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Using the binary tetrahedral group T0, the three angles and phase of the quark CKM mixing matrix are

pursued by symmetry-breaking which involves T0-doublet VEVs and the Chen-Mahanthappa

CP-violation mechanism. The NMRT0M, next-to-minimal renormalizable-T0 model is described, and

its one parameter comparison to experimental data is explored.
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I. INTRODUCTION

To go beyond the standard model based on G ¼
SUð3Þ � SUð2Þ �Uð1Þ generally has the aim of relating
some of the many parameters therein. Well-known possi-
bilities include grand unification G 2 GGUT, otherwise
extending the gauge group G 2 G0, supersymmetry, tech-
nicolor, and finally horizontal or flavor symmetry GF, a
global group commuting with G.

In the present paper we study further the use of GF, in
particular, the choice GF ¼ T0, the binary tetrahedral
group. This group can combine the advantages of its cen-
tral quotient T � A4 for leptons with the incorporation of
three quark families in a (2þ 1) pattern with the third
much heavier family treated asymmetrically.

We shall employ Higgs scalars which are all electroweak
doublets. An alternative approach would be to use electro-
weak singlets, so-called flavons, but that would necessitate
nonrenormalizable or irrelevant operators which we
eschew.

In recent work, two of the present authors, together with
Kephart [1], presented a simplified model based on T0
flavor symmetry. The principal simplification was that
the Cabibbo-Kobayashi-Maskawa (CKM) mixing angles1

involving the third quark family were taken to vanish
�23 ¼ �13 ¼ 0.

In terms of the scalar field content, all scalar fields are
taken to be doublets under electroweak SUð2Þwith vacuum
values which underlie the symmetry breaking. Great sim-
plification was originally achieved by the device of restrict-
ing scalar fields to irreducible representations of T0 which
are singlets and triplets only, without any T0 doublets.
There was a good reason for this because the admission
of T0-doublet scalars enormously complicates the symme-
try breaking. This enabled the isolation of the Cabibbo
angle �12 and to a very reasonable prediction thereof,

namely [1] tan2�12 ¼ ð ffiffiffi
2

p Þ=3.

Within the same simplified model, in a subsequent paper
[2], the departure of �12 from this T0 prediction was used
to make predictions for the departure of the neutrino
PMNS angles �ij from their tribimaximal values [3].

Also in that model [4], we suggested a smoking-gun T0
prediction for leptonic decay of the standard model Higgs
scalar. Other related works are [5–15].
In the present article, we examine the addition of

T0-doublet scalars. As anticipated in [1], this allows more
possibilities of T0 symmetry breaking and permits nonzero
values for�23,�13 and �KM. We present an explicit (T0 �
Z2) model and investigate for all the CKM angles.
To understand the incorporation of T0-doublet scalars

and to make the present article self-contained, it is neces-
sary to review the previous simplified model employed in
[1,2,4] in which T0-doublet scalars were deliberately ex-
cluded in order to isolate the Cabibbo angle �12. We here
adopt the global symmetry (T0 � Z2).
Note that we focus on a renormalizable model with few

if any free parameters and focus on the mixing matrix
rather than on masses as the former is more likely to
have a geometrical interpretation while without adding
many extra parameters the masses are unfortunately not
naturally predicted. This is especially true for the lighter
quarks; for the t quark the flavor group assignments allow it
much heavier mass.

II. THE PREVIOUS SIMPLIFIED MODEL, MRT0M

By MRT0M, we mean minimal renormalizable T0
model. Actually the global symmetry, to restrict the
Yukawa couplings is (T0 � Z2).
Left-handed quark doublets ðt; bÞL, ðc; dÞL, ðu; dÞL are

assigned under (T0 � Z2) as

t

b

 !
L

QL ð11;þ1Þ

c

s

 !
L

u

d

 !
L

9>>>>>=
>>>>>;
QL ð21;þ1Þ;

(1)*daeby@physics.unc.edu
†frampton@physics.unc.edu
‡synya@physics.unc.edu
1Note that here upper case �ij refer to quarks (CKM) and

lower case �ij will refer to neutrinos (PMNS).
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and the six right-handed quarks as

tR ð11;þ1Þ
bR ð12;�1Þ
cR

uR

�
CR ð23;�1Þ

sR

dR

�
SR ð22;þ1Þ:

(2)

The leptons are assigned as

��

��
� �

L
��

��
� �

L
�e

e�
� �

L

9>>>>>>>=
>>>>>>>;
LLð3;þ1Þ

��R ð11;�1Þ Nð1Þ
R ð11;þ1Þ

��
R ð12;�1Þ Nð2Þ

R ð12;þ1Þ
e�R ð13;�1Þ Nð3Þ

R ð13;þ1Þ:

(3)

Next we turn to the symmetry breaking and the neces-
sary scalar sector with its own potential2 and Yukawa
coupling to the fermions, leptons and quarks.
The scalar fields in the previous simplified model were,

namely, the two T0 triplets and two T0 singlets

H3ð3;þ1Þ; H0
3ð3;�1Þ;

H11ð11;þ1Þ; H13ð13;�1Þ (4)

which leads to CKM angles �23 ¼ �13 ¼ 0. That model
was used to derive a formula for the Cabibbo angle [1], to
predict corrections [2] to the tribimaximal values [3] of
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino an-
gles, and to make a prediction for Higgs boson decay [4].
The Yukawa couplings for the T0-triplet and T0-singlet

scalars were as follows:

LY ¼ 1
2M1N

ð1Þ
R Nð1Þ

R þM23N
ð2Þ
R Nð3Þ

R þ fY1ðLLN
ð1Þ
R H3Þ þ Y2ðLLN

ð2Þ
R H3Þ þ Y3ðLLN

ð3Þ
R H3Þ þ Y�ðLL�RH

0
3Þ þ Y�ðLL�RH

0
3Þ

þ YeðLLeRH
0
3Þg þ YtðfQLg11ftRg11H11Þ þ YbðfQLg11fbRg12H13Þ þ YCðfQLg21fCRg23H0

3Þ þ YSðfQLg21fSRg22H3Þ
þ H:c:: (5)

III. CHOICE OF THE PRESENT MODEL, NMRT0M

By NMRT0M we mean next-to minimal renormalizable
T0 model.

We introduce one T0 doublet scalar in an explicit model.
Nonvanishing �23 and �13 will be induced by symmetry
breaking due to the addition the T0 doublet scalar.

The possible choices under (T0 � Z2) for the new scalar
field are:

A H21ð21;þ1Þ (6)

B H0
23
ð23;�1Þ (7)

C H0
22
ð22;�1Þ (8)

D H23ð23;þ1Þ (9)

The fields in Eqs. (6)–(9) allow, respectively, Yukawa
couplings:

A YQtQLtRH21 þ H:c: (10)

B YQbQLbRH
0
23
þ H:c: (11)

C YQCQLCRH0
22
þ H:c: (12)

D YQSQLSRH23 þ H:c: (13)

This leads potentially to different extensions of the
MRT0M. For simplicity we keep only one additional
term, D, inspired by the Chen-Mahanthappa mechanism
[16] for CP violation. We shall keep YQS real and CP
violation will arise from the imaginary part of T0 Clebsch-
Gordan coefficients.
The vacuum expectation value (VEV) for H23 is taken

with the alignment

hH23i ¼ V23ð1; 1Þ (14)

while as in [1] the other VEVs include

hH3i ¼ Vð1;�2; 1Þ: (15)

IV. PREDICTIONS OF NMRT0M (D)

From the Yukawa term D and the vacuum alignment we
can derive for the down-quark mass matrix

D ¼
Mb

1ffiffi
2

p YQSV23
1ffiffi
2

p YQSV23

0 1ffiffi
3

p YSV �2
ffiffi
2
3

q
!YSV

0
ffiffi
2
3

q
YSV

1ffiffi
3

p !YSV

0
BBBB@

1
CCCCA; (16)

where Mb ¼ YbV13 and ! ¼ ei�=3.

2The scalar potential will not be examined explicitly. We
assume that it has enough parameters to accommodate the
required VEVs in a finite neighborhood of parameter values.
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The Hermitian squared mass matrix D � DDy for the charge ð�1=3Þ quarks is then

D ¼
M02

b
1ffiffi
6

p YSYQSVV23ð1� 2
ffiffiffi
2

p
!2Þ 1ffiffi

6
p YSYQSVV23ð!2 þ ffiffiffi

2
p Þ

1ffiffi
6

p YSYQSVV23ð1� 2
ffiffiffi
2

p
!�2Þ 3ðYSVÞ2 �

ffiffi
2

p
3 ðYSVÞ2

1ffiffi
6

p YSYQSVV23ð!�2 þ ffiffiffi
2

p Þ �
ffiffi
2

p
3 ðYSVÞ2 ðYSVÞ2

0
BBB@

1
CCCA; (17)

where M02
b ¼ M2

b þ ðYQSV23Þ2.
Note that in this model the mass matrix for the charge

þ2=3 quarks is diagonal3 so the CKMmixing matrix arises
purely from diagonalization ofD in Eq. (17). The presence
of the complex T0 Clebsch-Gordan in Eq. (17) permits a
Chen-Mahanthappa origin [16] for the KM CP violating
phase.

In Eq. (17) the 2� 2 submatrix for the first two families
coincides with the result discussed earlier [1] and hence the

successful Cabibbo angle formula tan2�12 ¼ ð ffiffiffi
3

p Þ=2 is
preserved as follows.

The relevant 2� 2 submatrix of D is proportional to

D 2�2 ¼ 3 �
ffiffi
2

p
3

�
ffiffi
2

p
3 1

 !
; (18)

whose diagonalization leads to the Cabibbo angle formula

tan2�12 ¼
ffiffiffi
3

p
=2: (19)

For m2
b the experimental value is 17:6 GeV2 [17]

although the CKM angles and phase do not depend on
this overall normalization.

Actually our results depend only on assuming that the
ratio (YQSV23=YSV) is much smaller than 1.

Defining

D 0 ¼ 3D=ðYSVÞ2 (20)

we find

D 0 ¼
D0

11 Aeic 1 A�eic 2

Ae�ic 1 9 � ffiffiffi
2

p
A�e�ic 2 � ffiffiffi

2
p

3

0
B@

1
CA (21)

in which we denoted

D 0
11 ¼ 3M02

b =ðYSVÞ2 (22)

A ¼
� ffiffiffi

3

2

s ��
YQSV23

YSV

�
j1� 2

ffiffiffi
2

p
!2j (23)

� ¼
�������� !2 þ ffiffiffi

2
p

1� 2
ffiffiffi
2

p
!2

��������¼ 0:336 15 . . . (24)

tanc 1 ¼ � ffiffiffi
6

p

1þ ffiffiffi
2

p ¼ �1:014 61 . . . (25)

tanc 2 ¼
ffiffiffi
3

p

2
ffiffiffi
2

p � 1
¼ 0:947 29 . . . (26)

To arrive at predictions for the other CKM mixing
elements other than the Cabibbo angle (i.e. �13, �23,
�KM) one needs only to diagonalize the matrix D0 in
Eq. (21) by

D 0
diagonal ¼ Vy

CKMD
0VCKM: (27)

We write the mixing matrix as

VCKM ¼
1 Vts Vtd

Vcb cos�12 sin�12

Vub � sin�12 cos�12

0
@

1
A (28)

and substituting Eq. (28) into Eq. (27) and using Eq. (21)
leads to

Vcb

Vub

� �
¼ 1

D̂0
11

D0
11 � 3 � ffiffiffi

2
p

� ffiffiffi
2

p
D0

11 � 9

 !
Ae�ic 1

Ae�ic 2

� �
; (29)

where D̂0
11 ¼ ðD0

11 � 6� ffiffiffiffiffiffi
11

p ÞðD0
11 � 6þ ffiffiffiffiffiffi

11
p Þ while

from unitarity it follows that

Vts

Vtd

� �
¼ � cos�12 � sin�12

sin�12 cos�12

� �
V�
cb

V�
ub

� �
: (30)

The strategy now is to calculate the CP-violating
Kobayashi-Maskawa phase given by

�KM ¼ � ¼ arg

�
�VudV

�
ub

VcdV
�
cb

�
(31)

and using Eqs. (28) and (29) we arrive at the formula in
terms of D11

�KM ¼ �T0 ¼ arg

�� ffiffiffi
2

p þ ðD0
11 � 9Þ�e�iðc 1�c 2Þ

ðD0
11 � 3Þ � ffiffiffi

2
p

�e�iðc 1�c 2Þ

�

¼ arg½�ðD0
11Þ�; (32)

where �, a function of D0
11, is defined for later use.

In Fig. 1, we show a plot of �T0 versus D0
11 using

Eq. (32) and taking the range of experimentally-allowed
� � �KM from the global fit [18] prompts us to use a value
D0

11 ¼ 19� 2 in the subsequent analysis.
From the preceding Eqs. (28) and (29) we find a formula

for

3This uses the approximation that the electron mass is me ¼ 0;
c.f. ref. [1].

ANALYSIS OF QUARK MIXING USING BINARY . . . PHYSICAL REVIEW D 80, 053007 (2009)

053007-3



jVub=Vcbj ¼ j tan�13 sin�23j (33)

using unitarity, Eq. (30), from the form for the ratios of

CKM matrix elements

jVtd=Vtsj ¼
��������sin�12 þ �ðD0

11Þ cos�12

cos�12 � �ðD0
11Þ sin�12

��������: (34)

Figure 2 shows a plot of jVtd=Vtsj as a function ofD0
11. It

requires a value of D0
11 of approximately 16 which is

sufficiently close to that in Fig. 1.
For the value of jVub=Vcbj there is approximately a

factor two between the prediction (higher) and the best
value from [18].

V. DISCUSSION

Note that once the off-diagonal third-family elements in
Eq. (17) are taken as much smaller than the elements
involved in the Cabibbo angle, the two KM angles and
the CP phase are predicted by the present NMRT0M in
general agreement so this vindicates the hope expressed in
[1].
With regard to alternative NMRT0M models discussed

earlier the possibilities A and C modify the charge-2=3
mass matrix where we take flavor and mass eigenstates
coincident. The final possibility C does modify the charge
ð�1=3Þ mass matrix but does not permit CP violation to
arise from the Chen-Mahanthappa mechanism as in the D
model we have analyzed both here and in [19].
With respect to the article [19] which was letter length,

the present article presents more technical detail and fig-
ures to clarify the results and predictions merely stated in
[19] without explanation.
In summary, we have reported results of studying mixing

angles by exploring the binary tetrahedral group (T0) as a
global discrete flavor symmetry commuting with the local
gauge symmetry SUð3Þ � SUð2Þ �Uð1Þ of the standard
model of particle phenomenology. The results are encour-
aging to pursue this direction of study.
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