sin2#13. The left and right plots correspond, respectively, to a normal and an inverted scheme (see Fig. 1). The cross and asterisk
indicate, respectively, the best-fit points of the analyses with uninformative and informative priors.
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sin 2#13 <

�
0:027; 0:030; 0:045 ðnormal schemeÞ;
0:030; 0:033; 0:048 ðinverted schemeÞ;

(4.4)

which are smaller than the corresponding ones in Eq. (4.2).
These bounds are also about 60% smaller than those ob-
tained in Eq. (3.4) with an uninformative prior. Figure 13
shows the comparison of the posterior probability with the

one in Fig. 9, which has been obtained with an uninforma-
tive flat prior.
It is interesting to note that the bounds on sin2#13 in

Eq. (4.4) are similar to those obtained with a global �2

analysis of neutrino oscillation data in Ref. [9] (see, how-
ever, the caveat on the comparison of frequentist and
Bayesian results discussed at the end of Sec. III). Our
results also agree with the weakening of the hint of #13 >
0 discussed in Ref. [9] coming from the addition of atmos-
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FIG. 12. Marginal posterior probability distribution of sin2#13 obtained with the informative prior probability distribution in
Eq. (4.1). The dotted curve shows the prior distribution in Eq. (4.1). The long (short) straight vertical lines show the 90%, 95%,
and 99.73% posterior (prior) probability levels. The short straight dotted vertical lines have been slightly shifted to the right to avoid
superposition [compare with Eqs. (4.2) and (4.4)].
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FIG. 11 (color online). Shadowed areas: 90%, 95%, and 99.73% Bayesian credible regions in the sin2#12-sin
2#13 plane obtained

with the informative prior probability distribution in Eq. (4.1). The regions enclosed by solid lines correspond to those in Fig. 6,
obtained with an uninformative prior. The straight horizontal dotted lines enclose, respectively, the 90%, 95%, and 99.73% prior
credible regions of sin2#13. The left and right plots correspond, respectively, to a normal and an inverted scheme (see Fig. 1). The cross
and asterisk indicate, respectively, the best-fit points of the analyses with uninformative and informative priors.
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pheric and long-baseline accelerator and reactor neutrino
data to the analysis of solar and KamLAND data: using the
method described in Sec. III, the significance of the hint of
#13 > 0 is reduced from about 1:2� to about 0:8� (with
0.72 and 0.75 respective probabilities of the smallest pos-
terior credible region which includes #13 ¼ 0 in the nor-
mal and inverted schemes). The discrepancy with the 1:6�
reported in Ref. [27] is probably due to the marginalization
over cos� ¼ �1 in Eq. (4.1). In fact, for cos� ¼ �1
Fig. 24 of Ref. [31] implies a prior in favor of #13 > 0,
which leads to a global hint of #13 > 0 at the 1:5� level
(with 0.93 probability of the smallest posterior credible
region which includes #13 ¼ 0), in agreement with the
value in Ref. [27] (1:6�). Let us however emphasize that,
since the marginalization over the unknown value of � is
the correct procedure in the Bayesian approach, our result
for the statistical significance of the global hint of #13 > 0
is 0:8�.

Let us finally remark that the results presented in this
section depend on the choice of the prior probability
distribution for #13 obtained from the fit of the data of
atmospheric and long-baseline accelerator and reactor neu-
trino experiments. In Eq. (4.1), instead of the �2 of
Ref. [31] we could have used, for example, the �2 of one
of Refs. [9,32–34]. However, since in these papers the
same data have been fitted with similar assumptions and
methods, using one of these �2’s would not change dra-
matically the numerical results presented above. For ex-
ample, we considered the �2 in Fig. 3 of Ref. [9], which
corresponds to the prior upper bounds

sin 2#13 < 0:030ð90%Þ; 0:039ð95%Þ;
0:063ð99:73%Þ: (4.5)

We obtained the best-fit values

�m2
21 ¼ 7:58� 10�5 eV2; sin2#12 ¼ 0:31;

sin2#13 ¼ 0:008;
(4.6)

and the posterior upper limits

sin 2#13 < 0:030ð90%Þ; 0:033ð95%Þ;
0:051ð99:73%Þ: (4.7)

One can see that these values are close to the corresponding
ones in Eqs. (4.2), (4.3), and (4.4). For the hint of #13 > 0
we have a 0:9� statistical significance (with 0.78 proba-
bility of the smallest posterior credible region which in-
cludes #13 ¼ 0), in perfect agreement with Ref. [9].

V. CONCLUSIONS

In this paper we presented the results of a Bayesian
analysis of the solar and KamLAND neutrino data with
the aim of determining the value of the unknown mixing
angle #13 in the framework of three-neutrino mixing.
We found that with an uninformative flat prior distribu-

tion in the relevant mixing parameters �m2
12, sin2#12,

sin2#13, the Bayesian credible regions in the
sin2#13-�m

2
12 and sin2#12-sin

2#13 planes are only slightly
smaller than the allowed regions obtained with a traditional
least-squares analysis, implying a rather stringent upper
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FIG. 13. Marginal posterior probability distribution of sin2#13 obtained with the informative prior probability distribution in
Eq. (4.1). The dotted curve shows the marginal posterior distribution in Fig. 9, obtained with an uninformative flat prior. The long
straight vertical lines show the 90%, 95%, and 99.73% posterior probability levels in Eq. (4.4). The short straight vertical lines show
the corresponding probability levels in Eq. (3.4), obtained with an uninformative flat prior. The short straight dotted vertical line in the
figure on the right has been slightly shifted to the right to avoid superposition [compare with Eqs. (3.4) and (4.4)].
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bound for sin2#13. Our analysis confirms the 1:2� hint of
#13 > 0 found in Ref. [27].

We also performed an analysis with an informative prior
which represents information on #13 obtained in atmos-
pheric and long-baseline accelerator and reactor neutrino
experiments, independently from solar and KamLAND
neutrino data. We found that such a prior implies a signifi-
cant decrease of the upper bound on #13 with respect to
that obtained with an uninformative prior and the hint of
#13 > 0 is reduced to a 0:8� level. Our results are similar
to those obtained with a global �2 analysis of neutrino
oscillation data in Ref. [9] (see, however, the caveat on the
comparison of frequentist and Bayesian results discussed at
the end of Sec. III).

Let us finally emphasize that Bayesian inference (see
Refs. [35–39]) is founded on a consistent theory and can
always be implemented in a correct way (given enough
computational power). On the other hand, the frequentist
method is based on an unphysical definition of probability
and in most cases of interest cannot be implemented in a
correct way. In particular, a dramatic flaw of the frequentist
method is that the frequentist definition of probability does
not allow the treatment of theoretical and systematic errors
as random variables. Hence, the aim of the frequentist
statistics approach of extracting objective statistical infor-
mation from data cannot be realized in practice. Since the
Bayesian theory does not suffer from such shortcomings,
we think that it is preferable for attaining reliable results
from the analysis of experimental data.
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APPENDIX: REGENERATION OF SOLAR �e’S IN
THE EARTH

Solar neutrinos arriving at a detector during nighttime
pass through the Earth, where the matter effect (also called
‘‘MSW effect’’ [40,41]) can cause a change in the flavor
composition, which is called ‘‘regeneration of solar �e’s in
the Earth.’’ In this appendix, we derive the connection
between the averaged probability of survival of solar elec-
tron neutrinos passing through the Earth, �PSunþEarth

�e!�e
, which

is measured during nighttime, the averaged probability of
�e survival from the core of the Sun to the surface of the
Earth, �PSun

�e!�e
, which is measured during daytime, and the

probability of �2 ! �e transitions in the Earth, P
Earth
�2!�e

. We

also discuss the connection between PEarth
�2!�e

in the case of

three-neutrino mixing and the probability of �2 ! �e tran-
sitions in the Earth in the case of two-neutrino mixing.
The mixing of neutrino states is given by

j��i ¼
X3
k¼1

U�
�kj�ki ð� ¼ e;�; �Þ; (A1)

where U is the 3� 3 unitary mixing matrix of the neutrino
fields (see Refs. [1–3]). We adopt the standard parametri-
zation [4,5]

U ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13
s12s23 � c12c23s13e

i� �c12s23 � s12c23s13e
i� c23c13

0
B@

1
CA; (A2)

where cab � cos#ab and sab � sin#ab. The three mixing
angles #12, #13, #23 take values in the ranges 0 � #ab �
	=2. The CP-violating phase � is confined in the interval
0 � � < 2	. We neglected possible Majorana phases,
which are irrelevant for neutrino oscillations [42–44].

A solar neutrino, created in the core of the Sun as a �e,
arrives in a detector as a superposition of �1, �2, and �3.
However, since the neutrino squared-mass differences are
relatively large [ee Eqs. (1.1), (1.2), (1.3), (1.4), and (1.5)],
the average of the oscillation probability over the energy
resolution of the detector washes out the interference terms
between the massive neutrinos [45]. This is due to the fact
that the vacuum oscillation lengths are much shorter than
the Sun–Earth distance:

Losc
21 ¼ 4	E

�m2
21

’ 30 km

�
E

MeV

�
;

Losc
32 ’ Losc

31 ¼ 4	E

j�m2
31j

’ 1 km

�
E

MeV

�
;

(A3)

where E is the neutrino energy, which in solar neutrino
experiments varies in the interval

0:2 MeV & E & 15 MeV: (A4)

Then, the measurable averaged survival probability of
solar electron neutrinos after crossing the Earth is given by

�P SunþEarth
�e!�e ¼ X3

k¼1

PSun
�e!�k

PEarth
�k!�e

; (A5)

where PSun
�e!�k

is the probability of �e ! �k transitions

from the solar core to the surface of the Earth and PEarth
�k!�e

is the probability of �k ! �e transitions in the passage
through the Earth.
In matter, electron neutrinos feel a charged-current po-

tential VCC ¼ ffiffiffi
2

p
GFNe, where GF is the Fermi constant

and Ne is the electron number density. The quantity which
gives the matter effect in the evolution equation of neutrino
flavors is
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ACC ¼ 2EVCC ¼ 1:53� 10�7 eV2

�
Ne

NA cm�3

��
E

MeV

�
;

(A6)

where NA is the Avogadro number. The electron number
density in the solar core is about 100NA cm�3. In the Earth,
the electron number density varies from about 2:2NA cm�3

in the mantle to about 5:5NA cm�3 in the core. Thus, for
solar neutrinos we have ACC & 2:3� 10�4 eV2, which is
much smaller than the atmospheric squared-mass differ-
ence �m2

ATM [see Eq. (1.2)]. This means that the matter
effect cannot induce transitions between �3 and the two
neutrinos �1 and �2, since the two groups are separated by
the large atmospheric squared-mass difference �m2

ATM

[see Eq. (1.5) and Fig. 1]. In other words, the massive
neutrino component �3 propagates without disturbance
from the core of the Sun to the detector and the corre-
sponding transition probabilities in Eq. (A5) are simply
given by

PSun
�e!�3

¼ PEarth
�3!�e

¼ jh�3j�eij2 ¼ jUe3j2: (A7)

Furthermore, taking into account the conservation of
probability, we have

PSun
�e!�1

¼ 1� PSun
�e!�3

� PSun
�e!�2

¼ 1� jUe3j2 � PSun
�e!�2

;

(A8)

PEarth
�1!�e

¼ 1� PEarth
�3!�e

� PEarth
�2!�e

¼ 1� jUe3j2 � PEarth
�2!�e :

(A9)

Let us now express the averaged survival probability
�PSun
�e!�e

of electron neutrinos from the solar core to the

surface of the Earth in terms of the transition probabilities
PSun
�e!�k

:

�PSun
�e!�e

¼ jh�ejSj�eij2 ¼
��������
X3
k¼1

h�ej�kih�kjSj�ei
��������

2

¼ X3
k¼1

jUekj2PSun
�e!�k

; (A10)

where S is the evolution operator. We neglected the inter-
ference terms for the reason discussed above, before
Eq. (A5). Using Eqs. (A7), (A8), and (A10), we can
express PSun

�e!�2
in terms of �PSun

�e!�e
:

PSun
�e!�2

¼ jUe1j2ð1� jUe3j2Þ þ jUe3j4 � �PSun
�e!�e

jUe1j2 � jUe2j2
: (A11)

Finally, using Eqs. (A7)–(A9) and (A11), we obtain, from
Eq. (A5),

�P SunþEarth
�e!�e

¼ �PSun
�e!�e

þ ½ð1� jUe3j2Þ2 � 2ð �PSun
�e!�e

� jUe3j4Þ	½PEarth
�2!�e

� jUe2j2	
jUe1j2 � jUe2j2

: (A12)

Since in practice jUe1j2 > jUe2j2, because sin2#12 < 1 (see
Refs. [10,31]), and jUe3j2 is small, there is a regeneration
of electron neutrinos in the Earth if PEarth

�2!�e
> jUe2j2. Note

that in the absence of matter effects, we have PEarth
�2!�e

¼
jh�2j�eij2 ¼ jUe2j2 and �PSunþEarth

�e!�e
¼ �PSun

�e!�e
.

Let us now discuss the calculation of PEarth
�2!�e

. The evo-

lution of neutrino flavors in matter is governed by the
Schrödinger equation (see Refs. [1–3])

i
d

dx
�F ¼ HF�F; (A13)

with the effective Hamiltonian

H F ¼ 1

2E
ðU�M2Uy þ AÞ; (A14)

and

�F �
c e

c �

c �

0
BB@

1
CCA; �M2 �

0 0 0

0 �m2
21 0

0 0 �m2
31

0
BB@

1
CCA;

A �
ACC 0 0

0 0 0

0 0 0

0
BB@

1
CCA: (A15)

Here, c � ¼ h��j�i is the amplitude of the flavor � in the
state j�i which describes a propagating neutrino. The
column matrix �F of flavor amplitudes is related to the
column matrix �M � ðc 1; c 2; c 3ÞT of mass amplitudes
(c k ¼ h�kj�i) by

�F ¼ U�M: (A16)

In the calculation of PEarth
�2!�e

, the initial mass and flavor

amplitudes are

c kð0Þ ¼ �k2; c �ð0Þ ¼ U�2: (A17)

The probability of �2 ! �e transitions at a distance x from
neutrino production is given by
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P�2!�e
ðxÞ ¼ jc eðxÞj2: (A18)

Taking into account the fact that the mixing matrix in the
parametrization in Eq. (A2) can be written as

U ¼ R23W13R12; (A19)

with

R12 ¼
c12 s12 0

�s12 c12 0

0 0 1

0
BB@

1
CCA; R23 ¼

1 0 0

0 c23 s23

0 �s23 c23

0
BB@

1
CCA;

W13 ¼
c13 0 s13e

�i�

0 1 0

�s13e
i� 0 c13

0
BB@

1
CCA; (A20)

it is convenient to work with the new column matrix of

amplitudes �̂ � ðĉ 1; ĉ 2; ĉ 3ÞT defined by

�̂ ¼ W13yR23y�F ¼ R12�M; (A21)

which follows the evolution equation

i
d

dx
�̂ ¼ Ĥ �̂ : (A22)

SinceR23 commutes with the matter potential matrixA, the
new effective Hamiltonian Ĥ is given by

Ĥ ¼ 1

2E
ðR12�M2R12y þW13yAW13Þ: (A23)

Explicitly, we have

Ĥ ¼ 1

2E

s212�m
2
21 þ c213ACC c12s12�m

2
21 �c13s13e

�i�ACC

c12s12�m
2
21 c212�m

2
21 0

�c13s13e
i�ACC 0 �m2

31 þ s213ACC

0
B@

1
CA: (A24)

From Eq. (A21), we have ĉ 3 ¼ c 3. Therefore, ĉ 3 is the
amplitude of �3. Since �m

2
31 
 ACC, in practice the third

eigenvalue of Ĥ is equal to �m2
31=2E and the matter effect

cannot induce transitions between �3 and the other two
massive neutrinos, as discussed above. Furthermore, since
ĉ 3ð0Þ ¼ c 3ð0Þ ¼ 0 [from Eq. (A17)], in practice the con-
tribution of �3 is negligible and PEarth

�2!�e
can be calculated

by solving the effective two-neutrino evolution equation

i
d

dx
~� ¼ ~H ~�; (A25)

with ~� � ð ~c 1; ~c 2ÞT ¼ ðĉ 1; ĉ 2ÞT and

~H ¼ 1

2E

s212�m
2
21 þ c213ACC c12s12�m

2
21

c12s12�m
2
21 c212�m

2
21

� �
: (A26)

This effective Hamiltonian coincides with the effective
Hamiltonian in the case of two-neutrino mixing (see
Refs. [1–3]), with the matter contribution ACC multiplied
by the three-neutrino mixing factor c213. The initial column

matrix of amplitudes is explicitly given, from Eqs. (A17)
and (A21), by

~�ð0Þ ¼ c12 s12
�s12 c12

� �
0
1

� �
¼ s12

c12

� �
: (A27)

The probability of �2 ! �e transitions at a distance x from
neutrino production is given by

P�2!�e
ðxÞ ¼ j½R23W13�̂ðxÞ	ej2 ¼ c213j ~c 1ðxÞj2: (A28)

Therefore, in practice, the probability of �2 ! �e transi-
tions in the Earth is given by

PEarth
�2!�e

¼ ð1� jUe3j2ÞPEarth;2�
�2!�e ; (A29)

where PEarth;2�
�2!�e

is the probability of �2 ! �e transitions
calculated in the case of two-neutrino mixing with an
effective matter contribution multiplied by c213 ¼
1� jUe3j2.
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